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FUNDAMENTALS OF
MARKOV MODELS

Objectives:

Introduce a Markov model❍   

Understand the difference
between an observable and a
hidden Markov model

❍   

Appreciate the reason we use
Markov models: to model
temporal evolution of the
spectrum (important in speech
recognition!)

❍   

Demonstrate basic calculations❍   

●   
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Demonstrate the infeasibility
of these basic calculations for
real problems

❍   

This material can be found in most
speech recognition and pattern
recognition textbooks. These notes
follow material presented in:

J. Deller, et. al., Discrete-Time
Processing of Speech Signals,
MacMillan Publishing Co., ISBN:
0-7803-5386-2, 2000.

Another useful reference is:

L.R. Rabiner and B.W. Juang,
Fundamentals of Speech
Recognition, Prentice-Hall,
ISBN: 0-13-015157-2, 1993.

The course textbook also follows
these traditional references closely.
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Modern speech understanding systems merge interdisciplinary technologies from Signal
Processing, Pattern Recognition, Natural Language, and Linguistics into a unified
statistical framework. These systems, which have applications in a wide range of signal
processing problems, represent a revolution in Digital Signal Processing (DSP). Once a
field dominated by vector-oriented processors and linear algebra-based mathematics, the
current generation of DSP-based systems rely on sophisticated statistical models
implemented using a complex software paradigm. Such systems are now capable of
understanding continuous speech input for vocabularies of hundreds of thousands of
words in operational environments.

In this course, we will explore the core components of modern statistically-based speech
recognition systems. We will view speech recognition problem in terms of three tasks:
signal modeling, network searching, and language understanding. We will conclude our
discussion with an overview of state-of-the-art systems, and a review of available
resources to support further research and technology development.

Tar files containing a compilation of all the notes are available. However, these files are
large and will require a substantial amount of time to download. A tar file of the html
version of the notes is available here. These were generated using wget:

wget -np -k -m
http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current

A pdf file containing the entire set of lecture notes is available here. These were generated
using Adobe Acrobat.

Questions or comments about the material presented here can be directed to
help@isip.msstate.edu.

ECE 8463: FUNDAMENTALS OF SPEECH RECOGNITION 

http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/ (1 of 2) [3/17/2002 9:49:59 PM]

http://www.isip.msstate.edu/publications/courses/ece_8463/
http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/lecture_01/index.html
http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/lecture_01/lecture_01.pdf
http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/lecture_02/index.html
http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/lecture_02/lecture_02.pdf
http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/lecture_03/index.html
http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/lecture_03/lecture_03.pdf
http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/lecture_04/index.html
http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/lecture_04/lecture_04.pdf
http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/lecture_05/index.html
http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/lecture_05/lecture_05.pdf
http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/lecture_06/index.html
http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/lecture_06/lecture_06.pdf
http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/lecture_07/index.html
http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/lecture_07/lecture_07.pdf
http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/lecture_08/index.html
http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/lecture_08/lecture_08.pdf
http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/lecture_09/index.html
http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/lecture_09/lecture_09.pdf
http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/lecture_10/index.html
http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/lecture_10/lecture_10.pdf
http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/lecture_11/index.html
http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/lecture_11/lecture_11.pdf
http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/lecture_12/index.html
http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/lecture_12/lecture_12.pdf
http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/lecture_13/index.html
http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/lecture_13/lecture_13.pdf
http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/lecture_14/index.html
http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/lecture_14/lecture_14.pdf
http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/lecture_15/index.html
http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/lecture_15/lecture_15.pdf
http://www.isip.msstate.edu/resources/courses/ece_8463
http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/lecture_all/notes.html.tar.gz
http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/lecture_all/notes.pdf.tar.gz
mailto:help@isip.msstate.edu


        (html, pdf)

  17: Spectral Normalization
        (html, pdf)

Parameterization:

  18: Differentiation
        (html, pdf)

  19: Principal Components
        (html, pdf)

  20: Linear Discriminant Analysis
        (html, pdf)

Acoustic Modeling:

  21: Dynamic Programming
        (html, pdf)

  22: Markov Models
        (html, pdf)

  23: Parameter Estimation
        (html, pdf)

  24: HMM Training
        (html, pdf)

  25: Continuous Mixtures
        (html, pdf)

  26: Practical Issues
        (html, pdf)

  27: Decision Trees
        (html, pdf)

  28: Limitations of HMMs
        (html, pdf)

Language Modeling:

ECE 8463: FUNDAMENTALS OF SPEECH RECOGNITION 

http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/ (2 of 2) [3/17/2002 9:49:59 PM]

http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/lecture_16/index.html
http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/lecture_16/lecture_16.pdf
http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/lecture_17/index.html
http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/lecture_17/lecture_17.pdf
http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/lecture_18/index.html
http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/lecture_18/lecture_18.pdf
http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/lecture_19/index.html
http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/lecture_19/lecture_19.pdf
http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/lecture_20/index.html
http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/lecture_20/lecture_20.pdf
http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/lecture_21/index.html
http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/lecture_21/lecture_21.pdf
http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/lecture_22/lecture_22.pdf
http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/lecture_23/index.html
http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/lecture_23/lecture_23.pdf
http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/lecture_24/index.html
http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/lecture_24/lecture_24.pdf
http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/lecture_25/index.html
http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/lecture_25/lecture_25.pdf
http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/lecture_26/index.html
http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/lecture_26/lecture_26.pdf
http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/lecture_27/index.html
http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/lecture_27/lecture_27.pdf
http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/lecture_28/index.html
http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/lecture_28/lecture_28.pdf


LECTURE 22: FUNDAMENTALS OF
MARKOV MODELS

Objectives:

Introduce a Markov model❍   

Understand the difference between an
observable and a hidden Markov model

❍   

Appreciate the reason we use Markov
models: to model temporal evolution of the
spectrum (important in speech
recognition!)

❍   

●   
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Demonstrate basic calculations❍   

Demonstrate the infeasibility of these basic
calculations for real problems

❍   

This material can be found in most speech
recognition and pattern recognition textbooks.
These notes follow material presented in:

J. Deller, et. al., Discrete-Time Processing of
Speech Signals, MacMillan Publishing Co.,
ISBN: 0-7803-5386-2, 2000.

Another useful reference is:

L.R. Rabiner and B.W. Juang, Fundamentals
of Speech Recognition, Prentice-Hall, ISBN:
0-13-015157-2, 1993.

The course textbook also follows these
traditional references closely.
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A SIMPLE MARKOV MODEL
FOR WEATHER PREDICTION
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BASIC ELEMENTS OF A HIDDEN
MARKOV MODEL
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MATRIX CALCULATIONS FOR
DISCRETE HMMS
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Next: 1.6: Language Representation Up: Spoken Language Input Previous: 1.4

1.5: HMM Methods in Speech
Recognition

Renato De Mori  & Fabio Brugnara

 McGill University, Montréal, Québéc, Canada

 Istituto per la Ricerca Scientifica e Tecnologica, Trento, Italy

Modern architectures for Automatic Speech Recognition (ASR) are mostly software architectures
generating a sequence of word hypotheses from an acoustic signal. The most popular algorithms
implemented in these architectures are based on statistical methods. Other approaches can be found in
[WL90] where a collection of papers describes a variety of systems with historical reviews and
mathematical foundations.

A vector  of acoustic features is computed every 10 to 30 msec. Details of this component can be

found in section . Various possible choices of vectors together with their impact on recognition
performance are discussed in [HUGN93].

Sequences of vectors of acoustic parameters are treated as observations of acoustic word models used to

compute ,  the probability of observing a sequence  of vectors when a word sequence

W is pronounced. Given a sequence , a word sequence  is generated by the ASR system with a

search process based on the rule:

 corresponds to the candidate having maximum a-posteriori probability (MAP).  is

computed by Acoustic Models (AM), while  is computed by Language Models (LM).

For large vocabularies, search is performed in two steps. The first generates a word lattice of the n-best
word sequences with simple models to compute approximate likelihoods in real-time. In the second step
more accurate likelihoods are compared with a limited number of hypotheses. Some systems generate a
single word sequence hypothesis with a single step. The search produces an hypothesized word sequence
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if the task is dictation. If the task is understanding then a conceptual structure is obtained with a process
that may involve more than two steps. Ways for automatically learning and extracting these structures are
described in [KDMM94].

1.5.1: Acoustic Models
In a statistical framework, an inventory of elementary probabilistic models of basic linguistic units (e.g.,
phonemes) is used to build word representations. A sequence of acoustic parameters, extracted from a
spoken utterance, is seen as a realization of a concatenation of elementary processes described by hidden
Markov models (HMMs). An HMM is a composition of two stochastic processes, a hidden Markov
chain, which accounts for temporal variability, and an observable process, which accounts for spectral
variability. This combination has proven to be powerful enough to cope with the most important sources
of speech ambiguity, and flexible enough to allow the realization of recognition systems with dictionaries
of tens of thousands of words.

