Exam \#1 Rework

 by Zack SmithSeptember 30 ${ }^{\text {th }}, 2012$
ECE 2312: Electrical Engineering Science I

Problem \#1a:

Compute the equivalent resistance for the network shown below:

Firstly, we know R_{3} and R_{4} are in series, giving us a new equivalent resistor:
$R_{3}+R_{4}=2 \Omega+2 \Omega=4 \Omega$

Next, we know that R_{34} and R_{2} are in parallel. This produces the equation for their equivalent resistance :

$$
\left(R_{34} * R_{2}\right) /\left(R_{34}+R_{2}\right)=(4 \Omega * 4 \Omega) /(4 \Omega+4 \Omega)=16 \Omega / 8 \Omega=2 \Omega
$$

This new circuit gives us our final equation: R_{1} and R_{234} are in series, so : $R_{1}+R_{234}=2 \Omega+2 \Omega=4 \Omega$ This means R_{eq} equals 4Ω.

Problem \#1b:

A 2Ω resistor is placed as a load on this network. Computer the equivalent resistance and explain any changes in the overall resistance that you observe.

In this case, R_{5} and R_{4} are in parallel. We can find their equivalent resistor with this equation:

$$
\left(R_{5} * R_{4}\right) /\left(R_{5}+R_{4}\right)=(2 \Omega * 2 \Omega) /(2 \Omega+2 \Omega)=4 \Omega / 4 \Omega=1 \Omega
$$

From here on out, the circuit is exactly the same as the previous, except R_{4} is now 1Ω instead of 2Ω. We can therefore use the same equations, substituting the new value, and obtain the new $\mathrm{R}_{\text {eq }}$.

$$
R_{3}+R_{45}=2 \Omega+1 \Omega=3 \Omega
$$

$$
\left(R_{345} * R_{2}\right) /\left(R_{345}+R_{2}\right)=(4 \Omega * 3 \Omega) /(3 \Omega+4 \Omega)=12 \Omega / 7 \Omega
$$

$$
R_{1}+R_{2345}=2 \Omega+12 / 7 \Omega=14 / 7 \Omega+12 / 7 \Omega=26 / 7 \Omega=3.714 \Omega
$$

Thus, the new $\mathrm{R}_{\mathrm{eq}}=26 / 7 \Omega$. Our multisim circuit verifies these results:

Problem \#2a:

2(a). Set $V_{a}=1$ VDC and compute the current in the center resistor, I_{c}.

Since the switch, SB is open:

$$
I_{C}=I_{1}
$$

Therefore, we can do a KVL around the left inner loop:

$$
\begin{aligned}
& R_{1} * I_{1}+R_{2} * I_{C}=1 \mathrm{~V} \\
& 1 \mathrm{~V}=2 \mathrm{I}_{I} \\
& I_{1}=1 / 2 \mathrm{~A}
\end{aligned}
$$

We therefore know that $\mathrm{I}_{\mathrm{C}}=1 / 2 \mathrm{~A}$
We can also analyze the voltages :

$$
\begin{aligned}
& V=I * R \\
& V_{R I}=1 \Omega * I_{1}=.5 \mathrm{~V} \\
& V_{R 2}=1 \Omega * I_{C}=.5 \mathrm{~V}
\end{aligned}
$$

Kirchhoff's voltage law checks out, there is 1 V being output by the battery, and .5 V is being used by each resistor. The sum of the voltage drops is therefore zero. Multisim confirms this:

Problem \#2b:

Set $\mathrm{V}_{\mathrm{a}}=0$ VDC, close the switch S_{b}, and set $\mathrm{I}_{\mathrm{b}}=1 \mathrm{~A}$. Compute the current in the resistor, I_{c}.

Despite V_{A} becoming 0 , there is still a current, I_{1}, running through the circuit along with I_{B}. You therefore cannot discount it, like we did with I_{B} in the previous part.
$I_{B}+I_{1}=I_{C}$
We will use KVL:

$$
\begin{aligned}
& I_{1} * R_{1}-V_{A}+I_{C}=0 \quad I_{1}+I_{B}+I_{1}=0 \\
& 2 \mathrm{I}_{1}=-I_{B} \quad I_{1}=-1 / 2 \mathrm{~A} \\
& I_{B}+I_{1}=I_{C} \quad 1 \mathrm{~A}-1 / 2 \mathrm{~A}=I_{C}
\end{aligned}
$$

Thus, $\mathrm{I}_{\mathrm{C}}=1 / 2 \mathrm{~A}$, yet again.
We can find the voltages across the resistors :

$$
V_{R 3}=I_{B} * 1 \Omega=1 \mathrm{~V} \quad V_{R 1}=I_{1} * R_{1}=-1 / 2 \mathrm{~V} \quad V_{R 2}=1 \Omega * I_{C}=1 / 2 \mathrm{~V}
$$

Summing up the voltages across either loop will result in the Voltage supplied by I_{B}, which is 1.5 V .

