.14, The Construction of Cptimal 1D Codes (Huffman's Algorithm) 243

Theorem 104 mH (pi< n(p")<mH (p)+ 1. Theorem 10,5 follows by
dividing by s and taking limils.)

Theorem 0.5 is satisfying theoretically, since it tells us that the source p
can indeed be represented faithfully using {perhaps slightly more than)
H (p} s-ary symbols per source symbol. It leaves something to be desired
from a constructive viewpoint, however, since it relies on the weak con-
struction of Theorem 104, In the next section we shall remedy this
situation by presenting a technique which will enable us to construct the
best possible codes for the sources p™.

10.4 The Construction of Optimal UD Codes (Huffman’s
Algorithm)

According to Theorem 104, a,(p)} bes somewhere between H (p) and
H{p)+ 1, and this estimate is adequate for some purposes {e.g.. the proof
of Theorem 100.5). But it 15 natural to wonder about the exact value of 1 (p)
for a fixed ¢ and p. In this section we present an algorithm due to David
Huffman that shows not only how to compute s, (p), but also how to
construct 8 LD (indeed a prefix) code with average length n,(p).

Before giving s formal description of Huffman’s algorithm, we shall
work an example, Throughout this section we refer to a UD s-ary code for
p whose average length is n (p) as an epiimal code for p.

Example 10.5. Let s=4,p=(.24,.21,.17,.13,.10,.07,.04,.03, 01). The first
step in Huffman’s algorithm is to replace the probability vector p with a
simpler one p’, which is obtained from p by combining the three smallest
probabilities in p. Thus p'=(.24, 21,.17..13,.1(, .08, .07) after the compo-
nents are rearranged imto decreasing arder. Since p’ is still complicated, we
reduce p’ still further by combining the four smallest probabilities in p’ and
abtain p* ={.38,.24, 21,.17). Figure 10.]1 gives a schematic diagram of these
reductions. The reason why we combined three probabilities when going
from p to p’ and four when going from p’ to p” will appear as the theory
develops; for the moment just accept iL.

It is of course clear how to construct an oplimal code for p*: the code
C*"=1{0,1,2,3} achieves n{p")=1. Starting from this (rivial code, we now
can work backward and construct oplimal codes €' and € for p’ and p by
“expanding” the code C" in a simple way.

First we comstruct an optimal code for p'. Notice that three of the
probabilities (viz.,.24, 21,.17) were not changed in the reduction from p’ w
p’. The rule in this case iz that in the expansion of C" inlo €’ the
corresponding codewords do not change, either. However, probabihty 38

244 Variable-Length Source Coding 11104,

z » &
24 24 33
21 21 24
17 17 21
A3 4 b A7
10 A0

07 08

04’ /r 07,

U'j}—'*

0l

I"ignm 13.1. The suecarzive reduclions of P-

in p” expands into four probablities (13, 10, 0%, 07) in p’. Here the ruls is
that the codeword (@) for 38 in C” expands inte four codewords
(00,01,02,03) in ' (sec Fig. 10.2). Thke resulting code, according to
Theorem 10.7 below, is optimal for p’.

The construcion of O from O proceeds sirmularly: every codeword Hut
0% corresponds directly 1o 2 single probubility in p, 50 tae corresponding
codewords do not change. However, 02 expands into 020,021,022 (again
see Fig. 102). Thus allegedly €= 11,2,3,00,01.03.020,021,022} is an opt
mal code for p. and wp)l=-C244+ 214 11 +2015= 10+ 07)+ 3
+.03+ .01)= 1.6, |

The precading example is typical of the general Huffman algorithm, p &
successively seduced to p', p”, 21, uniil o final reduction p! with exactly s
prooabilities is reached. The abvious optimal code {11, . ¢= 11 for p' &
then “eapanded” in he above way untl an optimal code for p is obtainzc.
The only mvaterious featurs of the algorithm is the computation of th:
number of probabilities that rust b2 combinad in the reduction of p to p.
If we denote this number by &, it turns ont that & is determined uniqualy
by the lellewing two conditions:

L b R (107
f=r (mods—1). (103

For example (cl. Example 10.5), if s=4.r=9, we gel 5 =3. It s=2. then
=32 for all v 2, and so this cowplice tion s absent for binary codzs.® I’
s=3, then s'=2 if r 15 even and ¢ =3 il ¢ 15 odd. Notc that the number o
probabilves in p' s ¥=r—¢ 41 which by Eq. (10.1) is congruen: to |
(mod s— |). Herce after tha first reduction s° w2ll always be equal to 2, and
30 11 15 necessary to commpute »” using Egs, (10.2) and (10.3) only once, no
matter how many reductions of p are required.

104, “Ihe Construction of Optmal UD Codas (Huftman's Algrvithm) 245

2 Lo c”
1 | 0
2 3 i
3 1 2
(0 00 3
01 01§

03 02

20 / 03 .

021 }.-t

02

Figure 13.2. The syatheiis of an opidmal code for p W7 Fg 1001

Now we have descibed Huffman's algorithm; our remczining
lask—which is surprisingly trickv—1s to show that it woks, ie. that it
produces an s-ary prefin code [or p whose averags leng:h is as small as
possible. The following thecrem is erucial; it guarantees that there is
a.ways 1n ophmal prefix ccde for p in which the last 5 words are of the
same Jength, and agree excep: for their last componen:.

Ta fix our idcas, let us now assume (el Lhe probabilides Pl i il
e zrranged in decreasing order: py>p, > - - > p,_ . We corsider prefix
codes for p over the elphabet {01, . v~ I} whose words are denoted br
Bpalpseees g with lemglhs m=|g,| i=0,7,....r = 1.

Turored 106, If v 2 2. there exises an aptimal s-ary prefix code for TR
the fallowing nn prepertiss:

(@} Mpen % K a. .

(b) The last & (see Egs. (10.2) and (0.2)) codewerds are identical exrept
for tiveir [ast corportent, that iz, there exixiy a string o of lengih n,_— | such
that:

a,_ = a=l},

I:l.r'—r'+] o]F

6y =as(s'—1).

Procf. For a given code {65.0;,....5,_,} for p, il is clear that if { <7j anc
0| =|o] interchanging o, and o, cannct increase the everage length
Zp,|m|. Hence there exist optimal s-ary codes for p such that (a) holds, 1n
the rast 0 the proct, “optimal™ code w1l mean a code of minimal averaze
length thet also satisfies (a).

