FEBRUARY 26, 1997 HANDOUT_05 PAGE 1 of 6

4 N

An Example to lllustrate The Concept of Entropy Rate

A three-state Markov process is shown below. Its transition probability
matrix is given as:

0.500 0.250 0.250
P =10.125 0.750 0.125 1)
0.200 0.200 0.6Q0
We would like to compute the stationary state probability distribution.

0.5 0.75

Let the initial state probability be represented as:

h= [ul " u3] (2)

If the distribution is stationary, then p = pP. We can solve these
simultaneous equations to get the stationary distribution.

If the initial distribution is not the stationary distribution, the state
distribution at a time n, is given in terms of P the state transition matrix and
the initial state distribution, y,as:

ty = HoP" (3)

Therefore, using the state distribution at time n, we can find the entropy at
time instant n of the Markov random process X as:

K ELECTRICAL AND COMPUTER ENGINEERING \

FEBRUARY 26, 1997 HANDOUT_05 PAGE 2 of 6

/

HOO = 30 Doqu] (4)

Note that, by definition, if we initialize the process with the stationary
distribution, the entropy at all times is constant and equal to the entropy rate.
If we do not start with the stationary distribution the entropy will converge to
the entropy rate with time (with possible oscillatory behavior).

Solving for the stationary distribution we get:

Mo = [0.235 0.470 0.295 (5)

To verify that this indeed is the stationary distribution, let us compute the
state distribution at time n = 1.

py = WP

0.500 0.250 0.250
[0.235 0.470 0.29510.125 0.750 0.125 (6)
0.200 0.200 0.600

= [0.235 0.470 0.295
The entropy at time n = 1 is found using Eq. 4:
H(X)| ., = 1.522190 (7)

Since we started with the stationary distribution, we know that this is the
same as the entropy rate.

ELECTRICAL AND COMPUTER ENGINEERING \

\

FEBRUARY 26, 1997 HANDOUT_05 PAGE 3 of 6

The following plot illustrates the behavior of the entropy as a function of time
when the initial probability distribution is not the stationary distribution. Each
curve on the plot has an initial distribution which is different from the
stationary distribution. Note that whatever the distribution we start with the
entropy finally converges to the entropy rate. Note the oscillatory behaviour
of some of the curves.

1.60 ! T ' ' '
155 + i
S
O
e
>
Y
(7))
-él.SO - i
>
o
o
c
LUl
145 + i
1499 30 50 70 90 110 130 150
Number of Iterations/Time
k ELECTRICAL AND COMPUTER ENGINEERING \

FEBRUARY 26, 1997 HANDOUT_05 PAGE 4 of 6

/

\

The code used to generate the at for this plot follows follows this plot.
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

/l this program generates data to illustrate the effect of the initial
/l conditions on the entropy rate of a markov process

Il

main (int argc, char** argv) {

/Il check for usage
I
if (argc < 2) {
fprintf (stdout, “Usage: entropy_rate <num_states> <num_iterations>\n");

}

I/ define local variables

I/

int num_rows = atoi(argv[1]);

int num_cols = num_rows;

float entropy, sum, entropy_rate;

float** a = new float*[num_rows];

for (int kKk = 0; kk < num_rows; kk++) {
a[kk] = new float[num_cols];

}

float** a_new = new float*[num_rows];
for (int kk = 0; kk < num_rows; kk++) {
a_new[kk] = new float[num_cols];

}

float* u = new float[num__cols];
float* u_new = new float[num_cols];

/Il open files for i/o
//
FILE* fp_trans = fopen (argv[3],'r");

ELECTRICAL AND COMPUTER ENGINEERING \

FEBRUARY 26, 1997 HANDOUT_05 PAGE 5 of 6

4 N

// read the transition probalilities from the file
/l
for (int kk = 0; kk < num_rows; kk++) {
for (int jj = 0; jj < num_caols; jj++) {
fscanf (fp_trans, “%f”, &a[kK][ji]);
a_newl[kK][ij] = a[kk][ij];
}
}

// read the initial probabilities

I

for (int kk = O; kk < num_cols; kk++) {
fscanf (fp_trans, “%f”, &u[kK]);

}

// compute the new state probs from the initial probs
I

/I first compute a.exp(t-1)
/l
int num_loops = (int)(log(atoi(argv[2]))/log(2));
for (int tt = O; tt < num_loops; tt++) {
for (int jj = 0; jj < num_caols; jj++) {
for (int kk = 0; kk < num_rows; kk++) {
sum = 0;
for (intj=0 ;) <num_cols; j++) {
sum += a[j][kk]*a[j][i];
}
a_new([jj][kk] = sum;
}
}

for (int k = 0; k < num_rows; k++) {
for (intj = 0; j < num_cols; j++) {
a[k][i] = a_newl[K][];
}
}
}

