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AbstractÐHidden Markov models (HMMs) are stochastic models capable of statistical learning and classification. They have been

applied in speech recognition and handwriting recognition because of their great adaptability and versatility in handling sequential

signals. On the other hand, as these models have a complex structure and also because the involved data sets usually contain

uncertainty, it is difficult to analyze the multiple observation training problem without certain assumptions. For many years researchers

have used Levinson's training equations in speech and handwriting applications, simply assuming that all observations are

independent of each other. This paper presents a formal treatment of HMM multiple observation training without imposing the above

assumption. In this treatment, the multiple observation probability is expressed as a combination of individual observation probabilities

without losing generality. This combinatorial method gives one more freedom in making different dependence-independence

assumptions. By generalizing Baum's auxiliary function into this framework and building up an associated objective function using the

Lagrange multiplier method, it is proven that the derived training equations guarantee the maximization of the objective function.

Furthermore, we show that Levinson's training equations can be easily derived as a special case in this treatment.

Index TermsÐHidden Markov model, forward-backward procedure, Baum-Welch algorithm, multiple observation training.

æ

1 INTRODUCTION

HIDDEN Markov models (HMMs) are stochastic models
which were introduced and studied in the late 1960s

and early 1970s [1], [2], [3], [4], [5]. As the parameter space
of these models is usually superdimensional, the model
training problem seems very difficult at first glance. In 1970,
Baum et al. published their maximization method which
gave a solution to the model training problem with a single
observation [4]. In 1977, Dempster et al. introduced the
Expectation-Maximization (EM) method for maximum
likelihood estimates from incomplete data and, later, Wu
proved some convergence properties of the EM algorithm
[6], which made the EM algorithm a solid framework in
statistical analysis. In 1983, Levinson et al. presented a
maximum likelihood estimation method for HMM multiple
observation training, assuming that all observations are
independent of each other [7]. Since then, HMMs have been
widely used in speech recognition [7], [8], [9], [10], [11],
[12]. More recently, they have also been applied to hand-
writing recognition [18], [19], [20], [21], [22] as they are
adaptive to random sequential signals and capable of
statistical learning and classification.

Although the independence assumption of observations
is helpful for problem simplification, it may not hold in
some cases. For example, the observations of a syllable

pronounced by a person are possibly highly correlated.

Similar examples can also be found in handwriting: Given a

set of samples of a letter written by a person, it is difficult to

assume or deny their independence properties when

viewed from different perspectives. Based on these phe-

nomena, it is better not to just rely on the independence

assumption.
This paper presents a formal treatment for HMM

multiple observation training without imposing the inde-

pendence assumption. In this treatment, the multiple

observation probability is expressed as a combination of

individual observation probabilities rather than their

product. The dependence-independence property of the

observations is characterized by combinatorial weights.

These weights give us more freedom in making different

assumptions and, hence, in deriving corresponding training

equations. By generalizing Baum's auxiliary function into

this framework and building up an associated objective

function using the Lagrange multiplier method, it is proven

that the derived training equations guarantee the max-

imization of the objective function and, hence, the conver-

gence of the training process. Furthermore, as two special

cases in this treatment, we show that Levinson's training

equations can be easily derived with an independence

assumption and some other training equations can also be

derived with a uniform dependence assumption.
The remainder of this paper is organized as follows:

Section 2 summarizes the first order HMM. Section 3

describes the combinatorial method for HMM multiple

observation training. Section 4 shows two special cases: an

independence assumption versus a uniform dependence

assumption. Finally, Section 5 concludes this paper.
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2 FIRST ORDER HIDDEN MARKOV MODEL

2.1 Elements of HMM

A hidden Markov process is a doubly stochastic process: an

underlying process which is hidden from observation and

an observable process which is determined by the underlying

process. With respect to first order hidden Markov process,

the model is characterized by the following elements [10]:

. set of hidden states:

S � fS1; S2; � � � ; SNg; �1�
where N is the number of states in the model,

. state transition probability distribution:1

A � faijg; �2�
where, for 1 � i; j � N ,

aij � P �qt�1 � Sjjqt � Si� �3�

0 � aijPN
j�1 aij � 1;

8<: �4�

. set of observation symbols:

V � fv1; v2; � � � ; vMg; �5�
where M is the number of observation symbols per

state,
. observation symbol probability distribution:2

B � fbj�k�g; �6�
where, for 1 � j � N , 1 � k �M,

bj�k� � P �vk at tjqt � Sj� �7�

0 � bj�k�PM
k�1 bj�k� � 1;

8<: �8�

and
. initial state probability distribution:

� � f�ig; �9�
where, for 1 � i � N ,

�i � P �q1 � Si� �10�

0 � �iPN
i�1 �i � 1:

8<: �11�

For convenience, we denote an HMM as a triplet in

all subsequent discussion:

� � �A;B; ��: �12�

2.2 Ergodic Model and Left-Right Model
An HMM can be classified into one of the following types in

the light of its state transition:

. ergodic model: An ergodic model has full state
transition.

