Return to Main

LECTURE 18: DIFFERENTIATION OF FEATURES

Objectives

Introduction:

Components
Temporal Information
Z-Transform
Curve-Fitting
Alternatives

Finite Differences:

First-Order Difference
Frequency Response

Regression:

Mean-Square Error
Central Difference

On-Line Resources:

SRSTW: Derivatives
Polynomial Fitting Finite Differences STRUT: Post-Processing Regression Theory Regression Tutorial Regression Applet Autofit

- Objectives:
- Introduce the concept of a derivative
- Appreciate the computational issues
- Derivatives based on finite differences
- Derivatives based on linear regression

Three important references for this material are:

- F.K. Soong and A.E. Rosenberg, "On the Use of Instantaneous and Transitional Spectral Information in Speaker Recognition," Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, Tokyo, Japan, pp. 877880, April 1986.
- J.G. Proakis and D.G. Manolakis, Digital Signal Processing (Third Edition), Prentice-Hall, Upper Saddle River, New Jersey, USA, 1996.
- A.J. Hayter, Probability and Statistics For Engineers and Scientists, International Thomson Publishing, Cincinnati, Ohio, USA, 1996.

The course textbook contains references to the seminal papers in this area as well.

Return to Main

Introduction:

01: Organization (html, pdf)

Speech Signals:

02: Production
(html, pdf)
03: Digital Models
(html, pdf)
04: Perception
(html, pdf)
05: Masking
(html, pdf)
06: Phonetics and Phonology (html, pdf)

07: Syntax and Semantics (html, pdf)

Signal Processing:

08: Sampling
(html, pdf)
09: Resampling
(html, pdf)
10: Acoustic Transducers (html, pdf)

11: Temporal Analysis (html, pdf)

12: Frequency Domain Analysis (html, pdf)

13: Cepstral Analysis (html, pdf)

14: Exam No. 1
(html, pdf)
15: Linear Prediction (html, pdf)

16: LP-Based Representations (html, pdf)

17: Spectral Normalization (html, pdf)

Parameterization:

18: Differentiation (html, pdf)

19: Principal Components (html, pdf)

20: Linear Discriminant Analysis (html, pdf)

Statistical Modeling:

21: Dynamic Programming

 (html, pdf)
ECE 8463: FUNDAMENTALS OF SPEECH RECOGNITION

Professor Joseph Picone
Department of Electrical and Computer Engineering Mississippi State University
email: picone@isip.msstate.edu
phone/fax: 601-325-3149; office: 413 Simrall
URL: http://www.isip.msstate.edu/resources/courses/ece_8463

Modern speech understanding systems merge interdisciplinary technologies from Signal Processing, Pattern Recognition, Natural Language, and Linguistics into a unified statistical framework. These systems, which have applications in a wide range of signal processing problems, represent a revolution in Digital Signal Processing (DSP). Once a field dominated by vector-oriented processors and linear algebra-based mathematics, the current generation of DSP-based systems rely on sophisticated statistical models implemented using a complex software paradigm. Such systems are now capable of understanding continuous speech input for vocabularies of hundreds of thousands of words in operational environments.

In this course, we will explore the core components of modern statistically-based speech recognition systems. We will view speech recognition problem in terms of three tasks: signal modeling, network searching, and language understanding. We will conclude our discussion with an overview of state-of-the-art systems, and a review of available resources to support further research and technology development.

Tar files containing a compilation of all the notes are available. However, these files are large and will require a substantial amount of time to download. A tar file of the html version of the notes is available here. These were generated using wget:
wget -np -k -m http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current

A pdf file containing the entire set of lecture notes is available here. These were generated using Adobe Acrobat.

Questions or comments about the material presented here can be directed to help@isip.msstate.edu.

LECTURE 18: DIFFERENTIATION OF FEATURES

- Objectives:
- Introduce the concept of a derivative
- Appreciate the computational issues
- Derivatives based on finite differences
- Derivatives based on linear regression

Three important references for this material are:

- F.K. Soong and A.E. Rosenberg, "On the Use of Instantaneous and Transitional Spectral Information in Speaker Recognition," Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, Tokyo, Japan, pp. 877-880, April 1986.
- J.G. Proakis and D.G. Manolakis, Digital Signal Processing (Third Edition), Prentice-Hall, Upper Saddle River, New Jersey, USA, 1996.
- A.J. Hayter, Probability and Statistics For Engineers and Scientists, International Thomson Publishing, Cincinnati, Ohio, USA, 1996.

The course textbook contains references to the seminal papers in this area as well.

ADDING TEMPORAL INFORMATION: DERIVATIVES

Signal
 Measurements

- Temporal derivatives of the spectrum are commonly approximated by differentiating cepstral features using a linear regression.