Structure of a Hidden Markov Model

A hidden Markov model is defined as a pair of stochastic processes . The  process is a first

order Markov chain, and is not directly observable, while the  process is a sequence of random
variables taking values in the space of acoustic parameters, or observations.

Two formal assumptions characterize HMMs as used in speech recognition. The first-order Markov
hypothesis states that history has no influence on the chain's future evolution if the present is specified,
and the output independence hypothesis states that neither chain evolution nor past observations
influence the present observation if the last chain transition is specified.

Letting  be a variable representing observations and  be variables representing model

states, the model can be represented by the following parameters:

with the following definitions:

A useful tutorial on the topic can be found in [Rab89].
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Types of Hidden Markov Models

HMMs can be classified according to the nature of the elements of the B matrix, which are distribution
functions.

Distributions are defined on finite spaces in the so called discrete HMMs. In this case, observations are
vectors of symbols in a finite alphabet of N different elements. For each one of the Q vector components,

a discrete density  is defined, and the distribution is obtained by multiplying

the probabilities of each component. Notice that this definition assumes that the different components are

independent. Figure  shows an example of a discrete HMM with one-dimensional observations.
Distributions are associated with model transitions.

Figure: Example of a discrete HMM. A transition probability and an output distribution on the symbol
set is associated with every transition.

Another possibility is to define distributions as probability densities on continuous observation spaces. In
this case, strong restrictions have to be imposed on the functional form of the distributions, in order to
have a manageable number of statistical parameters to estimate. The most popular approach is to
characterize the model transitions with mixtures of base densities g of a family G having a simple

parametric form. The base densities  are usually Gaussian or Laplacian, and can be

parameterized by the mean vector and the covariance matrix. HMMs with these kinds of distributions are
usually referred to as continuous HMMs. In order to model complex distributions in this way a rather
large number of base densities has to be used in every mixture. This may require a very large training
corpus of data for the estimation of the distribution parameters. Problems arising when the available
corpus is not large enough can be alleviated by sharing distributions among transitions of different
models. In semicontinuous HMMs [HAJ90], for example, all mixtures are expressed in terms of a
common set of base densities. Different mixtures are characterized only by different weights.

A common generalization of semicontinuous modeling consists of interpreting the input vector y as

composed of several components , each of which is associated with a different set of

base distributions. The components are assumed to be statistically independent, hence the distributions
associated with model transitions are products of the component density functions.
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Computation of probabilities with discrete models is faster than with continuous models, nevertheless it
is possible to speed up the mixture densities computation by applying vector quantization (VQ) on the
gaussians of the mixtures [Boc93].

Parameters of statistical models are estimated by iterative learning algorithms [Rab89] in which the
likelihood of a set of training data is guaranteed to increase at each step.

[BDFK92] propose a method for extracting additional acoustic parameters and performing
transformations of all the extracted parameters using a Neural Network (NN) architecture whose weights
are obtained by an algorithm that, at the same time, estimates the coefficients of the distributions of the
acoustic models. Estimation is driven by an optimization criterion that tries to minimize the overall
recognition error.

1.5.2: Word and Unit Models
Words are usually represented by networks of phonemes. Each path in a word network represents a
pronunciation of the word.

The same phoneme can have different acoustic distributions of observations if pronounced in different
contexts. Allophone models of a phoneme are models of that phoneme in different contexts. The decision
as to how many allophones should be considered for a given phoneme may depend on many factors, e.g.,
the availability of enough training data to infer the model parameters.

A conceptually interesting approach is that of polyphones [STNE 92]. In principle, an allophone should
be considered for every different word in which a phoneme appears. If the vocabulary is large, it is
unlikely that there are enough data to train all these allophone models, so models for allophones of
phonemes are considered at a different level of detail (word, syllable, triphone, diphone, context
independent phoneme). Probability distributions for an allophone having a certain degree of generality
can be obtained by mixing the distributions of more detailed allophone models. The loss in specificity is
compensated by a more robust estimation of the statistical parameters due to the increasing of the ratio
between training data and free parameters to estimate.

