Return to Main

Objectives

Distance Measures:

Distance
Weighted Distance
Prewhitening
Relationship
Noise Reduction
Computation

Maximum Likelihood:
Classification
Maximization
Mahalanobis

On-Line Resources:

PCA
ICA
Factor Analysis
Statistical Normalization Pattern Recognition Applet

LECTURE 19: PRINCIPLE COMPONENTS ANALYSIS

- Objectives:
- Introduce the concept of a distance measure
- Introduce statistically-weighted distance measures
- Review maximum likelihood classification
- Explore the relationship between weighted distance measures and maximum likelihood classification
- Introduce the Mahalanobis distance measure

This material can be found in most pattern recognition textbooks. This is the book we recommend:

- R.O. Duda, P.E. Hart, and D.G. Stork, Pattern Classification (Second Edition), Wiley Interscience, New York, New York, USA, ISBN: 0-471-05669-3, 2000.
and use in our pattern recognition course. The material in this lecture follows this textbook closely:
J. Deller, et. al., Discrete-Time Processing of Speech Signals, MacMillan Publishing Co., ISBN: 0-7803-5386-2, 2000.

Each of these sources contain references to the seminal publications in this area, including our all-time favorite:

- K. Fukunga, Introduction to Statistical Pattern Recognition, MacMillan Publishing Company, San Diego, California, USA, ISBN: 0-1226-9851-7, 1990.

Return to Main

Introduction:

01: Organization (html, pdf)

Speech Signals:

02: Production
(html, pdf)
03: Digital Models
(html, pdf)
04: Perception
(html, pdf)
05: Masking
(html, pdf)
06: Phonetics and Phonology (html, pdf)

07: Syntax and Semantics (html, pdf)

Signal Processing:

08: Sampling
(html, pdf)
09: Resampling
(html, pdf)
10: Acoustic Transducers (html, pdf)

11: Temporal Analysis (html, pdf)

12: Frequency Domain Analysis (html, pdf)

13: Cepstral Analysis (html, pdf)

14: Exam No. 1
(html, pdf)
15: Linear Prediction (html, pdf)

16: LP-Based Representations (html, pdf)

17: Spectral Normalization (html, pdf)

Parameterization:

18: Differentiation (html, pdf)

19: Principal Components (html, pdf)

20: Linear Discriminant Analysis (html, pdf)

Statistical Modeling:

21: Dynamic Programming

 (html, pdf)
ECE 8463: FUNDAMENTALS OF SPEECH RECOGNITION

Professor Joseph Picone
Department of Electrical and Computer Engineering Mississippi State University
email: picone@isip.msstate.edu
phone/fax: 601-325-3149; office: 413 Simrall
URL: http://www.isip.msstate.edu/resources/courses/ece_8463

Modern speech understanding systems merge interdisciplinary technologies from Signal Processing, Pattern Recognition, Natural Language, and Linguistics into a unified statistical framework. These systems, which have applications in a wide range of signal processing problems, represent a revolution in Digital Signal Processing (DSP). Once a field dominated by vector-oriented processors and linear algebra-based mathematics, the current generation of DSP-based systems rely on sophisticated statistical models implemented using a complex software paradigm. Such systems are now capable of understanding continuous speech input for vocabularies of hundreds of thousands of words in operational environments.

In this course, we will explore the core components of modern statistically-based speech recognition systems. We will view speech recognition problem in terms of three tasks: signal modeling, network searching, and language understanding. We will conclude our discussion with an overview of state-of-the-art systems, and a review of available resources to support further research and technology development.

Tar files containing a compilation of all the notes are available. However, these files are large and will require a substantial amount of time to download. A tar file of the html version of the notes is available here. These were generated using wget:
wget -np -k -m http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current

A pdf file containing the entire set of lecture notes is available here. These were generated using Adobe Acrobat.

Questions or comments about the material presented here can be directed to help@isip.msstate.edu.