ADDING TEMPORAL INFORMATION: DERIVATIVES

- We would like to add information about the change in the spectrum to our feature vector to improve our ability to distinguish between stationary sounds (vowels) and nonstationary sounds (consonants).
- Recall the definition of differentiation in the time domain:

$$
\frac{d}{d t} x(t) \Leftrightarrow j \omega X(\omega)
$$

- Differentiation is an inherently noisy process since it amplifies high frequencies. Hence, we must be careful how we compute this. In practice, we use low-pass filtered derivatives (the derivative of a low-pass filtered version of the signal).
- What we really want to measure is the time derivative of the spectrum:

$$
\frac{\partial}{\partial t} X(\omega, t)=? ? ?
$$

But derivatives of continuous time signals are difficult to compute for discrete-time signals.

- Recall the definition of a derivative:

$$
\frac{d}{d t} x(t)=\lim _{T \rightarrow 0} \frac{x(t)-x(t-T)}{T}
$$

This can be viewed as a digital filter:

$$
y(n)=\frac{x(n)-x(n-1)}{T} \Leftrightarrow H(z)=\left(\frac{1}{T}\right) 1-z^{-1}
$$

Later we will explore the frequency response of this filter.

- In practice, we compute temporal derivatives of feature vectors by differentiating each element as a function of time. Since feature vectors measure the spectrum, this gives us a realistic measure of spectral change. These derivatives, called delta parameters, are concatenated with the absolute measurements to form an extended feature vector that contains absolute and rate of change information.

GRAPHICAL INTERPRETATION: CURVE FITTING

- What we seek is the value of the slope, not the differentiated signal. This can be directly estimated using the principle of linear regression.
- We can cast this estimation problem as a curve-fitting problem with some special constraints that result from the signal processing nature of the problem.
- Consider the estimation problem shown below:

- The slope of a signal can be estimated directly using a linear regression approach. More precisely, we are using a least mean square error parameter estimation approach to finding the equation of a line that best approximates the signal.
- Note that the slope of the line is represented by the parameter a_{l} in the equation shown in the figure above. This is the parameter of interest in this analysis.

In conventional digital signal processing (DSP) textbooks, derivatives, $\partial^{k} y(t) / \partial t$, are estimated several ways:

- simple backward difference (first-order - $p=1$):

$$
\begin{equation*}
y(n T)=\frac{x(n T)-x((n-1) T))}{T} \tag{2}
\end{equation*}
$$

- central difference (first-order - $\mathrm{p}=1$):

$$
\begin{equation*}
y(n T)=\frac{x((n+1) T)-x((n-1) T)}{2 T} \tag{3}
\end{equation*}
$$

- digital filters:

$$
\begin{equation*}
y(n)=a_{1} y(n-1)+a_{2} y(n-2)+\ldots+b_{0} x(n)+b_{1} x(n-1)+\ldots \tag{4}
\end{equation*}
$$

- higher-order approximations (Taylor Series, Splines):

$$
\begin{equation*}
y(n T)=a_{0}+a_{1} \frac{\partial}{\partial t} y(n T)+\frac{\partial^{2}}{\partial t} y(n T)+\ldots \tag{5}
\end{equation*}
$$

- What we must keep clear here is the difference between the order of the derivative (\mathbf{k}), the order of the approximation (\mathbf{p}), and the length of the filter or difference equation used to compute the approximation (\mathbf{N}).

We can compute the frequency response of a first-order difference:

$$
\begin{gathered}
y(n)=\frac{1}{2}[x(n)-x(n-1)] \\
h(n)=\left\{-\frac{1}{2}, \frac{1}{2}\right\} \\
H(\omega)=\frac{1}{2}\left(1-e^{-j \omega}\right) \\
|H(\omega)|=\frac{1}{2}|1-\cos \omega+j \sin \omega| \\
=\frac{1}{2} \sqrt{(1-\cos \omega)^{2}+(\sin \omega)^{2}} \\
=\frac{1}{2} \sqrt{\left(1-2 \cos \omega+(\cos \omega)^{2}\right)+(\sin \omega)^{2}} \\
=\frac{1}{2} \sqrt{2-2 \cos \omega} \\
= \\
\frac{1}{\sqrt{2}} \sqrt{1-\cos \omega}
\end{gathered}
$$

FREQUENCY RESPONSE OF A FIRST-ORDER DIFFERENCE

A plot of the frequency response for this filter is shown below:

$$
y(n)=\frac{1}{2}[x(n)-x(n-1)] \quad H(\omega)=\frac{1}{2}\left(1-e^{-j \omega}\right)
$$

- Because this filter acts as a high-pass filter, it has a tendency to amplify noise.

