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Name: Richard Duncan

Notes:

1. The exam is closed books/closed notes - except for one page
(double-sided) of notes.

2. Please show ALL work. Answers with no supporting explanations or work
will be given no credit.

3. Please indicate clearly your answer to the problem. If I can’t read it (and I
am the judge of legibility), it is wrong. If I can’t follow your solution (and I
get lost easily), it is wrong. All things being equal, neat and legible work
will get the higher grade:)

Problem Points Score

1a 10

1b 10

1c 10

1d 10

2a 10

2b 10

3a 10

3b 10

3c 10

3d 10

Total 100
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Problem No. 1 : Entropy Rate

(a) For the two-state Markov chain with the transition matrix, ,
find the entropy rate.

A graphical representation of this Markov chain is shown
at right. The stationary distribution, , can be found by

solving the equation , which balances the

probabilities, leading us to the equation .

Since this is a pdf, , hence

 and .

The entropy rate of a stationary Markov chain is .

For our two state Markov chain, this becomes ,

where  is the entropy of a binary distribution.

(b) Find the values of  and  that maximize the entropy rate.

This could be a tricky problem since we have to optimize two parameters simultaneously. O
approach would be to first maximize the binary distributions  and . The

maximum entropy for each is obviously the uniform distribution, so .

This also yields the stationary distribution will be uniform, as . Th

entropy rate for this system will now be:

This can be numerically verified through Matlab. The following matlab code produces a thre
dimensional plot. The x and y axis are  and , respectively, while the vertical axis is th

resulting entropy rate. A black star is placed at my estimated maximum entropy point, 0.5 for
parameters, and this point does correspond to the maximum peak of the graph at 1 bit. The
is consistent with our knowledge that entropy is a concave function.
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clear; close; syms a b h ha hb

ha = -a * log(a)/log(2.0) - (1-a) * log (1-a) / log(2.0);
hb = -b * log(b)/log(2.0) - (1-b) * log (1-b) / log(2.0);
h = (b/(a+b)) * ha + (a/(a+b)) * hb;

npoints = 51;
points = linspace(0.001,0.999,npoints);

for i = 1:npoints
    a = points(i);
    for j = 1:npoints
        b = points(j);
        h1(i,j) = eval(h);
    end
end

mesh(points,points,h1);
shading interp;
colormap(jet);
hold
plot3(0.5,0.5,1,’k*’)
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(c) For the two-state Markov chain with the transition matrix, , find
the maximum value of the entropy rate.

This problem is just a simplified version of the previous.
The graph of this Markov chain is shown at right. The
main difference is that the second state is now completely
deterministic: once entered it always transitions back to
the first state. Recalling our equation for the system’s
entropy rate from part (a),

,

Substituting in  and , we obtain

. Since I don’t like to take derivatives, I will

again guess that a uniform distribution will produce the greatest entropy and confirm my gu
with visualization. If we use the uniform distribution for , we obtain

. Reusing the same matlab code with a few modifications,

clear;close;syms a b h ha hb

ha = -a * log(a)/log(2.0) - (1-a) * log (1-a) / log(2.0);
hb = -b * log(b)/log(2.0) - (1-b) * log (1-b) / log(2.0);

h = (b/(a+b)) * ha + (a/(a+b)) * hb;

npoints = 51;points = linspace(0.001,0.999,npoints);

for i = 1:npoints
    a = points(i);
    for j = 1:npoints
        b = 0.99999;
        h1(i,j) = eval(h);
    end
end

mesh(points,points,h1);
shading interp;
colormap(jet);
hold
plot3(0.5,0.5,1,’k*’)
plot3(0.5,0.5,2/3,’k*’)

The main difference is that now there is only variance along one axis, the other is fixed. I p
star at the maximum entropy point for both Markov chains, the one along the curve is at the
expected point of  and . The plot is shown on the next page.
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(d) Explain the reasons for any differences between the answers to (b) and (c), and any
significance to this result. Your answer must show insight and understanding — don’t
simply tell me that the numbers are different because the probabilities are different.

The entropy rate of a Markov process can be considered to be the expected entropy of the s
What I mean by this is that it is the average of each state’s entropy weighted by the expect
percentage of time that the system will be in that state. For the first model where we have fre
in the parameters for both states, we can assign both states maximum entropy. In this case
weighting function is irrelevant since both distributions have the same entropy (although it is
to show that the system is equally likely to be found in either state). So, for the first model t
entropy rate will simply be the entropy of one of the state’s pdf’s, or 1 bit.

For the second model, however, we only have freedom in the first state. Again, we assign
maximum entropy to this state to maximize the overall entropy rate, but the second state’s
determinism ends up decreasing the weighted average. To find the weighting function, con
how long the system will stay in each state. For the first state, there is an equal chance of s
in the same state of transitioning to the second state, while the second state always transit
back to the first state. Due to the chance of staying in state one, the system is twice as likely
found in state 1 as state 2, hence the 0.66, 0.33 distribution. The second state has no unce
while the first state has maximum entropy for a binary distribution (1 bit). By conditioning th
state entropies by the weighting function we arrive at the overall entropy rate of 0.6667 bits
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Problem No. 2 : Data Compression

(a) Given an alphabet , and associated probabilities

, you design an optimal -ary code whose lengths turn out

to be . Find a lower bound on .