Another approach consists of choosing allophones by clustering possible contexts. This choice can be
made automatically with Classification and Regression Trees (CART). A CART is a binary tree having a

phoneme at the root and, associated with each node , a question  about the context. Questions 

are of the type, ``Is the previous phoneme a nasal consonant?'' For each possible answer (YES or NO)
there is a link to another node with which other questions are associated. There are algorithms for
growing and pruning CARTs based on automatically assigning questions to a node from a manually
determined pool of questions. The leaves of the tree may be simply labeled by an allophone symbol.
Papers by [BdSG 91] and [HL91] provide examples of the application of this concept and references to
the description of a formalism for training and using CARTs.

Each allophone model is an HMM made of states, transitions and probability distributions. In order to
improve the estimation of the statistical parameters of these models, some distributions can be the same
or tied. For example, the distributions for the central portion of the allophones of a given phoneme can be
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tied reflecting the fact that they represent the stable (context-independent) physical realization of the
central part of the phoneme, uttered with a stationary configuration of the vocal tract.

In general, all the models can be built by sharing distributions taken from a pool of, say, a few thousand
cluster distributions called senones. Details on this approach can be found in [HH93].

Word models or allophone models can also be built by concatenation of basic structures made by states,
transitions and distributions. These units, called fenones, were introduced by [BBdS 93b]. Richer
models of the same type but using more sophisticated building blocks, called multones, are described in
[BBdS 93a].

Another approach consists of having clusters of distributions characterized by the same set of Gaussian
probability density functions. Allophone distributions are built by considering mixtures with the same
components but with different weights [DM94].

1.5.3: Language Models

The probability  of a sequence of words  is computed by a Language

Model (LM). In general  can be expressed as follows:

Motivations for this approach and methods for computing these probabilities are described in the
following section.

H2>1.5.4: Generation of Word Hypotheses

Generation of word hypotheses can result in a single sequence of words, in a collection of the n-best
word sequences, or in a lattice of partially overlapping word hypotheses.

This generation is a search process in which a sequence of vectors of acoustic features is compared with
word models. In this section, some distinctive characteristics of the computations involved in speech
recognition algorithms will be described, first focusing on the case of a single-word utterance, and then
considering the extension to continuous speech recognition.

In general, the speech signal and its transformations do not exhibit clear indication of word boundaries,
so word boundary detection is part of the hypothesization process carried out as a search. In this process,
all the word models are compared with a sequence of acoustic features. In the probabilistic framework,
``comparison'' between an acoustic sequence and a model involves the computation of the probability
that the model assigns to the given sequence. This is the key ingredient of the recognition process. In this
computation, the following quantities are used:

:
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probability of having observed the partial sequence  and being in state i at time t

:

probability of observing the partial sequence  given that the model is in state i at time t

:

probability of having observed the partial sequence  along the best path ending in state i at time

t:

 and  can be used to compute the total emission probability  as

An approximation for computing this probability consists of following only the path of maximum

probability. This can be done with the  quantity:

The computations of all the above probabilities share a common framework, employing a matrix called a

trellis, depicted in Figure . For the sake of simplicity, we can assume that the HMM in Figure 
represents a word and that the input signal corresponds to the pronunciation of an isolated word.
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Figure: A state-time trellis.

Every trellis column holds the values of one of the just introduced probabilities for a partial sequence
ending at different time instants, and every interval between two columns corresponds to an input frame.
The arrows in the trellis represent model transitions composing possible paths in the model from the
initial time instant to the final one. The computation proceeds in a column-wise manner, at every time
frame updating the scores of the nodes in a column by means of recursion formulas which involve the
values of an adjacent column, the transition probabilities of the models, and the values of the output

distributions for the corresponding frame. For  and  coefficients, the computation starts from the

leftmost column, whose values are initialized with the values of , and ends at the opposite side,

computing the final value with ( ) or ( ). For the  coefficients, the computation goes from right to

left.

The algorithm for computing  coefficients is known as the Viterbi algorithm, and can be seen as an

application of dynamic programming for finding a maximum probability path in a graph with weighted
arcs. The recursion formula for its computation is the following:

By keeping track of the state j giving the maximum value in the above recursion formula, it is possible,
at the end of the input sequence, to retrieve the states visited by the best path, thus performing a sort of
time-alignment of input frames with models states.

All these algorithms have a time complexity , where M is the number of transitions with

non-zero probability and T is the length of the input sequence. M can be at most equal to , where S is
the number of states in the model, but is usually much lower, since the transition probability matrix is
generally sparse. In fact, a common choice in speech recognition is to impose severe constraints on the

allowed state sequences, for example  for j<i, j>i+2, as is the case of the model in Figure .