LECTURE 19: PRINCIPLE COMPONENTS ANALYSIS

- Objectives:
- Introduce the concept of a distance measure
- Introduce statistically-weighted distance measures
- Review maximum likelihood classification
- Explore the relationship between weighted distance measures and maximum likelihood classification
- Introduce the Mahalanobis distance measure

This material can be found in most pattern recognition textbooks. This is the book we recommend:

- R.O. Duda, P.E. Hart, and D.G. Stork, Pattern Classification (Second Edition), Wiley Interscience, New York, New York, USA, ISBN: 0-471-05669-3, 2000.
and use in our pattern recognition course. The material in this lecture follows this textbook closely:
J. Deller, et. al., Discrete-Time Processing of Speech Signals, MacMillan Publishing Co., ISBN: 0-7803-5386-2, 2000.

Each of these sources contain references to the seminal publications in this area, including our all-time favorite:

- K. Fukunga, Introduction to Statistical Pattern Recognition, MacMillan Publishing Company, San Diego, California, USA, ISBN: 0-1226-9851-7, 1990.

DISTANCE MEASURES

What is the distance between pt. a and pt. b?
The N-dimensional real Cartesian space, denoted \Re^{N} is the collection of all N -dimensional vectors with real elements. A metric, or distance measure, is a real-valued function with three properties:

$$
\forall \bar{x}, \bar{y}, \bar{z} \in \Re^{N}:
$$

1. $d(\bar{x}, \bar{y}) \geq 0$.

2. $d(\bar{x}, \bar{y})=0$
if and only if $\quad \bar{x}=\bar{y}$
3. $d(\bar{x}, \bar{y}) \leq d(\bar{x}, \bar{z})+d(\bar{z}, \bar{y})$

The Minkowski metric of order s, or the l_{s} metric, between \bar{x} and \bar{y} is:

$$
d_{s}(\bar{x}, \bar{y}) \equiv \sqrt{\sum_{k=1}^{N}\left|x_{k}-y_{k}\right|^{s}}=\|\bar{x}-\bar{y}\|_{s}
$$

(the norm of the difference vector).
Important cases are:

1. l_{1} or city block metric (sum of absolute values),

$$
d_{1}(\bar{x}, \bar{y})=\sum_{k=1}^{N}\left|x_{k}-y_{k}\right|
$$

2. l_{2}, or Euclidean metric (mean-squared error),

$$
d_{2}(\bar{x}, y)=\sqrt{\sum_{k=1}^{N}\left|x_{k}-y_{k}\right|^{2}}
$$

3. l_{∞} or Chebyshev metric,

$$
d_{\infty}(\bar{x}, \bar{y})=\max _{k}\left|x_{k}-y_{k}\right|
$$

WEIGHTED EUCLIDEAN DISTANCES

We can similarly define a weighted Euclidean distance metric:

$$
d_{2 w}(\bar{x}, \bar{y})=\sqrt{|\bar{x}-\bar{y}|^{T} \underline{W}|\bar{x}-\bar{y}|}
$$

where:

$$
\bar{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\ldots \\
x_{k}
\end{array}\right], \bar{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\ldots \\
y_{k}
\end{array}\right] \text {, and } \underline{W}=\left[\begin{array}{cccc}
w_{11} & w_{12} & \ldots & w_{1 k} \\
w_{21} & w_{22} & \ldots & w_{2 k} \\
\ldots & \ldots & \ldots & \ldots \\
w_{k 1} & w_{k 2} & \ldots & w_{k k}
\end{array}\right] \text {. }
$$

