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ABSTRACT

Kernel principal component analysis (KPCA) ha
recently been proposed as a nonlinear extension
PCA. [1] The basic idea is to first map the input spa
into a feature space via a nonlinear map and th
compute the principal components in that featu
space. Based on these principal components, t
paper proposes a kernel version of minimum square
error linear discriminant classifier (KL) [2], in which
the MSE cost is minimized on extracted features
the feature space. Programs based on IFC we
written to implement this KPCA based classifier. Th
paper will focus on analyzing the theory behin
KPCA and KL classi fier and improving the
classifier’s performance by adjusting the necessa
parameters of KPCA.

1. INTRODUCTION

Principal Component Analysis is a technique used
linearly transform an original set of variables into
set of uncorrelated variables of smaller dimensio
that represents most of the information. Throug
kernel functions, it can also transform variables in
nonlinear fashion. Kernel Principal Componen
Analysis is a nonlinear extension of PCA where th
principal components are computed in a hig
dimensional feature space, which is nonlinear relat
to the input space. [3]

The aim of this study is to illustrate the potential o
KPCA for data classification. Accordingly, a kerne
version of MSE linear classifier is proposed that us
kernel PCA for data feature extraction. By adopting
Gaussian kernel, the principal components a
computed efficiently within the feature space of inp
data. Unsupervised classification is then perform
using a MSE linear discriminant function. We thu
f

s
-

e

investigate the mathematical properties of kern
functions and characterize the dependence of t
performance of classifiers on the changes of th
kernel function parameters.

The reminder of this paper is organized as follows.
the next section, we will describe the Kernel PC
algorithm. In section 3, we present a KPCA base
version of minimum squared error linear discriminan
classifier. Data classification experiments on two da
sets are given in section 4, followed by a discussio
of our methods (section 5).

2. KERNEL PCA THEORY OVERVIEW

Principal Component Analysis (PCA) is a powerfu
technique for extracting structure from possibly high
dimensional data sets. It is readily performed b
solving an eigenvalues problem, or by using iterativ
algorithms which estimate principal component
PCA is an orthogonal transformation of the
coordinate system. The new coordinate values
which we represent the data are called princip
components. It is often the case that a small numb
of principal components are sufficient to account fo
most of the structure in the data.

In current work of pattern recognition, we are no
interested in principal components in input space, b
rather in principal components of variables, o
features, which are nonlinearly related to the inp
variables. Kernel principal component analys
(KPCA) is proposed as a nonlinear extension of PC
It computes the principal components in high
dimensional feature space F, which is nonlinear
related to the input space. To reduce the computat
complexity, it is performed using kernel function
(the dot product of two data in F) without explicitly
working in feature space F.
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Given a set of centered observations ,
, , PCA diagonalizes the covarianc

matrix

(1)

To do this, one has to solve the eigenvalue equatio

(2)

for eigenvalues  and . As

(3)

all solutions with must lie in the span of
, hence equation (2) is equivalent to

(4)

for all .

In kernel PCA, we have the same computation
another dot product space , which is related to t
input space by a nonlinear map

(5)

Note that , which is referred to be the feature spac
could have an arbitrarily large, possibly infinite
dimensionality.

Again, we assume that we are dealing with center
data, i.e. . Using the covariance matrix i

,

(6)

We now have to find e igenva lues and
eigenvectors  satisfying

(7)

Again, all solutions with lie in the space of
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. This has two useful consequences
first, we may instead consider the set of equations

(8)

fo r a l l , and second , there ex is t
coefficients  such that

(9)

Combining (8) and (9), we get

(10)

Defining an  matrix  by

(11)

this reads

(12)

where denotes the column vector with entrie
. To find solutions of (12), we solve the

eigenvalue problem

(13)

for nonzero eigenvalues.

Let denote the eigenvalues of (i.e
the so lu t ions of (12)) , and the
corresponding complete set of eigenvectors, with
being the last nonzero eigenvalue (assuming
We normal ize by requir ing that the
corresponding vectors in  be normalized, i.e.

(14)

for all . Combining (9) and (13), this

Φ x1( ) … Φ xM( ),,
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translates into a normalization condition for

(15)

For the purpose of principal component extractio
we need to compute projections onto the eigenvect

in ( ). Let be a test point, with an
image  in , then

(16)

may be called its kernel principal component
corresponding to .

In summary, we use the following steps to compu
the principal components: first, compute the matr

; second, compute its eigenvectors and normali
them in ; third, compute projections of inpu
vectors onto the eigenvectors as well as the te
vectors. Therefore we can get extracted featu
matrix

(17)

where , , and extracted feature
matrix  for test vectors

(18)

where , , is the number of tes
vectors.

In this paper, we focus on Gaussian kernels of t
form

(19)
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3. KERNEL MINIMUM SQUARED ERROR

A function is a discriminant (decision) rule
for a class of objects if for and

otherwise. Linear discriminant functions
defined by are frequently used because
their mathematical simplicity. A popular method to
find a good weight vector from input data is base
on the solution of the following system of linea
equations:

(20)

where denotes the sample matrix and b is th
vector of associated class labels: if an

 otherwise.

The vector  that minimizes the MSE cost

(21)

can be computed as

(22)

where  is called the pseudoinverse of matrix

(23)

Thus a kernel version of the MSE linear discriminan
on extracted test feature can be obtained

(24)

where is the row vector of the extracted featur
matrix , .