MEAN SQUARE ERROR DERIVATION

- In speech recognition, we prefer to use a statistical approach to estimating the derivative. Why?
- This technique uses a statistical method known as linear regression. In this approach, we choose the regression coefficients to minimize the mean squared error:

$$
E=\sum_{n=-\infty}^{\infty}\left[y(n)-\left(a_{0}+a_{1} x(n)\right)\right]^{2}
$$

- The solution to this equation is well-known (in DSP literature, this is known as linear prediction), and is found by differentiating the error equation with respect to the regression coefficients, setting the derivative to zero, and solving for the regression coefficients. This results in the following equations:

$$
\begin{aligned}
& a_{1}=\frac{n \sum x(n) y(n)-\left(\sum x(n)\right)\left(\sum y(n)\right)}{n \sum x^{2}(n)-\left(\sum x(n)\right)^{2}} \\
& a_{0}=\left(\frac{1}{n}\right) \sum y(n)-a_{1}\left(\frac{1}{n}\right) \sum x(n)
\end{aligned}
$$

- This equation is fairly general. Note that if the input data have an average value of zero, the resulting equations are even simpler.

LINEAR REGRESSION

- We can simpify the previous equation by imposing a central difference type formulation of the problem, as shown below:

The x -axis is relabeled in terms of equispaced sample indices, and centered about zero.

- This simplifies the calculation to:

$$
\begin{aligned}
a_{1} & =\frac{n \sum x(n) y(n)-\left(\sum x(n)\right)\left(\sum y(n)\right)}{n \sum x^{2}(n)-\left(\sum x(n)\right)^{2}} \\
& =\frac{n \sum x(n) y(n)}{n \sum x^{2}(n)} \\
& =\frac{n=-N}{\sum_{n}^{N} n y(n)} \\
& n=-N
\end{aligned}
$$

- This equation is the form we desire, and is extremely efficient to compute. The denominator can be precomputed, and the integer multiplications are easily implemented even in fixed-point DSPs.
- Obviously, this approach can be extended to higher order derivatives. However, historically, second derivatives in speech recognition have been computed by applying two first-order derivatives in succession.
- Further, the order of regression used, N , is most commonly set to 2 , which means a five-frame sequence of features is required to compute the first-order derivative.

ADDING TEMPORAL INFORMATION: DERIVATIVES

Signal
Measurements

- Temporal derivatives of the spectrum are commonly approximated by differentiating cepstral features using a linear regression.

Lecture 19

Input Processing

+ Mel Frequency Scale
† Input Signal Preprocessing
Discrete Cosine Transform
+ Time Derivative estimates
+ Feature Decorrelation
+ Feature Vector length reduction
+ Gaussian Mixtures
+ Speech Recognition Summary

Feature Vector Requirements

t When different people say the same phoneme, the feature vectors should have similar values.
t Different phonemes from the same or different speakers should give dissimilar values.

* For different examples of the same phoneme, the features should be independent and uncorrelated: this allows us to multiply their probabilities.
* For different examples of the same phoneme, each feature should preferably follow a probability distribution that is well described as a sum of gaussians.
* The features should not be affected by the amplitude of the speech signal otherwise recognition performance would vary with your distance from the microphone.

Mel Frequency Scale

t The feature vector must discriminate between speech sounds using as few components as possible to reduce computation.

+ The human ear has better frequency resolution at low frequencies. The mel scale relates perceived pitch to frequency: linear at low f, logarithmic at high f :
$+\operatorname{mel}(f)=2595 \log _{10}(1+f / 700)$ where f is in Hz
+ Form a mel-spaced filterbank by setting the centre frequencies to equally spaced mel values.

Preprocessing: Stage 1

† Divide signal into overlapping 25 ms segments at 10 ms intervals

+ Apply Hamming window and take FFT
+ Smooth the spectrum with a mel filterbank
+ mel filterbank concentrates data values in the more significant part of the spectrum
+ Take the log of the mel spectrum
+ variations in signal level just cause a DC shift in the log spectrum
+ gaussian approximation is more nearly true for log spectrum than for the power spectrum directly

Preprocessing: Stage 2

* Discrete Cosine Transform (DCT)
+ reduces correlation between coefficients
compresses information into fewer low-order coefficients
+ output is the melcepstrum
+ DC component is ignored to make it independent of signal level
† First and Second time derivatives
+ provide additional information about how the spectrum is changing with time
+ Result is a 39 element feature vector (or 38 if you drop the log