Why are Euclidean distances so popular?
One reason is efficient computation. Suppose we are given a set of M reference vectors, \bar{x}_{m}, a measurement, \bar{y}, and we want to find the nearest neighbor:

$$
N N=\min _{m} d_{2}\left(\bar{x}_{m}, \bar{y}\right)
$$

This can be simplified as follows:
We note the minimum of a square root is the same as the minimum of a square (both are monotonically increasing functions):

$$
\begin{aligned}
d_{2}\left(\bar{x}_{m}, \bar{y}\right)^{2} & =\sum_{j=1}^{k}\left(x_{m_{j}}-y_{j}\right)^{2}=\sum_{j=1}^{k} x_{m_{j}}^{2}-2 x_{m_{j}} y_{j}+y_{j}^{2} \\
& =\left\|\bar{x}_{m}\right\|^{2}-2 \bar{x}_{m} \bullet \bar{y}+\|\bar{y}\|^{2} \\
& =C_{m}+C_{y}-2 \bar{x}_{m} \bullet \bar{y}
\end{aligned}
$$

Therefore,

$$
N N=\min _{m} d_{2}\left(\bar{x}_{m}, \bar{y}\right)=C_{m}-2 \bar{x}_{m} \bullet \bar{y}
$$

Thus, a Euclidean distance is virtually equivalent to a dot product (which can be computed very quickly on a vector processor). In fact, if all reference vectors have the same magnitude, C_{m} can be ignored (normalized codebook).

Consider the problem of comparing features of different scales:
Suppose we represent these points in space in two coordinate systems using the transformation:

$$
\bar{z}=\underline{V} \bar{x}
$$

System 1:

$$
\begin{aligned}
& \beta_{1}=1 \hat{i}+0 \hat{j} \text { and } \beta_{2}=0 \hat{i}+1 \hat{j} \\
& \bar{a}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \bar{b}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
& d_{2}(\bar{a}, \bar{b})=\sqrt{0^{2}+1^{2}}=1
\end{aligned}
$$

System 2:

$$
\gamma_{1}=-2 \hat{i}+0 \hat{j} \text { and } \gamma_{2}=-1 \hat{i}+1 \hat{j}
$$

$$
\bar{a}=\left[\begin{array}{ll}
-2 & 0 \\
-1 & 1
\end{array}\right]\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \quad \bar{b}=\left[\begin{array}{ll}
-2 & 0 \\
-1 & 1
\end{array}\right]\left[\begin{array}{c}
-\frac{3}{2} \\
2
\end{array}\right]
$$

$$
d_{2}(\bar{a}, \bar{b})=\sqrt{\left(-1-\left(-\frac{3}{2}\right)\right)^{2}+(1-2)^{2}}=\sqrt{\frac{5}{4}}
$$

The magnitude of the distance has changed. Though the rank-ordering of distances under such linear transformations won't change, the cumulative effects of such changes in distances can be damaging in pattern recognition. Why?

WEIGHTED EUCLIDEAN DISTANCES REVISITED

We can simplify the distance calculation in the transformed space:

$$
\begin{aligned}
d_{2}(\underline{V} \bar{x}, \underline{V} \bar{y}) & =\sqrt{[\underline{V} \bar{x}-\underline{V} \bar{y}]^{T}[\underline{V} \bar{x}-\underline{V} \bar{y}]} \\
& =\sqrt{[\bar{x}-\bar{y}]^{T} \underline{V}^{T} \underline{V}[\bar{x}-\bar{y}]} \\
& =d_{2 W}(\bar{x}, \bar{y})
\end{aligned}
$$

This is just a weighted Euclidean distance.
Suppose all dimensions of the vector are not equal in importance. For example, suppose one dimension has virtually no variation, while another is very reliable. Suppose two dimensions are statistically correlated. What is a statistically optimal transformation?

Consider a decomposition of the covariance matrix (which is symmetric):

$$
\underline{C}=\Phi \Delta \Phi^{T}
$$

where Φ denotes a matrix of eigenvectors of \underline{C} and Δ denotes a diagonal matrix whose elements are the eigenvalues of \underline{C}. Consider:

$$
\bar{z}=\underline{\Lambda}^{-1 / 2} \Phi \bar{x}
$$

The covariance of $\bar{z}, C_{\bar{z}}$ is easily shown to be an identity matrix (prove this!) We can also show that:

$$
d_{2}\left(\bar{z}_{1}, \bar{z}_{2}\right)=\sqrt{\left[\bar{x}_{1}-\bar{x}_{2}\right]^{T} \underline{C}_{\bar{x}}^{-1}\left[\bar{x}_{1}-\bar{x}_{2}\right]}
$$

Again, just a weighted Euclidean distance.