KCL also holds at the node connecting all the resistors:
$1 \mathrm{~A}($ flowing into the node $)=.5 A+.5 \mathrm{~A}($ flowing out $)$
Multisim confirms all of this:

Problem \#2c:

2(c). Set $V_{a}=1$ VDC, close the switch S_{b}, and set $I_{b}=1 \mathrm{~A}$. Compute the current in the resistor, I_{c}.

We can now do the KVL to get I_{C} when both the sources are on:

$$
\begin{aligned}
& -V_{a}+I_{1}+I_{c} \\
& 1=2 \mathrm{I}_{1}+1 \\
& I_{1}=0 \\
& I_{C}=I_{1}+I_{B}=1 \mathrm{~A}
\end{aligned}
$$

We can also find the voltages across the resistors:

Summing the voltages, we would get that the voltage across the current source would be 2 V .
Multisim confirms this:

Problem \#2d:

2(d). Does the result of (c) equal the sum of 2(a) and 2(b)? Explain any differences that you observe.
Yes, my result for part c was 1 A , and the sum of 2(a) and 2(b) is 1 A as well. Why this is the case is simple. Individually, both sources supply $1 / 2 \mathrm{~A}$ to the resistor, both in the same direction. It therefore stands to reason that when they're both on, together, they will supply $1 / 2 \mathrm{~A}+1 / 2 \mathrm{~A}$ to the resistor, or 1 A . This may not be true for dependent sources or non-linear elements, but for this circuit, which has neither, it applies perfectly.

Problem \#3a:

3(a). Compute the power dissipated in R_{c}.

This problem is perfectly suited for solving via loop analysis. We can say that the current flowing through the left loop is I_{A}, and the right loop is also I_{A}. We can write the left loop equation like this:

$$
-V_{A}+I_{A} * 1 \Omega+1 \Omega *\left(I_{A}+I_{A}\right)
$$

Which simplifies to : $V_{A}=3 \mathrm{I}_{A} \quad I_{A}=1 / 3 \mathrm{~A}$
Now we can find the power running through R_{C}

$$
P=I^{2} R \quad I_{R C}=I_{A}+I_{A}=2 \mathrm{I}_{A}=2 / 3 \quad P_{R_{C}}=I_{R_{C}}^{2} * R_{R_{C}}=(2 / 3)^{2} * 1 \Omega=4 / 9 \mathrm{Watts}
$$

We can also find the voltage across all of the circuit elements:

$$
\begin{aligned}
& V_{R I}=I_{A} * R_{1}=1 / 3 \mathrm{~A} * 1 \Omega=1 / 3 \mathrm{~V} \quad V_{R C}=2 \mathrm{I}_{A} * R_{C}=2 * 1 / 3 * 1 \Omega=2 / 3 \mathrm{~V} \\
& V_{R 3}=I_{A} * R_{3}=1 / 3 \mathrm{~A} * 1 \Omega=1 / 3 \mathrm{~V}
\end{aligned}
$$

To find voltage across the current source, we must do another loop:

$$
V_{C S}=I_{A} * R_{3}+2 \mathrm{I}_{A} * R_{C}=1 / 3 \mathrm{~A} * 1 \Omega+2 / 3 \mathrm{~A} * 1 \Omega=1 \mathrm{~V}
$$

If we do any loop, we will find that the sum of the voltages is equal to zero. Furthermore, KCL at the node connecting all three resistors holds true: $I_{A}+I_{A}$ Flowing into the node $=2 \mathrm{I}_{A}$ Flowing out

Problem \#3b:

3(b).Compute the power delivered by the source, V_{a}.
The power supplied by the power source is simple:
$P=V * I$
$P_{V_{A}}=I_{A} * V_{A}=1 / 3 \mathrm{~A} *-1 \mathrm{~V}=-1 / 3$ Watts
So the battery is supplying $1 / 3$ Watts of power to the circuit. Likewise, the current source is also supplying $1 / 3$ Watts of power to the circuit.
We should evaluate the power dissipated by all the resistors, because if it does not equal the power supplied by the sources, it means there is an error in the analysis.

$$
\begin{aligned}
& P_{R_{1}}=V_{R_{1}} * I_{R_{1}}=1 / 3 \mathrm{~V} * 1 / 3 \mathrm{~A}=1 / 9 \text { Watts } \\
& P_{R_{3}}=V_{R_{3}} * I_{R_{3}}=1 / 3 \mathrm{~V} * 1 / 3 \mathrm{~A}=1 / 9 \text { Watts } \\
& P_{R_{C}}=V_{R_{C}} * I_{R_{C}}=2 / 3 \mathrm{~V} * 2 / 3 \mathrm{~A}=4 / 9 \mathrm{Watts}
\end{aligned}
$$

If we add up all the power dissipated by the resistors we get $6 / 9$ Watts dissipated. If we sum up the power supplied by the sources, we get $6 / 9$ Watts supplied. This confirms that our values for power are not incorrect. Multisim Confirms this:
Through multisim, our voltage, current, and power calculations are all validated.