Discrete Cosine Transform

t The discrete cosine transform (DCT) of m_{1}, \ldots, m_{P} is defined by

$$
c_{k} ? \stackrel{P}{p} m_{p} \cos ? k(p ? 1 / 2) ? / P ?
$$

* The DCT of these points

is equal to the DFT of these points

with a phase shift to centre the time origin.
+ Taking the DCT of the + ve frequency spectrum is essentially the same as taking the DFT of the symmetrical \pm ve frequency spectrum.
+ There are efficient algorithms for calculating the DCT

Polynomial Fitting

* To fit a polynomial to a set of points x_{i}, y_{i}
for $i=1,2, \ldots, N: \quad y_{i} ? \stackrel{P}{?}{ }_{k ? 0} a_{k} x_{i}^{k}$
+ Error $E ? ?_{i ? 1}^{N} e_{i}^{2}$ where $e_{i} ? y_{i} ? ?_{k ? 0}^{P} a_{k} x_{i}^{k}$
\dagger Minimize E by differentiating w.r.t. $a_{m}, m=0: P$

\dagger Hence we get $P+1$ equations (same as LPC)

$$
\stackrel{?}{?}{ }_{k ? 0}^{P} ? a_{k} ? ?_{i ? 1}^{N} x_{i}^{k ? m} ? ? ?
$$

+ In matrix form (each value of m gives one row):

+ this simplifies to
+ Typically $T=5$ for $1^{\text {st }}$ derivative and $T=1$ for $2^{\text {nd }}$

recog ppt

RECog.ppt

Multivariate Gaussian Distributions

+ Z is a random variable with a standard
Gaussian (or Normal) probability density func:

$$
\operatorname{pr}(Z ?[z, z ? ? z]) ? ? 2 ? ?^{? / 2} \exp ? ? 1 / 2 z^{2} ? ? z
$$

+ Mean: $\mathrm{E}(Z)=0$
Variance: $\mathrm{E}\left(Z^{2}\right)=$

+ A linear sum of multiples of Gaussian random variables gives another Gaussian random variable. This property is unique to Gaussians.
t If we have a column random vector \mathbf{Z} with P elements each of which is an independent standard Gaussian random variable then

$$
\begin{aligned}
& \operatorname{pr}(\mathbf{Z} ?[\mathbf{z}, \mathbf{z} ? d \mathbf{z}]) ? ?_{?}^{P} ? 2 ? ?^{? \frac{1 / 2}{2}} \exp ? ?^{1 / 2 z_{i}^{2}}{ }^{2} d z_{i}
\end{aligned}
$$

t Note too that because the z_{i} are independent. $\mathrm{E}\left(z_{i} z_{j}\right) ? 0$ whenever $i ? j \quad ? \quad \mathrm{E}\left(\mathbf{z z}^{T}\right)$? \mathbf{I}

Correlated Gaussian Distributions

t Now suppose that $\mathbf{x}=\mathbf{A} \mathbf{z}$ where \mathbf{A} is an non singular matrix, then $\mathrm{d} \mathbf{x}=|\mathbf{A}| \mathrm{dz}$ and $\mathbf{z}=\mathbf{A}^{-1} \mathbf{x}$. Note that \mathbf{X} is gaussian and $\mathrm{E}(\mathbf{x})$ is 0 .

+ The covariance matrix of \mathbf{x} is $\mathbf{C = E}\left(\mathbf{x x}^{T}\right)$ and is symmetric and positive definite

$$
\left.\mathbf{C} \text { ? Exx ?? E?Azz } \mathbf{A}^{T} \text { ?? AE(zz' } \mathbf{z}^{T}\right) \mathbf{A}^{T} ? \mathbf{A A}^{T}
$$

+ We can work out the pdf of \mathbf{x} $\operatorname{pr}(\mathbf{X} ?[\mathbf{x}, \mathbf{x} ? d \mathbf{x}]) / d \mathbf{x} ? ? 2 ? ?^{? ? / 2} \exp ? ? ? 1 / 2 \mathbf{A}^{? 1} \mathbf{x} ?^{T} ? \mathbf{A}^{? 1} \mathbf{x} ? ?|\mathbf{A}|^{? 1}$

$$
\begin{aligned}
& ? ? 2 ? ?^{? ? / 2}|\mathbf{A}|^{? 1} \exp ? ? 1 / 2 \mathbf{x}^{T} \mathbf{A}^{? T} \mathbf{A}^{? 1} \mathbf{x} ? \\
& ? ? 2 ? ?^{? ? / 2}|\mathbf{q}|^{? / 2} \exp ? ? 1 / 2 \mathbf{x}^{T} \mathbf{C}^{? 1} \mathbf{x} ?
\end{aligned}
$$

x1

z1

Computational Costs

+ The log prob density of correlated gaussians:

$$
\begin{aligned}
& \log (\operatorname{pd}(x)) ? \log ^{?}!2 ? ? ? ?^{? r / 2}|\mathbf{C}|^{? / 2} \\
& \exp ? ? \frac{1}{2} \mathbf{x}^{T} \mathbf{C}^{? 1} \mathbf{x} ?! \\
& ? ? 1 / 2 ? P \log (2 ?) ? \log (|C|) ? \mathbf{x}^{T} \mathbf{C}^{? 1} \mathbf{x} ?
\end{aligned}
$$