- If the covariance matrix of the transformed vector is a diagonal matrix, the transformation is said to be an orthogonal transform.
- If the covariance matrix is an identity matrix, the transform is said to be an orthonormal transform.
- A common approximation to this procedure is to assume the dimensions of \bar{x} are uncorrelated but of unequal variances, and to approximate \underline{C} by a diagonal matrix, $\underline{\Lambda}$. Why? This is known as variance-weighting.

NOISE REDUCTION

The prewhitening transform, $\bar{z}=\Lambda^{-1 / 2} \Phi \bar{x}$, is normally created as a $k \times k$ matrix in which the eigenvalues are ordered from largest to smallest:

$$
\left[\begin{array}{c}
z_{1} \\
z_{2} \\
\ldots \\
z_{k}
\end{array}\right]=\left[\begin{array}{cccc}
\lambda_{1}^{-1 / 2} & ? & ? & ? \\
? & \lambda_{2}^{-1 / 2} & ? & ? \\
? & ? & \ldots & ? \\
? & ? & ? & \lambda_{k}^{-1 / 2}
\end{array}\right]\left[\begin{array}{cccc}
v_{11} & v_{12} & \ldots & v_{13} \\
v_{21} & v_{22} & \ldots & v_{2 k} \\
\ldots & \ldots & \ldots & \ldots \\
v_{k 1} & v_{k 2} & \ldots & v_{k k}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\ldots \\
x_{k}
\end{array}\right]
$$

where

$$
\lambda_{1}>\lambda_{2}>\ldots>\lambda_{k} .
$$

In this case, a new feature vector can be formed by truncating the transformation matrix to $l<k$ rows. This is essentially discarding the least important features.

A measure of the amount of discriminatory power contained in a feature, or a set of features, can be defined as follows:

$$
\% \text { var }=\frac{\sum_{j=1}^{I} \lambda_{j}}{\sum_{j=1}^{k} \lambda_{j}}
$$

This is the percent of the variance accounted for by the first l features.
Similarly, the coefficients of the eigenvectors tell us which dimensions of the input feature vector contribute most heavily to a dimension of the output feature vector. This is useful in determining the "meaning" of a particular feature (for example, the first decorrelated feature often is correlated with the overall spectral slope in a speech recognition system - this is sometimes an indication of the type of microphone).

COMPUTATIONAL ISSUES

Computing a "noise-free" covariance matrix is often difficult. One might attempt to do something simple, such as:

$$
c_{i j}=\sum_{n=0}^{N-1}\left(x_{i}-\mu_{i}\right)\left(x_{j}-\mu_{j}\right) \text { and } \mu_{i}=\sum_{n=0}^{N-1} x_{i}
$$

On paper, this appears reasonable. However, often, the complete set of feature vectors contains valid data (speech signals) and noise (nonspeech signals). Hence, we will often compute the covariance matrix across a subset of the data, such as the particular acoustic event (a phoneme or word) we are interested in.

Second, the covariance matrix is often ill-conditioned. Stabilization procedures are used in which the elements of the covariance matrix are limited by some minimum value (a noise-floor or minimum SNR) so that the covariance matrix is better conditioned.

But how do we compute eigenvalues and eigenvectors on a computer? One of the hardest things to do numerically! Why?

Suggestion: use a canned routine (see Numerical Recipes in C).
The definitive source is EISPACK (originally implemented in Fortran, now available in C). A simple method for symmetric matrices is known as the Jacobi transformation. In this method, a sequence of transformations are applied that set one off-diagonal element to zero at a time. The product of the subsequent transformations is the eigenvector matrix.