. left-right model:3 A left-right model has only partial
state transition such that aij � 0, 8j < i.

2.3 Observation Evaluation: Forward-Backward
Procedure

Let O � o1o2 � � � oT be an observation sequence where ot 2 V
is the observation symbol at time t and let Q � q1q2 � � � qT be
a state sequence where qt 2 S is the state at time t. Given a
model � and an observation sequence O, the observation
evaluation problem P �Oj�� can be solved using forward-
backward procedure in terms of forward and backward
variables (Fig. 1):

. forward variable:4

�t�i� � P �o1o2 � � � ot; qt � Sij��: �13�
�t�i� can be solved inductively:

1. initialization:

�1�i� � �ibi�o1�; 1 � i � N �14�
and

2. induction:

�t�1�j� � �
XN
i�1

�t�i�aij�bj�ot�1�;

1 � t � T ÿ 1; 1 � j � N:
�15�

. backward variable:5

�t�i� � P �ot�1ot�2 � � � oT jqt � Si; ��: �16�
�t�i� can be solved inductively:

1. initialization:

�T �i� � 1; 1 � i � N �17�
and

2. induction:

�t�i� �
XN
j�1

aijbj�ot�1��t�1�j�;

1 � t � T ÿ 1; 1 � i � N:
�18�

. observation evaluation:

P �Oj�� �
XN
i�1

�t�i��t�i�; 8t; �19�

especially,
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1. A is also called transition matrix.
2. B is also called emission matrix.

3. This type of model is widely used in modeling sequential signals.
4. That is, the probability of the partial observation sequence o1o2 � � � ot

with state qt � Si given model �.
5. That is, the probability of the partial observation sequence

ot�1ot�2 � � � oT given state qt � Si and model �.



P �Oj�� �
XN
i�1

�T �i�: �20�

It is easy to see that the computational complexity of

the forward-backward procedure is O�TN2�.
2.4 Model Training: Baum-Welch Algorithm

Now, let us consider the model training problem: Given an

observation sequence O, how do we find the optimum

model parameter vector � 2 � that maximizes P �Oj��. To

solve this problem, Baum et al. defined an auxiliary

function and proved the two propositions below [4]:

. auxiliary function:

Q��; ��� �
X
Q

P �O;Qj�� logP �O;Qj���; �21�

where �� is the auxiliary variable that corresponds to�.

Proposition 1. If the value of Q��; ��� increases, then the value of

P �Oj��� also increases, i.e.,

Q��; ��� � Q��; ��ÿ!P �Oj��� � P �Oj��: �22�

Proposition 2. � is a critical point of P �Oj�� if and only if it is a

critical point of Q��; ��� as a function of ��, i.e.,

@P �Oj��
@�i

� @Q��;
���

@ ��i

����
����
; 1 � i � D; �23�

where D is the dimension of � and �i, 1 � i � D, are

individual elements of �.

In light of the above propositions, the model training

problem can be solved by the Baum-Welch algorithm in

terms of joint events and state variables (Fig. 2):

. joint event:6

�t�i; j� � P �qt � Si; qt�1 � SjjO; ��

� �t�i�aijbj�ot�1��t�1�j�
P �Oj�� ;

�24�

. state variable:7

t�i� � P �qt � SijO; ��

�
XN
j�1

�t�i; j�;
�25�

. parameter updating equations:

1. state transition probability:

�aij �
PTÿ1

t�1 �t�i; j�PTÿ1
t�1 t�i�

; 1 � i � N; 1 � j � N; �26�

2. symbol emission probability:

�bj�k� �
PT

t�1;ot�vk t�j�PT
t�1 t�j�

; 1 � j � N; 1 � k �M;

�27�

3. initial state probability:

��i � 1�i�; 1 � i � N: �28�
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Fig. 1. Illustration of forward-backward procedure. (a) Forward variable. (b) Backward variable. (c) Computation lattice.