K ELECTRICAL AND COMPUTER ENGINEERING \

FEBRUARY 26, 1997 HANDOUT_05

PAGE 6 of 6

/

// compute the new state probabilities
I
for (int k = 0; k < num_cols; k++) {
for (intj = 0; j < num_rows; j++) {
u_new[k] += u[jJ*a_new[j][K];

}
}
/[l compute the entropy at this instant in time
Il
entropy = 0;

for (int k = 0; k < num_cols; k++) {
entropy += u_new[Kk] * (log10(1/u_newlk])/ log10(2.0));

}
fprintf (stdout,"%d %1.4f \n”, atoi(argv[2]),entropy);

// compute the entropy rate
I/
entropy_rate = 0.0;
for (int k = 0; k < num_rows; k++) {
for (intj = 0; j < num_cols; j++) {
entropy_rate -= u_new[k]*a[K][j]*(log10(a[k][j])/log10(2)) ;
}
}

I exit gracefully
I

}

K ELECTRICAL AND COMPUTER ENGINEERING \

\

	An Example to Illustrate The Concept of Entropy Rate
	A three�state Markov process is shown below. Its transition probability matrix is given as:
	(1)
	We would like to compute the stationary state probability distribution.
	Let the initial state probability be represented as:
	(2)
	If the distribution is stationary, then . We can solve these simultaneous equations to get the st...
	If the initial distribution is not the stationary distribution, the state distribution at a time ...
	(3)
	Therefore, using the state distribution at time n, we can find the entropy at time instant n of t...
	(4)
	Note that, by definition, if we initialize the process with the stationary distribution, the entr...
	Solving for the stationary distribution we get:
	(5)
	To verify that this indeed is the stationary distribution, let us compute the state distribution ...
	(6)
	The entropy at time is found using Eq.�4:
	(7)
	Since we started with the stationary distribution, we know that this is the same as the entropy r...
	The following plot illustrates the behavior of the entropy as a function of time when the initial...
	The code used to generate the at for this plot follows follows this plot. #include <stdio.h>
	#include <stdlib.h>
	#include <math.h>
	// this program generates data to illustrate the effect of the initial
	// conditions on the entropy rate of a markov process
	//
	main (int argc, char** argv) {
	// check for usage
	//
	if (argc < 2) {
	fprintf (stdout, “Usage: entropy_rate <num_states> <num_iterations>\n”);
	}
	// define local variables
	//
	int num_rows = atoi(argv[1]);
	int num_cols = num_rows;
	float entropy, sum, entropy_rate;
	float** a = new float*[num_rows];
	for (int kk = 0; kk < num_rows; kk++) {
	a[kk] = new float[num_cols];
	}
	float** a_new = new float*[num_rows];
	for (int kk = 0; kk < num_rows; kk++) {
	a_new[kk] = new float[num_cols];
	}
	float* u = new float[num_cols];
	float* u_new = new float[num_cols];
	// open files for i/o
	//
	FILE* fp_trans = fopen (argv[3],”r”);
	// read the transition probalilities from the file
	//
	for (int kk = 0; kk < num_rows; kk++) {
	for (int jj = 0; jj < num_cols; jj++) {
	fscanf (fp_trans, “%f”, &a[kk][jj]);
	a_new[kk][jj] = a[kk][jj];
	}
	}
	// read the initial probabilities
	//
	for (int kk = 0; kk < num_cols; kk++) {
	fscanf (fp_trans, “%f”, &u[kk]);
	}
	// compute the new state probs from the initial probs
	//
	// first compute a.exp(t-1)
	//
	int num_loops = (int)(log(atoi(argv[2]))/log(2));
	for (int tt = 0; tt < num_loops; tt++) {
	for (int jj = 0; jj < num_cols; jj++) {
	for (int kk = 0; kk < num_rows; kk++) {
	sum = 0;
	for (int j = 0 ; j < num_cols; j++) {
	sum += a[j][kk]*a[jj][j];
	}
	a_new[jj][kk] = sum;
	}
	}
	for (int k = 0; k < num_rows; k++) {
	for (int j = 0; j < num_cols; j++) {
	a[k][j] = a_new[k][j];
	}
	}
	}
	// compute the new state probabilities
	//
	for (int k = 0; k < num_cols; k++) {
	for (int j = 0; j < num_rows; j++) {
	u_new[k] += u[j]*a_new[j][k];
	}
	}
	// compute the entropy at this instant in time
	//
	entropy = 0;
	for (int k = 0; k < num_cols; k++) {
	entropy += u_new[k] * (log10(1/u_new[k])/ log10(2.0));
	}
	fprintf (stdout,”%d %1.4f \n”, atoi(argv[2]),entropy);
	// compute the entropy rate
	//
	entropy_rate = 0.0;
	for (int k = 0; k < num_rows; k++) {
	for (int j = 0; j < num_cols; j++) {
	entropy_rate -= u_new[k]*a[k][j]*(log10(a[k][j])/log10(2)) ;
	}
	}
	// exit gracefully
	//
	}