Another method, known as the QR decomposition, factors the covariance matrix into a series of transformations:

$$
\underline{C}=\underline{Q} \underline{R}
$$

where \underline{Q} is orthogonal and \underline{R} is upper diagonal. This is based on a transformation known as the Householder transform that reduces columns of a matrix below the diagonal to zero.

Consider the problem of assigning a measurement to one of two sets:

What is the best criterion for making a decision?
Ideally, we would select the class for which the conditional probability is highest:

$$
c^{*}=\underset{c}{\operatorname{argmax}} P((c=\hat{c}) \mid(\bar{x}=\hat{\bar{x}}))
$$

However, we can't estimate this probability directly from the training data. Hence, we consider:

$$
c^{*}=\underset{c}{\operatorname{argmax}} P((\bar{x}=\hat{\bar{x}}) \mid(c=\hat{c}))
$$

By definition

$$
P((c=\hat{c}) \mid(\bar{x}=\hat{\bar{x}}))=\frac{P((c=\hat{c}),(\bar{x}=\hat{\bar{x}}))}{P(\bar{x}=\hat{\bar{x}})}
$$

and

$$
P((\bar{x}=\hat{\bar{x}}) \mid(c=\hat{c}))=\frac{P((c=\hat{c}),(\hat{x}=\hat{x}))}{P(c=\hat{c})}
$$

from which we have

$$
P((c=\hat{c}) \mid(\bar{x}=\hat{\bar{x}}))=\frac{P((\bar{x}=\hat{\bar{x}}) \mid(c=\hat{c})) P(c=\hat{c})}{P(\bar{x}=\hat{\bar{x}})}
$$

SPECIAL CASE: GAUSSIAN DISTRIBUTIONS

Clearly, the choice of c that maximizes the right side also maximizes the left side. Therefore,

$$
\begin{aligned}
c^{*} & =\underset{c}{\operatorname{argmax}}[P((\bar{x}=\hat{\bar{x}}) \mid(c=\hat{c}))] \\
& =\underset{c}{\operatorname{argmx}}[P((\bar{x}=\hat{\bar{x}}) \mid(c=\hat{c})) P(c=\hat{c})]
\end{aligned}
$$

if the class probabilities are equal,

$$
c^{*}=\underset{c}{\operatorname{argmx}}[P((\bar{x}=\hat{\bar{x}}) \mid(c=\hat{c}))]
$$

A quantity related to the probability of an event which is used to make a decision about the occurrence of that event is often called a likelihood measure.

A decision rule that maximizes a likelihood is called a maximum likelihood decision.

In a case where the number of outcomes is not finite, we can use an analogous continuous distribution. It is common to assume a multivariate Gaussian distribution:

$$
\begin{aligned}
f_{\bar{x} \mid c}\left(x_{1}, \ldots, x_{N} \mid c\right) & =f_{\bar{x} \mid c}(\hat{\bar{x}} \mid \hat{c}) \\
& =\frac{1}{\sqrt{2 \pi\left|C_{\bar{x} \mid c}\right|}} \exp \left\{-\frac{1}{2}\left(\hat{\bar{x}}-\bar{\mu}_{\bar{x} \mid c}\right)^{T} C_{\bar{x} \mid c}^{-1}\left(\hat{\bar{x}}-\bar{\mu}_{\hat{\bar{x}} \mid c}\right)\right\}
\end{aligned}
$$

We can elect to maximize the $\log , \ln \left[f_{\bar{x} \mid c}(\bar{x} \mid c)\right]$ rather than the likelihood (we refer to this as the log likelihood). This gives the decision rule:

$$
c^{*}=\underset{c}{\operatorname{argmin}}\left[\left(\hat{\bar{x}}-\bar{\mu}_{\bar{x} \mid c}\right)^{T} C_{\bar{x} \mid c}{ }^{-1}\left(\hat{\bar{x}}-\bar{\mu}_{\hat{\bar{x}} \mid c}\right)+\ln \left\{\left|C_{X \mid c}^{-1}\right|\right\}\right]
$$