* The first two terms are independent of \mathbf{x} and can be precalculated for each state.
\dagger For F features, the final term involves $F^{2}+F$ multiplications and $F^{2}-1$ additions: $39^{2}=1521$
* If the features are (or are assumed to be) independent, \mathbf{C} is diagonal and we need $2 F$ multiplications and $F-1$ additions
† Probability calculations consume most of the computation in a recogniser: almost all recognisers assume feature independence
+ DCT on log spectrum improves independence
+ We can do even better by applying a linear transformation to the feature vector.

ECog.PPT
Feature Decorrelation
t We can apply a linear transformation to our feature vectors, \mathbf{x}, to reduce correlations.
\mathbf{x} :

\mathbf{W}_{s} is the covariance matrix of state s.
\mathbf{W} is the average of the \mathbf{W}_{s} : the average within-state covariance matrix.

+ If we multiply the feature vectors by a matrix $\mathbf{F}^{T}, \mathbf{y}=\mathbf{F}^{T} \mathbf{x}$, then the covariance matrix of \mathbf{y} within state s is given by:
$\mathrm{E}^{\prime}!\left(\mathbf{y} ? \overline{\mathbf{y}}_{s}\right)\left(\mathbf{y} ? \overline{\mathbf{y}}_{s}\right)^{T} ? ? \mathrm{E}$! $\mathbf{F}^{T}\left(\mathbf{x} ? \overline{\mathbf{x}}_{s}\right)\left(\mathbf{x} ? \overline{\mathbf{x}}_{s}\right)^{T} \mathbf{F}^{\prime} ? ? \mathbf{F}^{\mathrm{T}} \mathbf{W}_{s} \mathbf{F}$
where $\overline{\mathbf{X}}_{s}$ is the mean value of \mathbf{x} in state s.
+ We transform our data with an \mathbf{F}^{T} satisfying $\mathbf{F}^{T} \mathbf{W F}=\mathbf{I}$.

Recog.ppt

Eigenvectors

+ d is an eigenvalue of \mathbf{W} and \mathbf{y} is an associated eigenvector if
$\mathbf{W y =} \mathbf{y} d$
+ Since \mathbf{W} is symmetric and positive definite, we can find F orthonormal eigenvectors and make them the columns of a matrix:
$\mathbf{W Y = Y D}$
where \mathbf{D} is a diagonal matrix of eigenvalues
+ The orthonormality of the eigenvectors means that
$\mathbf{Y}^{T} \mathbf{Y}=\mathbf{I}$
+ Now we define

$\mathbf{F}=\mathbf{Y D}^{-1 / 2}$

+ This gives
$\mathbf{F}^{T} \mathbf{W F}=\mathbf{D}^{-1 / 2} \mathbf{Y}^{\top} \mathbf{W Y D}^{-1 / 2}=\mathbf{D}^{-1 / 2} \mathbf{Y}^{\top} \mathbf{Y D D}^{-1 / 2}=\mathbf{I}$
+ In MATLAB:

$$
\begin{aligned}
& {[\mathrm{Y}, \mathrm{D}]=\operatorname{eig}[\mathrm{W}] ;} \\
& \mathrm{F}=\mathrm{Y} \text { * } \operatorname{sqrt(\operatorname {inv}(\mathrm {D}));}
\end{aligned}
$$

Class Discrimination

+ We would like to make our feature vector a short as possible while preserving its ability to discriminate.

