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Name: Richard Duncan

Notes:

1. The exam is closed books/closed notes - except for one page
(double-sided) of notes.

2. Please show ALL work. Answers with no supporting explanations or work
will be given no credit.

3. Please indicate clearly your answer to the problem. If I can’t read it (and I
am the judge of legibility), it is wrong. If I can’t follow your solution (and I
get lost easily), it is wrong. All things being equal, neat and legible work
will get the higher grade:)

Problem Points Score

1a 10

1b 10

1c 10

2a 10

2b 10

2c 10

2d 10

3a 10

3b 10

3c 10

Total 100
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING SPRING’99



EE 8990 - 03 EXAM NO. 3 PAGE 1 OF 6

ately.
 any
urce,
this is

the
timal
Problem No. 1 : Channel and Source Coding

(a) For a binary symmetric channel, show that .

Let be the input symbol and be the output symbol. From

the figure it is clear that  is the probability of error in the
transmission. We define channel capacity to be

. The mutual information can be bounded

by

Since only one bit is being transmitted, obviously .

(b) Suppose the letters {a,b,c,d} are transmitted over this channel, and these letters
have a prior distribution of . Discuss the best way to
send this data over the channel such that you minimize the error rate and you
minimize the number of bits transmitted.

The entropy of the source . One

good approach is to consider the data compression and data transmission problems separ
The joint source channel coding theorem tells us that this two step approach is as good as
other method for transmitting the data over a noisy channel. Since we know the pdf of the so
we can use a Huffman code to compress the data rate to nearly the entropy. However, since
a noisy channel we must add back redundancy to approach error free communication.

The channel capacity will still be bounded by . This is for
each bit transmitted, though, and we now need more than one bit to discriminate between 
output classes. So, the channel will cost us , where is the expected length of the op

code. From data compression and competititive optimality we know that this length will be
bounded by the entropy and entropy plus one. Capacity now becomes .
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(c) Suppose we cascade a second BSC with the same properties as the first. Derive an
expression for the capacity, state whether the capacity increases or decreases, and
explain why.

If we must transmit the data over two such BSCs, the capacity will be unchanged. Whateve
redundancy is added to the code words to be nearly error free in the first channel will also wo
the second channel, you need add no more redundancy. The probability of error, however, 
double as you have two independent events. This error is near zero, though, and will have 
bearing.
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Problem No. 2 : Continuous Random Variables

(a) Prove the scaling theorem for the entropy of a continuous random variable.

Theorem:

Proof: Let , then . So,

(b) Derive an expression for the capacity of a power-limited Gaussian channel (hint:
compute the mutual information in terms of the entropies of the signal and noise, and
apply bounds for these entropies).

For a Gaussian channel, .

We also need to expand the power constraint,

, since  and  are independent and th

zero mean noise has . Since ,  is bounded by

 since a Gaussian is maximum entropy. If we apply this back to the

capacity, .
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(c) Explain the significance of this result on three types of problems: compression,
system identification, and maximum entropy spectral estimation.

If we wanted to get very fast error free communication, we need only spike up the power ove
line to get great separation in the two classes. Unfortunately, we have a power constraint.

When trying to identify a system, we make the Gaussian assumption. In doing so we need on
two parameters. If we assumed any other distribution we would need to assume more things
the distribution, hence the Gaussian assumption is on the average our best choice.

Spectral estimation is covered in 2d.

(d) Explain Burg’s Maximum Entropy Theorem.

Burg’s ME theorem was a fundamental breakthrough by relating the spectral estimation pro
back to information theory. We already knew that the Gaussian model was best from the au
correlation proofs, Burg proved this result may also be obtained through information theory a
maximum entropy process. His work opened up the door for us to use information theory to
many problems: many HMM training algorithms use entropy now as an internal metric.

He stated that the entropy rate subject to the auto correlation constraints  is

maximized by the th order zero-mean Gauss-Markov . The ME spectr

is .

Maximum entropy works because it is the worst case. Any other distribution will be more
predictable than what we assume. Also, if we assume a Gaussian we are placing the fewe
number of constraints on the system. If we are guessing, it is best to guess as few parame
possible. A Gaussian distribution is completely described by its mean and variance, any othe
of distribution has more parameters.
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Problem No. 3 : Statistics

Consider a six-sided die containing the numbers {1,2,3,4,5,6}. You roll this die ten times
and generate the sequence {1,2,3,4,5,6,2,4,6}.

(a) Describe the type class for this event.

The type class of , denoted , is the set of sequences of length  and type .

The type class of  is the set of all sequences of length 9 with two instances of each even

number and one instance of each odd number, one such type contained in this class is

. So, if we subscribe to the theory that , the die seems to be tw

as likely to produce even numbers as to produce odd numbers. Since  is so small, howev
could very easily have a fair die as well.

(b) Bound the size of the type class.

The size of the type class may be bounded by

,

,

Therefore,
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(c) Discuss the different ways to estimate the probability of the event above using
concepts developed in this course. Be as precise as possible. Do not assume this is
a fair die.

One way would be to use relative entropy. If we some how knew  we could use th

equation . From the law of large numbers we know that as

 with probability one.

Of course, basic probabilities and counting techniques could be used, but this would quickl
cumbersome as the problem became more complicated. From a probability background we
also obtain confidence intervals (using a Chi-squared table) to show how likely such an eve
with a fair die.
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