(Note that the maximization became a minimization.)
We can define a distance measure based on this as:

$$
d_{m l}\left(\bar{x}, \bar{\mu}_{\bar{x} \mid c}\right)=\left(\hat{\bar{x}}-\bar{\mu}_{\bar{x} \mid c}\right)^{T} \underline{C}_{\bar{x} \mid c}{ }^{-1}\left(\hat{\bar{x}}-\bar{\mu}_{\hat{x} \mid c}\right)+\ln \left\{\left|C_{\bar{x} \mid c}^{-1}\right|\right\}
$$

THE MAHALANOBIS DISTANCE

Note that the distance is conditioned on each class mean and covariance. This is why "generic" distance comparisons are a joke.

If the mean and covariance are the same across all classes, this expression simplifies to:

$$
d_{M}\left(\bar{x}, \bar{\mu}_{\bar{x} \mid c}\right)=\left(\hat{\bar{x}}-\bar{\mu}_{\bar{x} \mid c}\right)^{T} \underline{C}_{\bar{x} \mid c}^{-1}\left(\hat{\bar{x}}-\bar{\mu}_{\hat{\bar{x}} \mid c}\right)
$$

This is frequently called the Mahalanobis distance. But this is nothing more than a weighted Euclidean distance.

This result has a relatively simple geometric interpretation for the case of a single random variable with classes of equal variances:

The decision rule involves setting a threshold:

$$
a=\left(\frac{\mu_{1}+\mu_{2}}{2}\right)+\frac{\sigma^{2}}{\mu_{1}-\mu_{2}} \ln \left(\frac{P(c=2)}{P(c=1)}\right)
$$

and,

$$
\begin{array}{lll}
\text { if } & x<a & x \in(c=1) \\
\text { else } & & x \in(c=2)
\end{array}
$$

If the variances are not equal, the threshold shifts towards the distribution with the smaller variance.

What is an example of an application where the classes are not equiprobable?

Principal Components and Factor Analysis

Uses of Principle Components Analysis and Factor Analysis

 Theory to Common Factor Analysis and Factor Analysis

 The differerence between PCA and FA is that tis starat for the purposes of matix computations PCA assumes that all varian
 unique araince is icicaced by
is a model of f a onpen system.

To run a PCA or F/

To analyze data witheither PCA or FA 3 key decisions must be mad

- -he facour exraction method.

Interpretation of a Factor Analysis

Determination of number of factors to extract

 plot magniudd of eigen values $(Y$ axis) versus components (X axis), retain factors which are above the inflection point on
ithestope. -inierpereability,
andery
and a s sfere esest.

故 variables are best summarized by the model?

Naming of Factor:

 What is meant by an IIIconditioned Correlation Matrix
 To assess the value of input variables to the model

Multivariate Statistics: Factor Analysis

example

Factor analysis is

a statistical approach that can be used to analyze interrelationships among a large number of variables and to explai these variables in terms of their common underlying dimensions (factors). The statistical approach involving finding
a way of condensing the information contained in a number of original variables into a smaller set of dimensions a way of condensing the information contained in a number of o
(factors) with a minimum loss of information (Hairet alal., 1992).

Factor analysis could be used to verify your conceptualization of a construct of interest. For example, in many
studies, the construct of tleadership has been observed to be composed of t"task skills and "people skills. "et's
 think 10 will refliec
conceptualization.

Before you use the questionnaire on your sample, you decide to pretest it (always wise!) on a group of people who are like those who will be completing your survey. When you analyze your data, you do a factor analy sis to see if there are really two factors, and if those factors represent the dimensions of task and people skills. If they do, you
will be able to create two separate scales, by summing the itms on each dimension. If they dont, well it's back to the drawing board

What you need in order to do a factor analysis

Remember, facto are relevent here.