In general, recognition is based on a search process which takes into account all the possible
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segmentations of the input sequence into words, and the a-priori probabilities that the LM assigns to
sequences of words.

Good results can be obtained with simple LMs based on bigram or trigram probabilities. As an example,
let us consider a bigram language model. This model can be conveniently incorporated into a finite state

automaton as shown in Figure , where dashed arcs correspond to transitions between words with
probabilities of the LM.

Figure: Bigram LM represented as a weighted word graph.  stands for ,  stands for

. The leftmost node is the starting node, rightmost ones are finals.

After substitution of the word-labeled arcs with the corresponding HMMs, the resulting automaton
becomes a big HMM itself, on which a Viterbi search for the most probable path, given an observation
sequence, can be carried out. The dashed arcs are to be treated as empty transitions, i.e., transitions
without an associated output distribution. This requires some generalization of the Viterbi algorithm.
During the execution of the Viterbi algorithm, a minimum of backtracking information is kept to allow
the reconstruction of the best path in terms of word labels. Note that the solution provided by this search
is suboptimal in the sense that it gives the probability of a single state sequence of the composite model
and not the total emission probability of the best word model sequence. In practice, however, it has been
observed that the path probabilities computed with the above mentioned algorithms exhibit a dominance
property, consisting of a single state sequence accounting for most of the total probability [ME91].

The composite model grows with the vocabulary, and can lead to large search spaces. Nevertheless the
uneven distribution of probabilities among different paths can help. It turns out that, when the number of
states is large, at every time instant, a large portion of states have an accumulated likelihood which is
much less than the highest one, so that it is very unlikely that a path passing through one of these states
would become the best path at the end of the utterance. This consideration leads to a complexity
reduction technique called beam search [NMNP92], consisting of neglecting states whose accumulated
score is lower than the best one minus a given threshold. In this way, computation needed to expand bad
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nodes is avoided. It is clear from the naivety of the pruning criterion that this reduction technique has the
undesirable property of being not admissible, possibly causing the loss of the best path. In practice, good
tuning of the beam threshold results in a gain in speed by an order of magnitude, while introducing a
negligible amount of search errors.

When the dictionary is of the order of tens of thousands of words, the network becomes too big, and
others methods have to be considered.

At present, different techniques exist for dealing with very large vocabularies. Most of them use
multi-pass algorithms. Each pass prepares information for the next one, reducing the size of the search
space. Details of these methods can be found in [AHH93,ADNS94,MBDW93,KAM 94].

In a first phase a set of candidate interpretations is represented in an object called word lattice, whose
structure varies in different systems: it may contain only hypotheses on the location of words, or it may
carry a record of acoustic scores as well. The construction of the word lattice may involve only the
execution of a Viterbi beam-search with memorization of word scoring and localization, as in
[ADNS94], or may itself require multiple steps, as in [AHH93,MBDW93,KAM 94]. Since the word
lattice is only an intermediate result, to be inspected by other detailed methods, its generation is
performed with a bigram language model, and often with simplified acoustic models.

The word hypotheses in the lattice are scored with a more accurate language model, and sometimes with
more detailed acoustic models. Lattice rescoring may require new calculations of HMM probabilities
[MBDW93], may proceed on the basis of precomputed probabilities only [ADNS94,AHH93], or even

exploit acoustic models which are not HMMs [KAM 94]. In [AHH93], the last step is based on an 
search [Nil71] on the word lattice, allowing the application of a long distance language model, i.e., a
model where the probability of a word may not only depend on its immediate predecessor. In [ADNS94]
a dynamic programming algorithm, using trigram probabilities, is performed.

A method which does not make use of the word lattice is presented in [Pau94]. Inspired by one of the
first methods proposed for continuous speech recognition (CSR) [Jel69], it combines both powerful

language modeling and detailed acoustic modeling in a single step, performing an  based search.

1.5.5: Future Directions
Interesting software architectures for ASR have been recently developed. They provide acceptable
recognition performance almost in real time for dictation of large vocabularies (more than 10,000 words).
Pure software solutions require, at the moment, a considerable amount of central memory. Special boards
make it possible to run interesting applications on PCs.

There are aspects of the best current systems that still need improvement. The best systems do not
perform equally well with different speakers and different speaking environments. Two important

aspects, namely recognition in noise and speaker adaptation, are discussed in section . They have
difficulty in handling out of vocabulary words, hesitations, false starts and other phenomena typical of
spontaneous speech. Rudimentary understanding capabilities are available for speech understanding in
limited domains. Key research challenges for the future are acoustic robustness, use of better acoustic
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features and models, use of multiple word pronunciations and efficient constraints for the access of a
very large lexicon, sophisticated and multiple language models capable of representing various types of
contexts, rich methods for extracting conceptual representations from word hypotheses and automatic
learning methods for extracting various types of knowledge from corpora.

