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LECTURE 33: SMOOTHING N-GRAM LANGUAGE MODELS

. Objectives:
o Why do we need N-gram smoothing?
o Deleted interpolation
o Backoff language models

o Discounting
This lecture combines materia from the course textbook:

X. Huang, A. Acero, and H.W. Hon, Spoken Language Processing - A Guide to
Theory, Algorithm, and System Development, Prentice Hall, Upper Saddle River,
New Jersey, USA, ISBN: 0-13-022616-5, 2001.

and from this source:

F. Jelinek, Statistical Methods for Speech Recognition, MIT Press, Boston,
Massachusetts, USA, ISBN: 0-262-10066-5, 1998.


http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/
http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/lecture_33/lecture_33_00.html
http://research.microsoft.com/~joshuago/lm-tutorial-public.ppt
http://cl.aist-nara.ac.jp/lab/activity/benkyo-kai/StatisNLP96/smooth/smooth.html
http://www.cogs.susx.ac.uk/users/geoffs/RGoodTur.html
http://www.d.umn.edu/~tpederse/Courses/CS8995/Code/sgt-gale.pdf

A NOISY COMMUNICATION CHANNEL MODEL
OF SPEECH RECOGNITION

A noisy communication theory model for speech production and perception:

Message Linguistic Articulatory Acoustic

Source Channel Channel Channel

Observable: Message Words Phones Features

Bayesian formulation for speech recognition:

P(W|A) = P(A|W)P(W)/P(A)
Objective: minimize the word error rate by maximizing P(W|A4)
Approach: maximize P(.A4|W) (training)

Components:
« P(A|W): acoustic model (hidden Markov models, mixture of Gaussians)
« P( 17): language model (statistical, N-grams, finite state networks)
« I’( A1) : acoustics (ignore during maximization)

The language model typically predicts a small set of next words based on knowledge of a
finite number of previous words (N-grams) — leads to search space reduction.



THE CHOMSKY HIERARCHY

We can categorize language models by their generative capacity:

Type of Grammar

Phrase Structure

Constraints

A->B

Context Sensitive [aAb -> aBb

Context Free

Regular

A->B
Constraint:

A isanon-terminal.

Equivalent to:
A->w
A ->BC
where"w" isa
terminal;
B,C are non-
terminals
(Chomsky normal
form)

A->w
A ->wB
(Subset of CFG)

Automata

Turing Machine

(Unrestricted)
Linear Bounded

Automata

(N-grams, Unification)

Push down automata
(JSGF, RTN, Chart
Parsing)

Finite-state automata
(Network decoding)

. CFGs offer agood compromise between parsing efficiency and representational power.

. CFGs provide anatural bridge between speech recognition and natural language processing.



WHY ISSMOOTHING SO IMPORTANT?

. A key problem in N-gram modeling is the inherent data sparseness.

. For example, in severa million words of English text, more than 50% of the trigrams occur only once; 80% of the
trigrams occur less than five times (see SWB data al so).

. Higher order N-gram models tend to be domain or application specific. Smoothing provides away of generating
generalized language models.

. If an N-gram is never observed in the training data, can it occur in the evaluation data set?

. Solution: Smoothing isthe process of flattening a probability distribution implied by alanguage model so that all
reasonabl e word sequences can occur with some probability. This often involves broadening the distribution by
redistributing weight from high probability regions to zero probability regions.


http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/lecture_32/lecture_32_02.html

SMOOTHING ISAN INTUITIVELY SIMPLE CONCEPT

. Simple smoothing: pretend each bigram occurs once more than it actually doesin the training data set
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. Notethat the probability density function must be balanced to that it still sumsto one.



THE BACKOFF MODEL: A
FLEXIBLE TRADE-OFF BETWEEN ACCURACY AND COMPLEXITY

. Backoff smoothing: Approximate the probability of an unobserved N-gram using more frequently occuring lower order N-
grams
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. If an N-gram count is zero, we approximate its probability using alower order N-gram.
. The scaling factor is chosen to make the conditional distribution sum to one.

. Extremely popular for N-gram modeling in speech recognition because you can control complexity as well as generalization.