* The graphs show two possible distributions of a parameter for two different speech sounds (or classes).
t For a single parameter, Fisher's F Ratio is a measure of discriminability (the bigger the better):

$$
F ? \frac{\text { Variance of the class means }}{\text { Average variance within a class }}
$$

+ For a parameter vector, this generalises to:

$$
F \text { ? trace? } \mathbf{W}^{? 1} \mathbf{B} \text { ? }
$$

where \mathbf{W} and \mathbf{B} are "average within-class" and "between-class" covariance matrices

Dimensionality Reduction

t We define \mathbf{B} to be the between-state covariance matrix:

$$
\mathbf{B} ? \frac{1}{S} ?_{s ? 1}^{S} ?_{s} ? \overline{\overline{\mathbf{y}}} ? \overline{\mathbf{y}}_{s} ? \overline{\overline{\mathbf{y}}} \boldsymbol{?}
$$

+ As before we can find the eigenvalues of B

$$
\mathbf{B G}=\mathbf{G L}
$$

+ where \mathbf{G} is orthogonal and \mathbf{L} diagonal.
* Set $\mathbf{z}=\mathbf{G}^{T} \mathbf{y}=\mathbf{G}^{T} \mathbf{F}^{T} \mathbf{x}$
* The between-state covariance matrix is now $\mathbf{G}^{\boldsymbol{T}} \mathbf{B G}=\mathbf{L}$
t We can discard any elements of \mathbf{z} for which the corresponding element of \mathbf{L} is very small. Gives reduced feature set with equal (or even better) discrimination.

Mixtures = Alternate HMM states

+ The total probability of all paths from A to B is the sum of the individual path probabilities

$$
\operatorname{pd}(\mathbf{x}) ? \stackrel{?}{i ? 1}_{K}^{w_{i}} N\left(\mathbf{m}_{i}, \mathbf{C}_{i}\right)
$$

this is identical to the gaussian mixture expression.

+ Once we have initial values for the model parameters we can use Viterbi and BaumWelch procedures to train them.
+ We can view gaussian mixtures as describing alternative pronunciations of a particular speech sound

K-means Algorithm

+ We need to form an initial estimate for the K mixture means, \mathbf{m}_{i}, and covariances, \mathbf{c}_{i}.
+ First create and train models with only one mixture using Viterbi training.
+ Use Viterbi alignment to determine which training frames correspond to each state.
t For each state
Set the \mathbf{m}_{i} to K randomly choosen training frames
Repeat until convergence occurs:
Allocate each training frame to whichever \mathbf{m}_{i} it is nearest to.
Update each \mathbf{m}_{i} to the mean of all the frames that were allocated to it
If no frames were allocated to \mathbf{m}_{i}, set it to a randomly chosen point from one of the other distributions.

Set \mathbf{C}_{i} to the covariance of the frames
allocated to \mathbf{m}_{i}.

Speech Recognition

+ Preprocessor
- Mel Cepstrum + Velocity + Acceleration
+ Linear Transform to decorrelate \& reduce F
* Acoustic Model

60,000 triphones $\times 3$ states $\times 20$ features $\times 10$ mixtures $=72,000,000$ parameters to train.

+ Language Model
- Phonetic description of each word in vocabulary + trigram or quadram transition probabilities
t Dynamic model creation
+ Create storage only for models when needed: use pruning to delete models with a hopelessly low probability.
* Trade-off memory/computation versus accuracy

Finite Differences vs. the Bilinear Transform

Recall that the finite difference approximation (FDA) defines the elementary differentiator by

\$ $\mathrm{y}(\mathrm{n})=\mathrm{x}(\mathrm{n})-\mathrm{x}(\mathrm{n}-1) \$$			(ignoring the scale factor $\$^{\text {for no }}$	
function	\$ $\mathrm{H}(\mathrm{s})=$ = ${ }^{\text {S }}$	by \$ H_d $(z)=1-z^{\wedge}\{-1\} \$$		The bilinea
\$ $H^{\prime} \mathrm{d}(\mathrm{z})=\left(1-z^{\wedge}\{-1\}\right)\left(1+z^{\wedge}\{-1\}\right)$ \$			(again dropping scale factos	
gives us the recursion $\$ \mathrm{y}(\mathrm{n})=\mathrm{x}(\mathrm{n})-\mathrm{x}(\mathrm{n}-1)-\mathrm{y}(\mathrm{n}-1) \$$				
circle and is therefore undamped. Any signal energy at half the sampling i due to round-off error, it will tend to grow. This is therefore not a very us				
something really practical, we need to specify that the filter frequency res				
$\text { finite range of frequencies } \begin{aligned} & \$[- \\ & \text { lomega_c, }, \text { lom } \end{aligned}, \text { where } \begin{aligned} & \$ \\ & \text { lomega_clllilpi } \end{aligned}$				
This is how we pose the differentiator problem in terms of general purpos later.				
To understand the properties of the finite difference approximation in the of its $\$$-plane to $\$$-plane mapping				
				displaystyle s = ac $\left\{1-z^{\wedge}\{-1\}\right\}\{T\}$