   
Next: 1.6: Language Representation Up: Spoken Language Input Previous: 1.4
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What is HTK?
The Hidden Markov Model Toolkit (HTK) is a portable toolkit for building
and manipulating hidden Markov models. HTK is primarily used for speech
recognition research although it has been used for numerous other
applications including research into speech synthesis, character recognition
and DNA sequencing. HTK is in use at hundreds of sites worldwide.

HTK consists of a set of library modules and tools available in C source
form. The tools provide sophisticated facilities for speech analysis, HMM
training, testing and results analysis. The software supports HMMs using
both continuous density mixture Gaussians and discrete distributions and can
be used to build complex HMM systems. The HTK release contains
extensive documentation and examples.

HTK was originally developed at the Speech Vision and Robotics Group of
the Cambridge University Engineering Department (CUED) where it has
been used to build CUED's large vocabulary speech recognition systems (see
CUED HTK LVR). In 1993 Entropic Research Laboratory Inc. acquired the
rights to sell HTK and the development of HTK was fully transferred to
Entropic in 1995 when the Entropic Cambridge Research Laboratory Ltd was
established. HTK was sold by Entropic until 1999 when Microsoft bought
Entropic. Microsoft has now licensed HTK back to CUED and is providing
support so that CUED can redistribute HTK and provide development
support via the HTK3 web site. See History of HTK for more details.

While Microsoft retains the copyright to the existing HTK code, everybody is
encouraged to make changes to the source code and contribute them for
inclusion in HTK3.

Join the HTK Team at CUED
If you are interested in joining the HTK Team and work on software
development or algorithm research (either as an RA or PhD student) send
email with your CV to Phil Woodland <pcw@eng.cam.ac.uk>

Current releases
HTK version 3.1 is the current stable release. The old 3.0 release, which
corresponds to the Entropic 2.2 version, is still available as well.
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Getting HTK
HTK is available for free download but you must first agree to this license.
You must then register for a username and password for accessing the HTK
CVS and FTP source repositories). Registration is free but does require a
valid e-mail address; your password for site access will be sent to this
address.

HTK News
16 Jan 2002 (ge):

HTK3.1 is released. It includes many new features (like support for
PLP and VTLN) and bug fixes.

●   

17 May 2001 (ge):
The meeting of HTK users at ICASSP'01 was a big success. The slides
for Gunnar's talk are available here.

●   

20 Apr 2001 (ge):
A meeting of HTK users will be held on May 10th in Salt Lake City
(details)

●   

18 Apr 2001 (ge):
First beta version of HTK 3.1 available (details)●   

27 Sep 2000 (rjw):
HTK3 web-site launched.●   

Comments and suggestions to htk-mgr@eng.cam.ac.uk
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 About our Software

Our vision stems from the fact that research
commonly suffers from a creative backlog due
to rewriting of common functions, and the
time spent in debugging such things as file I/O.
The ISIP Foundation Classes (IFCs) and
software environment are designed to meet
this need, providing everything from complex
data structures to an abstract file I/O interface.

Our Prototype System is supported across a
wide range of platforms including Sun Solaris,
Linux, and Cygwin on Windows computers, as
long as the minimum software and hardware
requirements are met. The latest version of our
Prototype System can be downloaded by
following our CVS instructions. Then follow
the simple quick start guide and you will be on
your way.

Download Our Software

(02/15/02) Production System (v0.0):
A research environment that includes a
generalized hierarchical Viterbi
search-based decoder. Recommended
for serious speech and signal
processing researchers.

●   

(03/12/02) Prototype System (v5.12):
A cross-word context-dependent
LVCSR system. Recommended for
speech technologists and application
developers.

●   

(11/29/00) TIDIGITS Toolkit (v5.7):
An easy-to-use toolkit that
demonstrates the essential steps in
building a state-of-the-art speech
recognition system. Recommended for
novices.

●   

Visit our software release archive for previous
release information.

 
 
 

Brain: The same thing we do every night, Pinky.
Try to take over the world!

Software-Related Resources

Documentation: html-based documentation that includes links to the
actual source code.

●   

Tutorials: step-by-step instructions for building a state-of-the-art LVCSR
system.