DELETED INTERPOLATION SMOOTHING

. Wecan linearly interpolate a bigram and a unigram model as follows:

P (w.lw. ;) = AP(w.|w. )+ (1-=A)P(w.)
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. We can generdize this to interpolating an N-gram model using and (N-1)-gram model:
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Note that this leads to arecursive procedure if the lower order N-gram probability also doesn't exist. If necessary, everything can be
estimated in terms of a unigram model.

. A scaling factor is used to make sure that the conditional distribution will sum to one.

. An N-gram specific weight is used. In practice, thiswould lead to far too many parameters to estimate. Hence, we need to cluster such
weights (by word class perhaps), or in the extreme, use asingle weight.

. Theoptimal value of the interpolation weight can be found using Baum's reestimation algorithm. However, Bahl et al suggest asimpler
procedure that produces a comparable result. We demonstrate the procedure here for the case of a bigram laanguage model:

1. Dividethetotal training datainto kept and held-out data sets.
2. Compute the relative frequency for the bigram and the unigram from the kept data.
3. Compute the count for the bigram in the held-out data set.

4. Find aweight by maximizing the likelihood:
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Thisis equivaent to solving this equation:
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GOOD-TURING ESTIMATES

The Good-Turing estimate states that for any N-gram, o, that occurs »
times, we should reestimate this frequency of occurrence as:
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where n . is the number of N-grams that occur exactly » times. This count

can be convrted to a probability by dividing by the total number of N-gram
tokens:

r=90 r=0 r=0

The justification for this equation is as follows:

Suppose we have training data for N-grams o, ...0. . Let ¢(o;) denote the
number of times the N-gram o, occurs in the training data, and p, be the
true probability of o,.

Estimating p; by using its frequency of occurrence can be expanded as:
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We are using the chance that a randomly selected N-gram, o, with count r,

is in fact o This can be rewritten into:
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Substituting this into our expression for E{F:'F{“i} = F):
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Noting that every N-gram token counts as 1, we can express the expected
value of n. as:
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We can show that:
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We can make the approximation that n = £, (n ) and
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Combining these results:
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Note that we must pre-smooth the distribution so n, = 0.



KATZ SMOOTHING BASED ON GOOD-TURING ESTIMATES

. Katz smoothing applies Good- Turing estimates to the problem of backoff |anguage models.

. Katz smoothing uses aform of discounting in which the amount of discounting is proportional to that predicted by the
Good-Turing estimate.

. Thetotal number of counts discounted in the global distribution is equal to the total number of counts that should be
assigned to N-grams with zero counts according to the Good-Turing estimate (preserving the unit area constraint for

the pdf).

. Katz Smoothing:
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KNESER-NEY BIGRAM SMOOTHING

. Absolute discounting involves subtracting afixed discount, D, from each nonzero count, an redistributing this

probability mass to N-grams with zero counts.

. Weimplement absolute discounting using an interpolated model:
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. Kneser-Ney smoothing combines notions of discounting with a backoff model. Here is an algorithm for bigram
smoothing:
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and C(-w;) is the number of unique words preceding w;.

ol(w,: 4) is chosen to make the distribution sum to 1:

-3

w Clw, w,) >0

Lo 2 P (W)

w Clw,_ w,) >0

max{ C{wr ” lwr} - D0}
Clw;_1)

aw; ) =

. Knesser-Ney smoothing constructs alower order distribution that is consistent with the smoothed higher order

distribution.



CLASSN-GRAMS

. Recall we previously discussed defining equivalence classes for words that exhibit similar semantic and
grammatical behavior.

. Class based language models have been shown to be effective for reducing memory requirements for real-time

speech applications, and supporting rapid adaption of language models.

. A word probability can be conditioned on the previous N-1 word classes:

. We can express the probability of aword sequence in terms of class N-grams:
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. |If the classes are non-overlapping:
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. If we consider the case of a bigram language model, we can derive a ssmple estimate for a bigram probability in
terms of word and class counts:
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. Class N-grams have not provided significant improvements in performance, but have provided a simple means of
integrating linguistic knowledge and data-driven statistical knowledge.


http://www.isip.msstate.edu/publications/courses/ece_8463/lectures/current/lecture_32/lecture_32_01.html