Types of factor analysis: Two main types

Principal component analysis - - his method provides a aunique solution, so that Lhe original data can be reconstructed fret
the results. It looks at the total variance among the variables, so the solution generated will linclude as many factors as there only one method for completing are variables, although it is unlikely that they will all meet the criteria for retentition. There is only one method fir
a principal components analyssis; this is is not true of any of the other multidimensional methods described here.
 uses an estimate of common variance among the original variables to generate the factor solution. Because of this, the
number of factors will alwwys be esss than the number of original variables. So, choosing the unmber of factors to keep fo
for number of factors will a ways be lesss than the number of original variables. So. choosing the number
further analysisis is more probblematic using common factor analysis than in principle components.

Steps in conducting a factor analysis

There are four basic factor analysis steps:

- data collection and generation of the correlation matrix
extraction of initial factor solution
extracion of intial ractor solution
rotation and interretaion
construction of scales or factor scores to use in further analyses

Extraction of an initial solutio

The output of f factor analysis will give you several things. The table below shows how output helps to determine the numbe
componentsfactors to be eretianed for futher analysis. One eood rule of thumb for determining the number of factors, is the The output of a factor analysis will give you several things. The table below shows how output helps to determine the numbe
componentsfactors to be ertained for futher analysis. One good rule of thumb for determining the number of factors, is the
(eisenvalue greater than 11" criteria. For the moment, let's not worry about the meaning of eigenvalues, however this criteria "eigenvalue greater than 1 " criteria. For the moment, let's not worry about the meaning of eigenvalues, however this criteria allow
us to be fairly sure that any factors we keep will account for a t least the variance of one of the variables used in the analy sis. us to be fairly sure that any factors we keep will account for at least the variance of one of the variables used in the analysis.
However, when applying this rule, keep in mind that when the number of variables is small, the analysis may result in fewer factor than "really" exist in the data, while a large number of variables may produce more factors meeting the criteria than are meaningfu There are other criteria for se
statistical computer program
that the factors will all be orthogonal to one another, meaning that they will be uncorrelated.
Remember that in our hypothetical leadership example, we expected to find two factors, represesting task and people skills. The firs

Factors	Eigenvalue	\% of variance	Cumulative \% of varia
1	2.6379	44.5	37.6
2	1.9890	39.3	83.8
3	0.8065	8.4	92.2
4	0.6783	7.8	100.0

interpreting your results

Since the first two factors were the only ones that had eigenvalues >1, the final factor solution will only represent 83.8% of the variance in the data. The loadings listed under the "Factor" headings represent a correlation between that item and the overall
Like Pearson correlations, they range from -1 to 1 . The next panel of factor analysis output might look something like this:

Table \#2: Unrotated Factor Matrix

Variables	Fac	1 Fa	Com
Ability to define problems	. 81	-. 45	. 87
Ability to supervise others	. 84	-.31	79
Ability to make decisions	. 80	-.29	90
Ability to build consensus	. 89	. 37	. 88
Ability to facilitate decision-making	. 79	. 51	. 67
Ability to work on a team	. 45	. 43	. 72

This table shows the difficiclty of interpreting an unrotated factor solution. All of the most significant loadings (highlighted) are on
Factor $\# 1$ This is a common pattern One way to obtain more intepretable results is to rotate your solution. Most computer packase Factor $\# 1$. This is a common pattern. One way to obtain
use varimax rotation, although here are other technique:

Below is an example of what the factors might look like if we rotated them. Notice that the loadings are distributed between th
factors, and that the results are easier to interpret.