We see the FDA is actually a portion of the bilinear transform, since following the FDA mapping by the mapping $\$ s=(c / T) /\left(1+z^{\wedge}\{-1\}\right) \$ \quad$ would convert it to the bilinear transform. Like the bilinear transform, the FDA does not

 alias, since the mapping $\$ s=1-z^{\wedge}\{-1\} \$$ is one-to-one.Setting to 1 for simplicity and solving the FDA mapping for z gives

We see that $\underline{d c}\left(\$ \mathrm{~s}=0 \$\right.$, maps to $\underline{d c}{ }^{\$ \mathrm{z}=1 \$}$) as desired, but higher frequencies unfortunately map inside the unit circle rather than onto the unit circle in the $\$$ plane. Solving for the image in the z plane of the ${ }_{\$}^{\$}$ axom axis in the s plane gives


```
omega } \\frac{1 - j lomega
{{1+lomega^2}$
```

From this it can be checked that the FDA maps the ${ }_{\text {jilom }}^{\$}$ axis in the $\$_{\text {plane to the circle of radius }}^{\$ 1 / 2 \$}$ sentered at the point $\$ \mathrm{z}=1 / 2 \$$ in the ${ }^{\$}$ plane, as shown in Fig. $\mathbf{1 . 1 6}$

Figure 1.16:Image of the $\begin{aligned} & \$ \\ & \text { jiom axis in the }\end{aligned}$ plane: a circle of radius $1 / 2 \$$ centered at the point $\$ \mathrm{z}=1 / 2 \$$. Note that he analog and digital frequency axes coincide well enough t very low frequencies (high sampling rates)

Under the FDA, analog and digital frequency axes coincide well enough at very low frequencies (high sampling rates), bu at high frequencies relative to the sampling rate, artificial damping is introduced as the image of the ${ }_{\text {jlom }}^{\$}$ axis diverges away from the unit circle
While the bilinear transform "warps" the frequency axis, we can say the FDA "doubly warps" the frequency axis: It has progressive, compressive warping in the direction of increasing frequency, like the bilinear transform, but unlike th bilinear transform, it also warps normal to the frequency axis

Consider a point traversing the upper half of the unit circle in the z plane, starting at $\$ \mathrm{z}=1 \$$ and ending at $\$ \mathrm{z}=-1 \$$. At dc, the FDA is perfect, but as we proceed out along the unit circle, we diverge from the ${ }_{\text {jlom }}^{\$}$ axis image and carve an arc somewhere out in the image of the right-half $\$$ plane. This has the effect of introducing an artificial damping.
Consider, for example, an undamped mass-spring system. There will be a complex conjugate pair of poles on the ${ }_{j \text { jiom }}^{\$}$ ax in the plane. After the FDA, those poles will be inside the unit circle, and therefore damped in the digital counterpart. The higher the resonance frequency, the larger the damping. It is even possible for unstable $\$$-plane poles to be mapped to stable $\$$-plane poles.

In summary, both the bilinear transform and the FDA preserve order, stability, and positive realness. They are both free of aliasing, high frequencies are compressively warped, and both become ideal at dc, or as $\$$ sapproaches $\$$. However, at frequencies significantly above zero relative to the sampling rate, only the FDA introduces artificial damping. The bilinear transform maps the continuous-time frequency axis in the $\$_{\text {(the }}^{\text {jlom }} \$$ axis) plane precisely to the discrete-time frequency axis in the $\$_{\text {plane (the unit circle). }}$.
nex Application of the Bilinear Transforn
${ }^{\text {pre }}$ Bilinear Transformatio
up Bilinear Transformation Global Contents
glo Global Index Index Search
"Discrete-Time Modeling of Lumped Elements (IN PREPARATION)" by Julius O. Smith III, (From Course Reader, usic 421).
(Browser settings for best viewing results)

| next up previous contents |
| :--- | :--- | :--- |
| Next: Clustering Up: Feature Extraction Previous: Subtracting the mean |

Post-Processing of the feature coefficients

Before describing how to train speech recognition systems, we need to introduce some parameters relative to the features and that will be used during the training and recognition phase. Most of the current speech recognition systems perform post-processing of the feature vectors in order to increase their performance. The most popular post-processing techniques are

liftering

Weighting of the different coefficients of the feature vector enhancing the coefficients that are known to be less sensitive to the transmission channel and to the speaker. Liftering leads to great improvement in the case of discrete HMMs.

Introduction of some dynamic parameters in the recognizer is often achieved by adding the first and/or the second derivatives of the coefficients. This has been shown to improve greatly the performance of all recognizers

STRUT allows the user to perform such post-processing techniques on the feature vector. However, due to the very low computational load required by these techniques, they are never performed by the feature extraction programs. It is actually unnecessary to store liftered parameters or derivatives on the disk. The liftering and derivatives are rather actually unnecessary to store liftered parameter
computed by programs processing feature files.