●   

Demos: conduct an experiment using our remote job submission facility;
explore our Java applets.

●   

Consult our legacy software archive for some of our oldies but goodies.
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Hidden Markov Model (HMM) Toolbox
Written by Kevin Murphy, 1998.
Last updated: 14 May 2001.

This toolbox supports inference and learning for HMMs with discrete outputs (dhmm's), Gaussian outputs (ghmm's),
or mixtures of Gaussians output (mhmm's). The Gaussians can be full, diagonal, or spherical (isotropic). It also
supports discrete inputs, as in a POMDP. The inference routines support filtering, smoothing, and fixed-lag
smoothing.

What is an HMM?●   

How to use the HMM toolbox●   

Other matlab software for HMMs●   

Recommended reading●   

Download toolbox●   

Send me email●   

What is an HMM?
An HMM is a Markov chain, where each state generates an observation. You only see the observations, and the goal
is to infer the hidden state sequence. HMMs are very useful for time-series modelling, since the discrete state-space
can be used to approximate many non-linear, non-Gaussian systems.

HMMs and some common variants (e.g., input-output HMMs) can be concisely explained using the language of
Bayesian networks, as we now demonstrate.

Consider the Bayesian network in Figure (a), which represents a hidden Markov model (HMM). (Circles denote
continuous-valued random variables, squares denote discrete-valued, clear means hidden, shaded means observed.)
This encodes the joint distribution

P(Q,Y) = P(Q_1) P(Y_1|Q_1) P(Q_2|Q_1) P(Y_2|Q_2) ...

For a sequence of length T, we simply ``unroll'' the model for T time steps. In general, such a dynamic Bayesian
network (DBN) can be specified by just drawing two time slices (this is sometimes called a 2TBN) --- the structure
(and parameters) are assumed to repeat.
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The Markov property states that the future is independent of the past given the present, i.e., Q_{t+1} \indep Q_{t-1} |
Q_t. We can parameterize this Markov chain using a transition matrix, M_{ij} = P(Q_{t+1}=j | Q_t=i), and a prior
distribution, \pi_i = P(Q_1 = i).

We have assumed that this is a homogeneous Markov chain, i.e., the parameters do not vary with time. This
assumption can be made explicit by representing the parameters as nodes: see Figure(b): P1 represents \pi, P2
represents the transition matrix, and P3 represents the parameters for the observation model. If we think of these
parameters as random variables (as in the Bayesian approach), parameter estimation becomes equivalent to inference.
If we think of the parameters as fixed, but unknown, quantities, parameter estimation requires a separate learning
procedure (usually EM). In the latter case, we typically do not represent the parameters in the graph; shared
parameters (as in this example) are implemented by specifying that the corresponding CPDs are ``tied''.

An HMM is a hidden Markov model because we don't see the states of the Markov chain, Q_t, but just a function of
them, namely Y_t. For example, if Y_t is a vector, we might define P(Y_t=y|Q_t=i) = N(y; \mu_i, \Sigma_i). A richer
model, widely used in speech recognition, is to model the output (conditioned on the hidden state) as a mixture of
Gaussians. This is shown below.

Some popular variations on the basic HMM theme are illustrated below (from left to right: an input-output HMM, a
factorial HMM, a coupled HMM). (In the input-output model, the CPD P(Q|U) could be a softmax function, or a
neural network.) If we have software to handle inference and learning in general Bayesian networks (such as my
Bayes Net Toolbox), all of these models becomes trivial to implement.

This software is designed for simple HMMs. If you want to use these more complicated alternatives, use my Bayes
Net Toolbox.
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How to use the HMM toolbox

HMMs with discrete outputs

Maximum likelihood parameter estimation using EM (Baum Welch)

The script learn_dhmm_demo.m gives an example of how to learn an HMM with discrete outputs. Let there be Q=2
states and O=2 output symbols. We create random stochastic matrices as follows.

O = 3;
Q = 2;
prior0 = normalise(rand(Q,1));
transmat0 = mk_stochastic(rand(Q,Q));
obsmat0 = mk_stochastic(rand(Q,O));  

Now we sample nex=10 sequences of length T=10 each from this model, to use as training data.

data = sample_dhmm(prior0, transmat0, obsmat0, T, nex);  

Now we make a random guess as to what the parameters are,

prior1 = normalise(rand(Q,1));
transmat1 = mk_stochastic(rand(Q,Q));
obsmat1 = mk_stochastic(rand(Q,O));

and improve our guess using 5 iterations of EM...

max_iter = 5;
[LL, prior2, transmat2, obsmat2] = learn_dhmm(data, prior1, transmat1, obsmat1,
max_iter);

LL(t) is the log-likelihood after iteration t, so we can plot the learning curve.

