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ABSTRACT investigate the mathematical properties of kernel
functions and characterize the dependence of the

Kernel principal component analysis (KPCA) has performance of classifiers on the changes of the
recently been proposed as a nonlinear extension ofkernel function parameters.
PCA. [1] The basic idea is to first map the input space
into a feature space via a nonlinear map and then The reminder of this paper is organized as follows. In
compute the principal components in that feature the next section, we will describe the Kernel PCA
space. Based on these principal components, thisalgorithm. In section 3, we present a KPCA based
paper proposes a kernel version of minimum squared- version of minimum squared error linear discriminant
error linear discriminant classifier (KL) [2], in which  classifier. Data classification experiments on two data
the MSE cost is minimized on extracted features in sets are given in section 4, followed by a discussion
the feature space. Programs based on IFC wereof our methods (section 5).
written to implement this KPCA based classifier. This
paper will focus on analyzing the theory behind 2. KERNEL PCA THEORY OVERVIEW

KPCA and KL classifier and improving the o ) )
classifier's performance by adjusting the necessary Principal Component Analysis (PCA) is a powerful
parameters of KPCA. technique for extracting structure from possibly high-

dimensional data sets. It is readily performed by
1. INTRODUCTION solving an eigenvalues problem, or by using iterative
algorithms which estimate principal components.
Principal Component Analysis is a technique used to PCA is an orthogonal transformation of the
linearly transform an original set of variables into a coordinate system. The new coordinate values by
set of uncorrelated variables of smaller dimension which we represent the data are called principal
that represents most of the information. Through components. It is often the case that a small number
kernel functions, it can also transform variables in a of principal components are sufficient to account for
nonlinear fashion. Kernel Principal Component most of the structure in the data.

Analysis is a nonlinear extension of PCA where the -
principal components are computed in a high !n current work of pattern recognition, we are not

dimensional feature space, which is nonlinear related interested in principal components in input space, but
to the input space. [3] rather in principal components of variables, or

features, which are nonlinearly related to the input
The aim of this study is to illustrate the potential of variables. Kernel principal component analysis
KPCA for data classification. Accordingly, a kernel (KPCA) is proposed as a nonlinear extension of PCA.
version of MSE linear classifier is proposed that uses It computes the principal components in high-
kernel PCA for data feature extraction. By adopting a dimensional feature space F, which is nonlinearly
Gaussian kernel, the principal components are related to the input space. To reduce the computation
computed efficiently within the feature space of input complexity, it is performed using kernel functions
data. Unsupervised classification is then performed (the dot product of two data in F) without explicitly
using a MSE linear discriminant function. We thus working in feature space F.



Given a set of centered observatiogs k 5 1,...,M :
x O RY, ZXK = 0, PCA diagonalizes the covariance
matrix

1M
:MZ @

To do this, one has to solve the eigenvalue equation

Av = Cv 2)
for eigenvalues >0 andoR™\0} . As
1
M Z (X; [V)x (3)

all solutionsv withaxz0 must lie in the span of
Xy, ..., Xy » NENCE equation (2) is equivalent to

A(x On) = (x Cv) (4)

forallk =1,....,M.

In kernel PCA, we have the same computation in
another dot product space
input space by a nonlinear map

®:R"

Note thatr , which is referred to be the feature space, a,

could have an arbitrarily large, possibly infinite,
dimensionality.

Again, we assume that we are dealing with centered

data, i.e.z ®(x,) = 0 . Using the covariance matrix in
F,

M
= 25 o(x)(x) ©

i=1
We now have to find eigenvalues=0 and
eigenvectors/ O F\{0}  satisfying
Ccv

AV = (@)

Again, all solutionsv withhz0 lie in the space of

P(xy),....2(xy) . This has two useful consequences:
first, we may instead consider the set of equations

MP(x) DV) = (P(x) (CV) )

, Which is related to the thijs reads

for all k=1,..,M, and second, there exist
coefficientsa;(i)(i= 1,...,M) such that
M
Z o, P(x) (9)
i=1
Combining (8) and (9), we get
A Z 0 (P (x) BP(x)) (10)
1%A M
"W S am(xk) 0y o(x, )m(x ) B(x;)
=1 j=1
Defining anM xM matrixx by
Kij = (P(x;) BP(x))) (11)
MAKa = K’a (12)

wherea denotes the column vector with entries
..... oy - To find solutions of (12), we solve the
elgenvalue problem

MAa = Ka (13)

for nonzero eigenvalues.

Let A, =),>... 27, denote the eigenvalues vf  (i.e.
the solutionsmx of (12)), andi*,....a™ the
corresponding complete set of eigenvectors, with
being the last nonzero eigenvalue (assumingo ).
We normalizeda’,....a® by requiring that the
corresponding vectors in  be normalized, i.e.