The parameters allowing post-processing of the feature data are

- liftering

The liftering performed in STRUT is the classical sinusoidal liftering described by the equation

$$
W_{f}(m)=1+\frac{Q}{2} \sin \left(\frac{\pi \cdot m}{Q}\right), 1 \leq m \leq Q
$$

where Q is the number of coefficients (excluding the energy).
feature-selection
This array of floats allows the user to select the coefficients to be used for training and recognition. For example, feature-selection=[0.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0]
supposes that each feature vector stored on the disk is composed of 12 coefficients from which the second to the sixth coefficient will be selected for training and recognition

The feature-selection parameter also allows the user to define a "home-made" liftering. For example,

```
feature-selection=[1.0 1.5 2.0 2.5 3.0 2.5 2.0 1.5 1.0]
```

defines a triangular liftering window.

- delta-selection

This parameter is very similar to feature-selection but stands for the computation of the first derivatives of the feature vector components. How the derivarives are computed is defined by the parameter deltaexpression. Note that the derivatives are computed before the user-defined liftering so that diffrent liftering windows can be applied on the features and their derivatives. This is useful when the user wants normalize the feature components by their variance.

- delta-delta-selection

This parameter selects the second derivatives of the feature components that will be used for training and recognition

The previous paramters allows selection of feature components and/or their first and second derivatives. STRUT computes these derivatives from regression formula

$$
\Delta f_{t}(m)=\sum_{k=-K}^{K} g_{k} f_{t+k}(m), 1 \leq m \leq Q
$$

where $f_{\mathrm{t}}(\boldsymbol{m})$ is the \mathbf{m} coefficients of the feature vector at time index \mathbf{t} and $\boldsymbol{G} \boldsymbol{k}$ are the coefficients of the linear regression specified through the parameters delta-expression and delta-delta-expression.

- delta-expression

Array of floats containing the coefficients of the linear regression used to compute the first derivatives
delta-delta-expression
Array of floats containing the coefficients of the linear regression used to compute the second derivatives. Note that the linear regression is expressed in terms of the feature components and not in terms of their first derivatives

For example,

delta-expression=[-2,-1, 0, 1, 2]
delta-delta-expression=[2,1,-2,-2,-2,1,2]
will compute the first derivative in terms of the two preceding and the two following vectors and the second derivative as the difference between the first derivatives of the following and the preceding feature vector.

Now we have completed all the pre-processing of the speech data, and have the feature information for the training and test utterances. Hence, we are in a position to train the STRUT system for speech recognition
$=\frac{\square}{=}$
The linar regression model $\pm \mathrm{Za}=\mathrm{T}$
 $=2$
\qquad

Properies of the oLS estimator
Namen

1

Use of the REG command

 1.

.
 ${ }^{2}$
 An exampl
 Ren

 Nom wosp

 $= \pm=$
 mangeomumpantas
$:=:$
 Studentized residuals and the hat matrix

\qquad
 mee ment hat matrix diagonal elements
 Nam Use of studentized residuals

"ㄹ.
 $=\mathrm{E}=\mathrm{m}$ $= \pm$

Understand the definition of linear regression.
Understand the meaning of correlation.
Use scatter plots.
Recognize and calculate errors in linear regression.
Use simple linear regression analysis.
Solve the regression equation.
Use residual analysis of the regression equation.
Understand the significance of the correlation coefficient and the regression coefficient in linear regression.

Solve exercise problems using linear regression.

Regression Applet

The applet below is designed to teach students the effect of leverage points on a regression line. Students may add points to the plot by clicking the mouse button. Students should note that adding points close to the existing line barely changes the line. By adding points far from the existing line, the regression line changes considerably. This is particularly true for points added outside the range of the data. This should help students understand the effect of outliers on regression analysis.
by R. Webster West, Dept. of Statistics, Univ. of South Carolina
west@stat.sc.edu

[^0]AU'TOFTI

 and

le:	$\square_{\text {Enter a }}$ "yn to 1ist or print input datas.
	\square
ariable	\square Enter the column number of the dependent variable, This is the only time column number is used to indicate which vector of data is being referenced. All othe references to vectors of data are via independent olumn number
colums,	
	separated by commas, eg. 1,3. Use the letter if you want all interaction terms excluded.
formation:	
var colums:	
print:	Enter the number of residuals you would like printed in your output. Leave blank to print all residuals.
var:	
Simultanous systen:	

[^0]: 389 total hits since Thursday February 21.60 hits today.
 Last access on Tuesday February 26 at 10:15:08 from 653278hfc125.tampabay.rr.com Page was last updated on Monday September 9, 1996 at 17:44:09