A natural generalization of the MSE procedures
multi-class case is to consider the problem as a se

two-class problems. The th problem is to obtain
weight vector that is minimum-squared-erro
solution to the equations

 for all (25)

 for all (26)

where  is the th class.
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4. EXPERIMENTS

To test the feasibility of the proposed algorithm, w
run two classification experiments on two differen
data sets. [4] Set 1 is a static classification proble
with 11 classes. Each class vector has 10 elemen
Totally there are 528 training vectors, 379 test vecto
and 83 evaluation vectors. Set 2 is a tempor
modeling problem with 5 classes. Each class vec
has 39 elements but 5 class is a continuous seque
(same classes sequentially in time). Totally there a
925 training vectors (sets of 5 vectors for each clas
350 test vectors and 225 evaluation vectors.

These data sets were performed using Gauss
kernels of the form (19) and MSE linear classifier i
equation (24). The factor was adjusted to obta
different test error rates from these data sets. The t
error rates corresponding different values a
shown in Table 1. From the table, we can se

yields the best test error rate at 34.30% fo
test data set 1; or yields the bes
test error rate at 18.57 for test data set 2.

SET 1 SET 2

ERR(%) ERR(%)

0.005 70.18 0.05 54.29

0.010 41.42 0.10 25.71

0.015 34.30 0.15 20.00

0.020 36.68 0.20 20.00

0.025 37.73 0.25 18.57

0.030 37.73 0.30 18.57

0.035 39.58 0.35 20.00

0.040 39.58 0.40 21.43

0.045 39.58 0.45 21.43

0.050 41.69 0.50 21.43
Table 1: Test error rates on the two data sets
for MSE linear classifier trained on kernel

principal components extracted by PCA with
kernel (19), corresponding various values of .
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5. CONCLUSION

Kernel PCA is a nonlinear generalization of PCA i
the sense that (1) it is performing PCA in featur
spaces of arbitrari ly large (possibly infinite
dimensional i ty, and (2) i f we use the kerne

, we recover standard PCA. The mai
advantage of using KPCA is that no nonlinea
optimization is involved. It is essentially linear
algebra, as simple as standard PCA. It requires on
the solution of an eigenvalue problem. Anothe
advantage is that the performance for kernel princip
components analysis can be further improved b
using more components.

Based on KPCA, a particular simple kernel version
MSE linear classifier (KL) is proposed, which
includes a number of generalized linear model
Satisfactory results in experiments are obtained. F
large databases, KL based on KPCA can be bo
accurate and efficient.

Further work can be done on trying to implement
linear soft margin classifier based on KPCA, which
a special case of Support Vector Machines.

REFERENCES

[1] B. Scholkopf, S. Mika, C. Burges, P. Knirsch, K
R. Miller, G. Ratsch and A. Smola, “Input Spac
versus Feature Space in Kernel-based Method
IEEE Transactions on Neural Networks, vol. 10,
pp. 1000-1017, September 1999.

[2] A. Ruiz and P.E. Lopez-de-Teruel, “Nonlinea
Kernel-Based Statistical Pattern Analysis,”IEEE
Transactions on Neural Networks, vol. 12, no. 1,
January 2001.

[3] K.I. Kim, K. Jung, S.H. Park, H.J. Kim, “Kernel
Principal Component Analysis for Texture
Classification,”IEEE Signal Processing Letters
vol. 8, no. 2, February 2001.

[4] J. Picone, “Common Evaluation,” http://
www.isip.msstate.edu/publications/course
ece_8990_pr/exams/2001/, Institute for Signal
and Information Processing, Mississippi Sta
University, Mississippi State, Mississippi, USA
May 2001.

k x y,( ) x y⋅( )=


	DESIGN OF KPCA BASED
	MINIMUM SQUARED ERROR CLASSIFIER
	Peng Peng
	Department of Electrical and Computer Engineering
	Mississippi State University
	Mississippi State, MS 39762 USA
	email: peng@isip.mstate.edu


	ABSTRACT
	1.�� INTRODUCTION
	2.�� KERNEL PCA THEORY OVERVIEW
	(1)
	(2)
	(3)
	(4)
	(5)
	(6)
	(7)
	(8)
	(9)
	(10)
	(11)
	(12)
	(13)
	(14)
	(15)
	(16)
	(17)
	(18)
	(19)

	3.�� KERNEL MINIMUM SQUARED ERROR
	(20)
	(21)
	(22)
	(23)
	(24)
	for all (25)
	for all (26)

	4.�� EXPERIMENTS
	5.�� CONCLUSION

	REFERENCES
	[1] B. Scholkopf, S. Mika, C. Burges, P. Knirsch, K. R. Miller, G. Ratsch and A. Smola, “Input Sp...
	[2] A. Ruiz and P.E. Lopez-de-Teruel, “Nonlinear Kernel-Based Statistical Pattern Analysis,” IEEE...
	[3] K.I. Kim, K. Jung, S.H. Park, H.J. Kim, “Kernel Principal Component Analysis for Texture Clas...
	[4] J. Picone, “Common Evaluation,” http:// www.isip.msstate.edu/publications/courses/ ece_8990_p...


