Return to Main

Objectives

Review: <u>Noisy Channel Model</u> <u>Chomsky Hierarchy</u>

N-grams: Derivation Examples

Complexity:

Perplexity Examples

On-Line Resources: XML W3C Software: SRILM

LECTURE 32: N-GRAM LANGUAGE MODELS

- Objectives:
 - Communication theory model of speech recognition
 - o Statistical language models
 - N-gram language models
 - Perplexity

This lecture combines material from the course textbook:

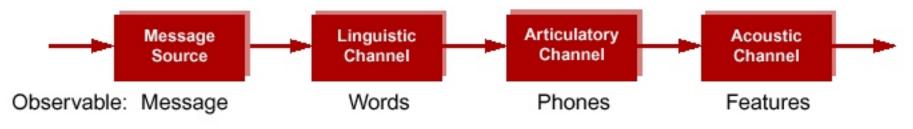
X. Huang, A. Acero, and H.W. Hon, *Spoken Language Processing - A Guide to Theory, Algorithm, and System Development*, Prentice Hall, Upper Saddle River, New Jersey, USA, ISBN: 0-13-022616-5, 2001.

and from this source:

F. Jelinek, *Statistical Methods for Speech Recognition*, MIT Press, Boston, Massachusetts, USA, ISBN: 0-262-10066-5, 1998.

A NOISY COMMUNICATION CHANNEL MODEL OF SPEECH RECOGNITION

A noisy communication theory model for speech production and perception:



Bayesian formulation for speech recognition:

P(W|A) = P(A|W)P(W)/P(A)

Objective: minimize the word error rate by maximizing P(W|A)

Approach: maximize P(A | W) (training)

Components:

- $P(A \mid W)$: acoustic model (hidden Markov models, mixture of Gaussians)
- P(W): language model (statistical, N-grams, finite state networks)
- P(A): acoustics (ignore during maximization)

The language model typically predicts a small set of next words based on knowledge of a finite number of previous words (N-grams) — leads to search space reduction.

THE CHOMSKY HIERARCHY

We can categorize language models by their generative capacity:

Type of Grammar	Constraints	Automata	
Phrase Structure	A -> B	Turing Machine (Unrestricted)	
Context Sensitive	aAb -> aBb	Linear Bounded Automata (N-grams, Unification)	
Context Free	A -> B Constraint: A is a non-terminal. Equivalent to: A -> w A -> BC where "w" is a terminal; B,C are non- terminals (Chomsky normal form)	Push down automata (JSGF, RTN, Chart Parsing)	
Regular	A -> w A -> wB (Subset of CFG)	Finite-state automata (Network decoding)	

• CFGs offer a good compromise between parsing efficiency and representational power.

• CFGs provide a natural bridge between speech recognition and natural language processing.

Consider a word sequence $W = w_1 w_2 w_3 \dots w_n$. The probability of this word sequence can be decomposed as follows:

$$\begin{split} P(\boldsymbol{W}) &= P(w_1 w_2 w_3 \dots w_n) \\ &= P(w_1) P(w_2 | w_1) P(w_3 | w_1, w_2) \dots P(w_n | w_1, w_2, \dots, w_{n-1}) \\ &= \prod_{i=1}^n P(w_i | w_1, w_2, \dots, w_{i-1}) \end{split}$$

The choice of w_i thus depends on the history, which we define as the preceding i - 1 words.

Clearly, estimating $P(w_i | w_1, w_2, ..., w_{i-1})$ for every unique history is prohibitive. Why?