Sequence classification

To evaluate the log-likelihood of a trained model given test data, proceed as follows:

loglik = log_lik_dhmm(data, prior, transmat, obsmat)

Note: the discrete alphabet is assumed to be {1, 2, ..., O}, where O = size(obsmat, 2). Hence data cannot contain any
0s.

To classify a sequence into one of k classes, train up k HMMs, one per class, and then compute the log-likelihood that
each model gives to the test sequence; if the i'th model is the most likely, then declare the class of the sequence to be
class i.

Computing the most probable sequence (Viterbi)

First you need to evaluate B(t,i) = P(y_t | Q_t=i) for all t,i:

B = mk_dhmm_obs_lik(data, obsmat) 
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Then you can use

[path, loglik] = viterbi_path(prior, transmat, B)   

HMMs with mixture of Gaussians outputs

Maximum likelihood parameter estimation using EM (Baum Welch)

Let us generate nex=10 vector-valued sequences of length T=5; each vector has size O=2.

O = 2;
T = 5;
nex = 10;
data = randn(O,T,nex);

Now let use fit a mixture of M=2 Gaussians for each of the Q=2 states using K-means.

M = 2;
Q = 2;
left_right = 0;
[prior0, transmat0, mixmat0, mu0, Sigma0] =  init_mhmm(data, Q, M, 'diag',
left_right);

Finally, let us improve these parameter estimates using EM.

max_iter = 5;
[LL, prior1, transmat1, mu1, Sigma1, mixmat1] = ...
    learn_mhmm(data, prior0, transmat0, mu0, Sigma0, mixmat0, max_iter);

Since EM only finds a local optimum, good initialisation is crucial. The procedure implemented in init_mhmm is very
crude, and is probably not adequate for real applications...

Sequence classification

To classify a sequence (e.g., of speech) into one of k classes (e.g., the digits 0-9), proceed as in the DHMM case
above, but use the following procedure to compute likelihood:

loglik = log_lik_mhmm(data, prior, transmat, mixmat, mu, Sigma);

Computing the most probable sequence (Viterbi)

First you need to evaluate B(t,i) = P(y_t | Q_t=i) for all t,i:

B = mk_mhmm_obs_lik(data, mu, Sigma, mixmat);

Finally, use

[path, loglik] = viterbi_path(prior, transmat, B);
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HMMs with Gaussian outputs
This is just like the mixture of Gaussians case, except we have M=1, and hence there is no mixing matrix. The
learning routine is called as follows:

[LL, prior1, transmat1, mu1, Sigma1] = ...
    learn_mhmm(data, prior0, transmat0, mu0, Sigma0,  max_iter);

The classification routine is called as follows:

loglik = log_lik_ghmm(data, prior, transmat, mu, Sigma);

The likelihood routine is called as

B = mk_ghmm_obs_lik(data, mu, Sigma);

Online EM for discrete HMMs/ POMDPs
For some applications (e.g., reinforcement learning/ adaptive control), it is necessary to learn a model online. The
script online_em_demo gives an example of how to do this.

Other matlab packages for HMMs
Zoubin Ghahramani has code which is very similar to mine (but doesn't handle mhmm's). He also has code for
approximate (variational) inference in factorial HMMs.

●   

Speech processing toolbox●   

More speech processing routines●   

Recommended reading
"A tutorial on Hidden Markov Models and selected applications in speech recognition", L. Rabiner, 1989, Proc.
IEEE 77(2):257--286.

●   

"Factorial Hidden Markov Models", Z. Ghahramani and M. Jordan, Machine Learning 29:245--273, 1997.●   

Markovian Models for Sequential Data, Y. Bengio, Neural Computing Surveys 2, 129--162, 1999.●   

"Statistical Methods for Speech Recognition", F. Jelinek, MIT Press 1997.●   

Bibliography on HMMs●   
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Abstract:

Human-computer intelligent interaction (HCII) in virtual environments is a rapidly developing field. The
main thrust of research is to create a communication device which is more ``natural'' for humans. I
propose the use of gesture and speech recognition to create such an interface in a virtual environment.
This project's target application is a simple selection and movement of a virtual object by the computer.
This paper address a possible solution for the recognition of the gestures and the speech in such a
system.
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