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The purpose of this report is to see if fluctuation caused in a measure by an unwanted influence can be removed from the signal of interest.  To test this, a signal will be measured that is dependent on two parameters.  It is desired to detect changes in the first parameter from the nominal condition.  The second parameter will be some corrupting influence like temperature.  Parameter one will change slightly compared to parameter two.  The approach will be to learn the functional relationship between the corrupting parameter and the measured signal at the nominal value of parameter one.  Then in subsequent measurements the effects of parameter two will be subtracted from the signal of interest.  To evaluate the effectiveness of this technique a receiver operating characteristic (ROC) will be generated for the uncompensated measurements and the compensated ones.  425 samples were collected with parameter 1 at its nominal value while parameter 2 was varied as shown in Figure 1.
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Figure 1 Temperature Profile of a Single Sweep

Next samples were collected with parameters 1 and 2 varying according to Table 1 and Figure 2 respectively.
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Figure 2 Temperature Profile of the Test
	Sample

Number
	P1
Value

	0-425
	0

	426-600
	0.05

	601-775
	0.1

	776-960
	0.2

	961-1135
	0.4

	1136-1315
	0.8

	1316-1490
	1.5

	491-1665
	2.375


Table 1: The Value of Parameter 1 and Sample Numbers 
Once all the data was collected the no attempt was made at compensating for the effects of temperature and throughout the rest of this report this will be referred to as the uncompensated metric.  Figure 3 shows the uncompensated metric.  Each color change in Figure 3 represents a change in parameter 1.  Note that on Figure 3 when the parameter value is above 1.5 (indices 1316 – 1665) one can visually see that the behavior of the metric has changed.  That is, without any compensation the minimum value of the metric at those damage cases is greater than what was seen for the previous measurements.
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Figure 3 Metric without Compensation

One method to compensate for the effects of parameter two is to model the functional relationship between temperature and the metric and then back out the effect of parameter 2 on the current metric readings.  To state it mathematically the compensated metric becomes
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where dm_c is the compensated metric, dm is the uncompensated metric, and f(t) is a function relating a temperature to the uncompensated metric.  To model f(t) the data from the undamaged state was used to create an 8th order polynomial that related the temperature to the metric.  Then formula 1 was used to create the compensated metric shown in Figure 4.  Again, a color change in the plot represents a change in parameter 1.

To test the effectiveness of the compensation a hypothesis test was created where the null hypothesis was that the current set of data was generated with parameter 1 at its nominal value.  Different hypothesis tests make different assumptions about the distribution of the random variable being sampled in the data. These assumptions must be considered when choosing a test and when interpreting the results.  For example, the z-test and the t-test both assume that the data are independently sampled from a normal distribution.  
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Figure 4 Compensated Metric
Both the z-test and the t-test are relatively robust with respect to departures from this assumption, so long as the sample size n is large enough. Both tests compute a sample mean, which, by the Central Limit Theorem, has an approximately normal sampling distribution with mean equal to the population mean μ, regardless of the population distribution being sampled.  So to check the assumption that the data is from a Gaussian distribution a histogram of the compensated data with parameter 1 at its nominal value was created (Figure 5).  Figure 5 shows that the compensated data is indeed Gaussian and since the standard deviation can be calculated the z-test was chosen to implement the hypothesis test.  The mean and standard deviation used for the z-test was calculated from the first 200 samples of the undamaged state.
Receiver Operating Characteristic (ROC) curves were used to evaluated the usefulness of compensating for parameter 2.  A ROC curve graphically shows the performance trade off between accurate detection and false positives.  Better performance is represented by a curve that is far away from the line of no-discrimination.  The line of no-discrimination is a diagonal line that represents the performance of just guessing at random.  When generating the ROC curves the first 200 points were not considered since they were used to set up the statistical test.  A sliding 200 point backwards looking window was used.  This means that when deciding if the structure is damaged or not, the current sample and the previous 199 samples were used to make that decision.  Figures 6 and 7 show the ROC for the uncompensated metric and the temperature compensated one.
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Figure 5 Compensated Metric Histogram (100 bins)
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Figure 6 ROC Curve for Non-Compensated Data (blue)  Line of No Discrimination (red)
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Figure 7 ROC Curve for Compensated Data (blue) Line of No Discrimination (red)
Figure 7 shows that the compensation greatly increased performance over the uncompensated data.  In fact you can get approximately a 90% correct classification rate over all the damage cases with zero false alarms.  To provide a more concrete example of the performance increase consider a detector estimating if parameter 1 is not nominal with a 99.999% confidence level.  Figures 8 and 9 show the performance of the detector for the uncompensated and compensated case.  A ‘1’ in these plots means that the detector is 99.999% sure that parameter 1 has changed.  Notice in the uncompensated case the detector never detects at for any amount of change in parameter 1 while the same detector using the compensated data can detect change at even the 0.05 level.  At the 99.999% confidence level neither detector false alarmed.
Looking at the detector in Figure 9, it can be seen that the 0.05 case is not detected until approximately sample 500 when the change was introduced in between samples 425 and 426.  The reason for this delay in detection is that the backwards looking window still has data from the undamaged case.  At sample 500 the test statistic is roughly made up of half nominal samples and half 0.05 samples.  A smaller window would allow for the detection of the damage sooner.  The appropriate window size for maximum performance should be investigated in the future.
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Figure 8 Detector using Uncompensated Data
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Figure 9 Detector using Compensated Data
These detectors make a ‘yes/no’ call to the question of ‘has parameter 1 changed’.  However; processing the data this way one cannot tell the relative amount of change in parameter 1.  One way to approximate that is to look at the underlying probability parameter 1 being nominal.  This information is calculated when determining whether or not damage is in the structure.  Figure 10 shows the probability of no change in parameter 1 as a function of sample number.  The y-axis has been flipped so that increasing change is going up (which is a smaller probability).  Notice that to start there is a 100% chance there is no change which is to be expected and by the end there is a 10-300 chance that the structure is not damaged.  For reference 10-6 is a one in a million chance.
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Figure 10 Probability of No Change
In conclusion it is possible to learn the functional relationship between parameters and signal and then remove the components due to unwanted parameter changes.  
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