6. That is, the probability of being in state Si at time t and state Sj at time
t� 1 given the observation sequence O and model �.

7. That is, the probability of being in state Si at time t given the
observation sequence O and the model �.



3 MULTIPLE OBSERVATION TRAINING

3.1 Combinatorial Method

Now, let us consider a set of observation sequences from a

pattern class:

O � fO�1�; O�2�; � � � ; O�K�g; �29�
where

O�k� � o�k�1 o
�k�
2 � � � o�k�Tk ; 1 � k � K �30�

are individual observation sequences. Usually, one does not

know if these observation sequences are independent of

each other or not. And, a contravercy can arise if one

assumes the independence property while these observa-

tion sequences are statistically correlated. In either case, we

have the following expressions without losing generality:

P �Oj�� � P �O�1�j��P �O�2�jO�1�; �� � � �
P �O�K�jO�Kÿ1� � � �O�1�; ��

P �Oj�� � P �O�2�j��P �O�3�jO�2�; �� � � �
P �O�1�jO�K� � � �O�2�; ��

..

.

P �Oj�� � P �O�K�j��P �O�1�jO�K�; �� � � �
P �O�Kÿ1�jO�K�O�Kÿ2� � � �O�1�; ��:

8>>>>>>>>><>>>>>>>>>:
�31�

Based on the above equations, the multiple observation

probability given the model can be expressed as a

summation:

P �Oj�� �
XK
k�1

wkP �O�k�j��; �32�

where

w1 � 1
K P �O�2�jO�1�; �� � � �P �O�K�jO�Kÿ1� � � �O�1�; ��

w2 � 1
K P �O�3�jO�2�; �� � � �P �O�1�jO�K� � � �O�2�; ��

..

.

wK � 1
K P �O�1�jO�K�; �� � � �P �O�Kÿ1�jO�K�O�Kÿ2� � � �
O�1�; ��

8>>>>>><>>>>>>:
�33�

are weights. These weights are conditional probabilities

and, hence, they can characterize the dependence-indepen-

dence property.
Based on the above expression, we can construct an

auxiliary function below for model training:

Q��; ��� �
XK
k�1

wkQk��; ���; �34�

where �� is the auxiliary variable corresponding to � and

Qk��; ��� �
X
Q

P �O�k�; Qj�� logP �O�k�; Qj���; 1 � k � K

�35�
are Baum's auxiliary functions related to individual
observations. Since wk, 1 � k � K, are not functions of ��,
we have the following theorems related to the maximization
of P �Oj�� [23]:

Theorem 1. If the value of Q��; ��� increases, then the value of
P �Oj��� also increases, i.e.,

Q��; ��� � Q��; ��ÿ!P �Oj��� � P �Oj��: �36�

Furthermore, as wk, 1 � k � K are weights that characterize
the dependence-independence property of the observations,
if one assumes that these weights are constants, one has the
following theorem [23]:

Theorem 2. For fixed wk, 1 � k � K, � is a critical point of
P �Oj�� if and only if it is a critical point of Q��; ��� as a
function of ��, i.e.,

@P �Oj��
@�i

� @Q��;
���

@ ��i

����
����:

�37�

In such a case, the maximization of Q��; ��� is equivalent to the
maximization of P �Oj��.

3.2 Maximization: Lagrange Multiplier Method

Based on Theorem 1, one can always maximize Q��; ��� to
increase the value of P �Oj���, regardless of 1) if the
individual observations are independent of one another or
not and 2) whether the combinatorial weights are constants
or not. Let us consider the auxiliary function with boundary
conditions:

Q��; ��� �PK
k�1 wkQk��; ���

1ÿPN
j�1 �aij � 0; 1 � i � N

1ÿPM
k�1

�bj�k� � 0; 1 � j � N

1ÿPN
i�1 ��i � 0;

�38�

we can construct an objective function using Lagrange
multiplier method:

F ���� �Q��; ��� �
XN
i�1

cai 1ÿ
XN
j�1

�aij

" #

�
XN
j�1

cbj 1ÿ
XM
k�1

�bj�k�
" #

� c� 1ÿ
XN
i�1

��i

" #
;

�39�

where cai, cbj, and c� are Lagrange multipliers. Differentiat-

ing the objective function with respect to individual

parameters and finding solutions to corresponding Lagrange

multipliers, we obtain the following training equations that

guarantee the maximization of the objective function:
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Fig. 2. Illustration of the joint event.