A practical approach is to assume this probability depends only on an equivalence class:

$$P(W) = \prod_{i=1}^{n} P(w_i | w_1, w_2, \dots, w_{i-1})$$

=
$$\prod_{i=1}^{n} P(w_i | \Phi(w_1, w_2, \dots, w_{i-1}))$$

There are three obvious simplifications we can make:

- Unigram: $\Phi(w_1, w_2, ..., w_{i-1}) = \phi$.
- Bigram: $\Phi(w_1, w_2, \dots, w_{i-1}) = w_{i-1}$
- Trigram: $\Phi(w_1, w_2, \dots, w_{i-1}) = w_{i-1}, w_{i-2}$

Of course, we can also merge histories based on linguistic considerations (e.g., grouping all nouns that describe animals, grouping all articles). What might be the advantages of doing this?

N-GRAM DISTRIBUTIONS FOR A CONVERSATIONAL SPEECH (SWITCHBOARD) CORPUS

Unigrams (SWB):

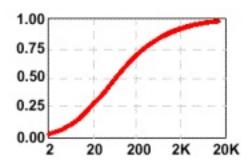
- Most Common: I, and, the , you, a
- Rank-100: she, an, going
- Least Common: Abraham, Alastair, Acura

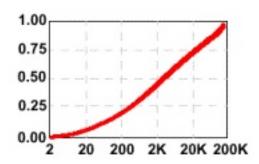
Bigrams (SWB):

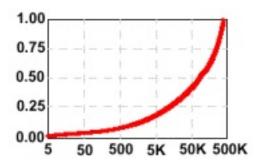
- Most Common: "you know", "yeah S!", "IS um-hum", "I think"
- Rank -100: "do it", "that we", "don't think"
- Least Common: "raw fish", "moisture content, "Reagan Bush"

Trigrams (SWB):

- Most Common: "IS um-hum SI", "a lot of", "I don't know"
- · Rank-100: "it was a", "you know that"
- Least Common: "you have parents", "you seen Brooklyn"







How what can measure the complexity of a language model? What is wrong with using the average branching factor?

Consider a word sequence $W = w_1 w_2 w_3 \dots w_n = w_1^n$ as a random process. The entropy of this process is:

$$H(W) = -\lim_{n \to \infty} \frac{1}{n} E[\log(P(w_1^n))]$$
$$= -\lim_{n \to \infty} \frac{1}{n} \sum_{w_1^n} P(w_1^n) \log(P(w_1^n))$$

For an ergodic source, we can use a temporal average:

$$H(\boldsymbol{W}) = -\lim_{n \to \infty} \frac{1}{n} \log(P(w_1^n))$$

Of course, we must estimate these probabilities from the training data:

$$\hat{H}(\boldsymbol{W}) = -\lim_{n \to \infty} \frac{1}{n} \log(\hat{P}(w_1^n))$$

Jelinek showed that $\hat{H}(W) \ge H(W)$ if W is ergodic.

We can define perplexity as:

$$PP(\boldsymbol{W}) = 2^{\hat{H}(\boldsymbol{W})} \approx \frac{1}{n \sqrt{\hat{P}(w_1^n)}}$$

Note that if all words are equally likely, and there are L words in the vocabulary:

$$PP(\boldsymbol{W}) = 2^{\log_2 L} = L$$

We can define the **training-set perplexity** as a measure of how the training set fits the language model. Similarly, we can define a **test-set perplexity** as the perplexity computed over the test set. It can be interpreted as the inverse of the (geometric) average probability assigned to each word in the test set.

PERFORMANCE VS. PERPLEXITY

Corpus	Vocabulary Size	Perplexity	Word Error Rate
TI Digits	11	11	~0.0%
OGI Alphadigits	36	36	8%
Resource Management (RM)	1,000	60	4%
Air Travel Information Service (ATIS)	1,800	12	4%
Wall Street Journal	20,000	200 - 250	15%
Broadcast News	> 80,000	200 - 250	20%
Conversational Speech	> 50,000	100 - 150	30%

• Though perplexity is not the best measure for task complexity, it provides some useful insights:

- Acoustic confusibility of highly probable and interchangeable words most often dominates performance.
- WER ~= -12.37 + 6.48*log₂(Perplexity) [William Fisher, NIST, May 2000]