Variables	Factor 1 Factor 2 Communality		
Ability to define problems	. 68	. 17	. 87
Ability to supervise others	. 87	. 24	. 79
Ability to make decisions	. 65	. 07	. 90
Ability to build consensus	. 16	. 76	. 88
Ability to facilitate decision-making		. 83	. 67
eam	19	. 69	. 72

Naming the factors

Now we have a highly interpretable solution, which represents almost 90% of the data. The next step is to name the factors. There a few rules suggested by methodologists:
Factor names should
be brief, one or two words
communicate the nature of the underlying construct
Look for patterns of similarity between items that load on a factor. If you are seeking to validate a theoretical structure, you ma
want to use the factor names that already e exist in the literature. Otherwwise wse names that will commuicat Want to use the eaccor names that already exist in the literature. Otherwise, use names that wid communicate your concepual
structure to others. In addition, you can try looking at what items do not load on a factor, to determine what that factor isn't. Al structure to others. In addition, you can try looking
try reversing loadings to get a better interpretation.

Using the factor score

It is possible to do several things with factor analysis results, but the most common are to use factor scores, or to make summated
scales sased on the factor structure. Because the results of a factor analysis can be strongly influenced by the presence of error in the original data, Hait, et al recommend using factor scores if the scales used to collect the original data are "well-constructed, valid, and reliable" ins
Otherwise, they suggest that if the scales are "untested and exploratory, with little or no evidence of reliability or validity, Otherwise, they suggest that if the scales are "untested and exploratory, with little or no evidence of reliability or validity,"
summeted scorss soold be ocostructed An added benefit of summated scores is that if they are to be used in further analysis, the
preserve the variation in the data.

[^0]Back to the Multivariate Statistics home page
Forward to the Multidimensional Scaling (MDS) page
Forward to the Cluster Analysis page

Main:

Personal:

Program
Achievements

Introduction:

Problem
Dist. Measure
Approach

Multivariate Gaussian:

Definition
Why Supp. Region?
Support Region
Identity
Unequal Variances
Off-diagonal
Unconstrained

PCA:

Math
Eigen Params
PCA Succeeds
PCA Fails

LDA:

Approach
Math
Opt. Criterion
Class-dep
LDA Vs PCA

Examples:

Uniform Ellipse
Parallel Ellipse
Class-dep
Max. Variance

Application:

Overview
Database
Algorithm
Evaluation
Best Features
Best System
Why LDA Failed?

STATISTICAL NORMALIZATION FUNCTIONS FOR SIGNAL PROCESSING PROBLEMS

Suresh Balakrishnama
Candidate for Master of Science in Electrical Engineering Institute for Signal and Information Processing
Department of Electrical and Computer Engineering Mississippi State University, Mississippi State, MS 39762

Email: balakris@isip.msstate.edu
http://www.isip.msstate.edu/publications/seminars/masters_oral/1999/lda/index.html

Conclusions:

Summary
References

PATTERN RECOGNITION

"All applets on our web site now require the java plugin to run. This is necessary so we can bring state-of-the-art features
to you which are not currently supported by browser vendors. You can find the plugin at http://java.sun.com/products/plugin. For additional information or suggestions please contact help@isip.msstate.edu" No JDK 1.2 support for APPLET!!

- Source Code: Download the source code for this applet.
- Tutorial: Learn how to use this applet.

All applets on our web site now require a Java plug-in. This is necessary so we can bring state-of-the-art Java features to you which are not currently supported by browser vendors such as Netscape. You can find the appropriate plug-in at http://java.sun.com/products/plugin. We have generated a list of steps necessary for installing the plug-in in a Unix environment. For additional information or help with your installation please contact help@isip.msstate.edu.

[^1]Please direct questions or comments to help@isip.msstate.edu

[^0]: links
 Phillip Ingram, of the School of Earth Sciences, Macquarie University, Sydney, Australia, has a Statistics Page, which
 includes separate pages for Multivariable Statistics, including principal components and factor analysis. The material is
 more advanced than that presented here, but very useful for those who will be employing these analyses techniques.

[^1]: $\underline{\text { Up }}|\underline{\text { Home }}| \underline{\text { Site Map }}|\underline{\text { What's New }}| \underline{\text { Projects }} \mid \underline{\text { Publications }}$