1. state transition probability:

�amn �
PK

k�1 wkP �O�k�j��
PTkÿ1

t�1 �
�k�
t �m;n�PK

k�1 wkP �O�k�j��
PTkÿ1

t�1 
�k�
t �m�

;

1 � m � N; 1 � n � N;
�40�

2. symbol emission probability:

�bn�m� �
PK

k�1 wkP �O�k�j��
PTk

t�1;o
�k�
t �vm


�k�
t �n�PK

k�1 wkP �O�k�j��
PTk

t�1 
�k�
t �n�

;

1 � n � N; 1 � m �M;

�41�

3. initial state probability:

��n �
PK

k�1 wkP �O�k�j���k�1 �n�PK
k�1 wkP �O�k�j��

;

1 � n � N:
�42�

3.3 Convergence Property

The training equations derived by the Lagrange multiplier

method guarantee the convergence of the training process.

First, these training equations give the zero points of the

first order Jacobi differential matrix

@F ����
@ ��

:

Second, the second order Jacobi differential matrix

@2F ����
@ ��2

isdiagonalandall itsdiagonalelementsarenegative.Thus,the

algorithm guarantees local maxima and hence, the conver-

gence of the training process (see [23] for detailed proofs).
The above training equations are adaptive to both the

ergodic model and the left-right model since we do not put

any constraints on the model type during the derivation.

4 TWO SPECIAL CASES: INDEPENDENCE VERSUS

UNIFORM DEPENDENCE

4.1 Independence Assumption

Now, let us assume that the individual observations are

independent of each other, i.e.,

P �Oj�� �
YK
k�1

P �O�k�j��: �43�

In this case, the combinatorial weights become:

wk � 1

K
P �Oj��=P �O�k�j��; 1 � k � K: �44�

Substituting the above weights into (40) to (42), we

obtain Levinson's training equations:

1. state transition probability:

�amn �
PK

k�1

PTkÿ1
t�1 �

�k�
t �m;n�PK

k�1

PTkÿ1
t�1 

�k�
t �m�

;

1 � m � N; 1 � n � N;
�45�

2. symbol emission probability:

�bn�m� �
PK

k�1

PTk

t�1;o
�k�
t �vm


�k�
t �n�PK

k�1

PTk
t�1 

�k�
t �n�

;

1 � n � N; 1 � m �M;

�46�

3. initial state probability:

��n � 1

K

XK
k�1


�k�
1 �n�; 1 � n � N: �47�

4.2 Uniform Dependence Assumption

If we assume that the individual observations are uniformly
dependent on one another, i.e.,

wk � const; 1 � k � K: �48�
Substituting the above weights into (40) to (42), it readily

follows that

1. state transition probability:

�amn �
PK

k�1 P �O�k�j��
PTkÿ1

t�1 �
�k�
t �m;n�PK

k�1 P �O�k�j��
PTkÿ1

t�1 
�k�
t �m�

;

1 � m � N; 1 � n � N;
�49�

2. symbol emission probability:

�bn�m� �
PK

k�1 P �O�k�j��
PTk

t�1;o
�k�
t �vm


�k�
t �n�PK

k�1 P �O�k�j��
PTk

t�1 
�k�
t �n�

;

1 � n � N; 1 � m �M;

�50�

3. initial state probability:

��n �
PK

k�1 P �O�k�j���k�1 �n�PK
k�1 P �O�k�j��

; 1 � n � N: �51�

5 CONCLUSIONS

A formal treatment for HMM multiple observation training
has been presented in this paper. In this treatment, the
multiple observation probability is expressed as a combina-
tion of individual observation probabilities without losing
generality. The independence-dependence property of the
observations are characterized by the combinatorial weights
and, hence, it gives us more freedom in making different
assumptions and also in deriving corresponding training
equations.

The well-known Baum's auxiliary function has been

generalized into the case of multiple observation training

and two theorems related to the maximization have been
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presented in this paper. Based on the auxiliary function and

its boundary conditions, an objective function has been

constructed using Lagrange multiplier method and a set of

training equations have been derived by maximizing the

objective function. Similar to the EM algorithm, this

algorithm guarantees the local maxima and, hence, the

convergence of the training process.
We have also shown, through two special cases, that the

above training equations are general enough to include

different situations. Once the independence assumption is

made, one can readily obtain Levinson's training equations.

On the other hand, if the uniform dependence is assumed, one

can also have the corresponding training equations.
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