In order to compress data, we must minimize the expected codeword length. This means th
more probable symbols have shorter codewords. Since , it must follo

that . This is not vital information for solving the problem. Since

there are few codewords, we will first try  and then try .

Any optimal code can be arranged as a prefix code. In trying to construct a prefix code whi
satisfies , it becomes obvious very early that . This is because there are two codewo
length one,1 and0. Obviously any other codeword in a binary code must start with a1 or a0, so
the resulting code cannot be a prefix code. Since any optimal code can be arranged as a p
code and we proved that no such prefix code may exist, then no such optimal code can ex

.

Since  doesn’t work, let’s try . The two one-length codewords can be assigne0
and1, leaving2 to prefix the other codewords. Similarly, assign20 and21 to be the two two-
length codewords, leaving220 and221 for the final codewords of length three. Since

works, (and  doesn’t), the lower bound on  is 3.

This can be shown in a more mathematically rigorous fashion through the Kraft inequality. 

states that for any uniquely decodable code the codeword lengths must satisfy . S

must find the lower bound on  such that . This

simplifies to . Since I begin to shudder at the thought of using Lagran

multipliers, instead I will just try a couple of numbers again, starting at two.  does no

satisfy this, as .  will satisfy this constraint, as

. Therefore 3 is the lower bound (and Martians may have 3
fingers). In actuality, my method is just as valid as using calculus, since any number found
through real analysis must then be converted into an integer anyway.
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(b) Let be a binary-valued random variable with probabilities { ,1- }. Estimate
the expected length of an optimal code and discuss how this relates to the
source coding theorem.

The expected length of a binary code  can be expressed as . To find

optimal code we must minimize this expected length,  under the constraint of

Kraft inequality, . Cover uses calculus and Lagrange multipliers to take these 

equations to produce the equation for non-integer optimal codeword lengths. S

our case  and . If we were free to use non-integer values for

codeword lengths (maybe that is how they do it on Mars), our expected codeword length w
. This expected codeword length is clearly the entropy of the

binary random variable .

The source coding theorem states that the expected length of the optimal code will be bound
entropy and entropy plus 1, . Since the best that our optimal code ca
possibly due is entropy (for a dyadic distribution), the lower bound has already been shown
hold true. In order to show that we also meet the upper bound criterion, we must revisit the
inequality, this time using the ceiling function on our codeword lengths to force an integer
restraint on the values. Now,  and , so the inequality becom

The first inequality is true because the ceiling function always increases the negative expon
resulting in smaller terms for the sum than the non integer constrained sum. Since the ceili

function will always add a number less than one, , hence the upper boun

the codeword length may be expressed as

,

which provides our upper bound. So, our decision to use codeword lengths

{ , } is consistent with the source coding theorem.
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Problem No. 3 : Gambling and Complexity

Consider a three-horse race with probabilities . The odds

associated with this race are (recall, these are typically set

by how people bet on the race, not what the underlying odds are). The race is run many
times, and number of the winning horse is transmitted over a communications channel
using an optimal compression scheme.

(a) How many bits are required to transmit this information?

The minimum number of bits required to transmit this information will simply be the entropy

the true pdf,

(b) Define an optimal betting strategy, , so that your wealth will increase
as quickly as possible.

The optimal betting strategy will always be to set . We can actually make money on

race since we are closer to the actual distribution than the bookie is. So, set

We will make , where  is our wealth and  is the bookies

payback. Therefore our doubling rate will be:

.

This is also the relative entropy of the actual pdf to the bookie’s pdf minus the relative entrop
the actual pdf to our pdf.

This means that after  games we should have  growth of our gambling investment.
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(c) Is there only one solution to this problem? Explain.

There is only oneoptimalbetting strategy. Since we know the actual probability distribution of t
races. Therefore the optimal betting strategy is to fully utilize the actual pdf to the best of o
advantage, distributing our money according to the pdf. Any other betting strategy will yield
smaller return.

If we are interested in any betting strategy which allows us to make money, there are many
distributions. Using the theorem that , we can solve for any

betting strategy which yields a positive . The bound on this is how far off the booki

.

So, for any betting strategy , our doubling rate will be .

This means that any distribution we choose that has a Kullback Leibler distance less than 0
from the actual distribution will increase our wealth over time. Since relative entropy is a no
negative function, the optimal betting strategy will be when this distance is zero, or .

(d) Two three-horse races with different probabilities and odds are run, and the
results are again reported over the communications link. For example, we
transmit a pair of numbers, , indicating that the first race was won by
horse , and the second by horse . Hence, you observe data such as

. Estimate the Kolmogorov complexity of this sequence
of numbers in terms of the Kolmogorov complexity of each race reported
individually over the same link. In other words, how does the two-event
process compare to two one-event processes?

Let be the Kolmogorov complexity of the string “horse won the race.” Let be t

complexity of the string “horse  won the th race.” It is clear that , whe

is the number of bits to create the race number, . Therefore, to transmit two r

will require  bits.

If instead we combine the two races into a single string, we get something like “For two rac
first horses  won and then horse  won. In this case we have

where  is the complexity of the string “first horse ” and  is the complexity of the

string “then horse ” and is the complexity of the surrounding text “For two races, _ won

_ won.” If we let  be the maximum over  and , we can generalize this to

races with . This becomes a more profound savings as  increases, since

don’t have to fully describe the situation for each race.
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