(Vv = (14)

for all k=1,..,p. Combining (9) and (13), this



translates into a normalization condition fe....,a"
M . k
1= 5 oapo(®(x) 0p(x)) (15)
ij=1
M k
= 2 0(:(0(1-Kij = (akD<ak) = )\k(ak[b(k)

ij=1

For the purpose of principal component extraction,

we need to compute projections onto the eigenvectors  x\, = p

v¥inF (k=1,..p). Letx be a test point, with an
image®(x) inF , then

M
(VEBP()) = T ai(®(x) B(x))
i=1

(16)

may be called its kernel principal components
corresponding tap

In summary, we use the following steps to compute
the principal components: first, compute the matrix

K; second, compute its eigenvectors and normalize

them in F ; third, compute projections of input

vectors onto the eigenvectors as well as the test
vectors. Therefore we can get extracted feature

matrix K'
v j
K% = (V7 BP(x))) (17)
wherei = 1,...,M ,j = 1,..., p , and extracted feature
matrix K,.; for test vectors
1 — J
K ij Dest — (V BD(Xi Dest)) (18)

wherei =1, ...,1 is the number of test

vectors.

J=1..,p

In this paper, we focus on Gaussian kernels of the
form

Ix—w
k(x ) = exp A1 (19

3. KERNEL MINIMUM SQUARED ERROR

A function f:R' - R is a discriminant (decision) rule
for a class of objectg O R if(x>0 foxkoc and
f(x) <0 otherwise. Linear discriminant functions,
defined byf(x) = wix are frequently used because of
their mathematical simplicity. A popular method to
find a good weight vectow from input data is based
on the solution of the following system of linear
equations:

(20)

where X denotes the sample matrix and b is the

vector of associated class labeds= +1  xific  and
b, = -1 otherwise.
The vectorwt that minimizes the MSE cost
2
J(w) = [[Xw—H (21)
can be computed as
wl = XTb (22)
where X' is called the pseudoinverse of maxrix
-1
xt = (xX"x) X" 23)

Thus a kernel version of the MSE linear discriminant
on extracted test feature can be obtained
f(t) = Kb [, (24)

wheret; isthe row vector of the extracted feature
matrix Keee, i = 1,...,1 .

test

A natural generalization of the MSE procedures to
multi-class case is to consider the problem as a set of
¢ two-class problems. Thie th problem is to obtain a
weight vectorw, that is minimum-squared-error
solution to the equations

Xw
Xw

1 forallxoc (25)

(26)

—1 for all xO C,

wherec; is the th class.



4. EXPERIMENTS

To test the feasibility of the proposed algorithm, we

5. CONCLUSION

Kernel PCA is a nonlinear generalization of PCA in

run two classification experiments on two different the sense that (1) it is performing PCA in feature
data sets. [4] Set 1 is a static classification problem spaces of arbitrarily large (possibly infinite)
with 11 classes. Each class vector has 10 elements.dimensionality, and (2) if we use the kernel

Totally there are 528 training vectors, 379 test vectors
and 83 evaluation vectors. Set 2 is a temporal
modeling problem with 5 classes. Each class vector

k(x y) = (xOy), we recover standard PCA. The main
advantage of using KPCA is that no nonlinear
optimization is involved. It is essentially linear

has 39 elements but 5 class is a continuous sequencealgebra, as simple as standard PCA. It requires only
(same classes sequentially in time). Totally there are the solution of an eigenvalue problem. Another

925 training vectors (sets of 5 vectors for each class),
350 test vectors and 225 evaluation vectors.

SET1 SET 2

c ERR(%) c ERR(%)
0.005 70.18 0.05 54.29
0.010 41.42 0.10 25.71
0.015 34.30 0.15 20.00
0.020 36.68 0.20 20.00
0.025 37.73 0.25 18.57
0.030 37.73 0.30 18.57
0.035 39.58 0.35 20.00
0.040 39.58 0.40 21.43
0.045 39.58 0.45 21.43
0.050 41.69 0.50 21.43

Table 1: Test error rates on the two data sets
for MSE linear classifier trained on kernel
principal components extracted by PCA with

kernel (19), corresponding various values ot

These data sets were performed using Gaussian
kernels of the form (19) and MSE linear classifier in
equation (24). The factor was adjusted to obtain
different test error rates from these data sets. The test
error rates corresponding different values are
shown in Table 1. From the table, we can see
¢ = 0.015 yields the best test error rate at 34.30% for
test data set 1 = 0.25 ok = 0.30 Yyields the best
test error rate at 18.57 for test data set 2.

advantage is that the performance for kernel principal
components analysis can be further improved by
using more components.

Based on KPCA, a particular simple kernel version of
MSE linear classifier (KL) is proposed, which
includes a number of generalized linear models.
Satisfactory results in experiments are obtained. For
large databases, KL based on KPCA can be both
accurate and efficient.

Further work can be done on trying to implement a
linear soft margin classifier based on KPCA, which is
a special case of Support Vector Machines.
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