Problem \#1

1. Derive an expression for V_{o} as a function of V_{1} and V_{2}.

Step 1.
Know that $\mathrm{V}+=\mathrm{V}-=\mathrm{v} 1$

Step 2. Label each current

Step 3. Define the currents
$\mathrm{ia}=(\mathrm{v} 2-\mathrm{v} 1) / 2$
$\mathrm{ib}=(\mathrm{vo}-\mathrm{v} 1) / 2$
ic $=(v 1-v g)=v 1$

Step 4. Do KCL for the blue node
$\mathrm{ia}+\mathrm{ib}=\mathrm{ic}$
$(\mathrm{v} 2-\mathrm{v} 1) / 2+(\mathrm{vo}-\mathrm{v} 1) / 2=\mathrm{v} 1$

Step 5.
Solve for vo
Solve for vo in terms of $v 1$ and $v 2$

Answer: \quad vo $=4 v 1-v 2$

Problem \#2

2. (a) Using superposition, find the value of R_{L} that maximizes the power dissipated in R_{L}. Compute the portion of this power due to the voltage source only, and the portion due to the current source.

Step 1) Find Rth by shorting the voltage source and removing the current source.

This becomes Rth $=3 / 2$.
Step 2) Remove the current source and solve for the load across the Resistor Load. VL.

Use KCL to solve for V1 by finding all of the currents.
i1 (current from 2 v source through R 4)
i2 (current between top node through R6 to ground)
i3 (current between top node through R5 to ground)
$\mathrm{i} 1=(2-\mathrm{Va})$
$\mathrm{i} 2=\mathrm{Va}-$ Ground $=\mathrm{Va}$
$\mathrm{i} 3=\mathrm{Va}$
KCL at Va:
We now know that $\mathrm{Va}=2 / 3$ and we can now use the the voltage divider to determine what it would be through the 1 Ohm resistor leading to our RL.
$\mathrm{VL}=1 \mathrm{~V}$
Step 3) Short the voltage source and solve for the load across the Resistor Load. VL. Combine the resistors and determine the voltage through VL to be 4.5.
$\mathrm{VL}=4.5$

Step 4) Add both of the voltages found together to find $\mathbf{V L}=\mathbf{5 . 5}$
The below image verifies my findings.

Step 5) Redraw the Thevenin equivalent circuit using VL $=5.5$ and Rth $=3 / 2$

ANSWER:
See that we make the Rload $=$ Rth because this is when maximum power happens, so Rload $=\mathbf{1 . 5}$.

Problem 2b

2(b). Remove the current source by treating it as an open circuit. Find the value of RL that maximizes the power dissipated in RL. Explain why this value is the same, or different, than the answer to (a). Justify your conclusion whether it should be the same or different.

Abstract

ANSWER: Our answers would be the same because our process would be quite similar. Instead of using the thevenin equivalent we would be finding the norton equivalent instead. All of our answers are identical because in circuits it does not matter which way we analyze anything as long as it works, many tools can be used for the same job. It us up to use to choose the one that we are best at or is most simple to use.

PROBLEM \#3

3. Find the energy stored in the 2 F capacitor and 3 H inductor. (Hint: find all voltages and currents first.)

Step 1.)

Short the inductors and open the capacitors.

Step 2.)

Define the currents and label nodes.

$i 1=\mathrm{i} 3$
i2 $=0$
$i 3=(12-v b) / 3$
$\mathrm{i} 4=(\mathrm{vb}-\mathrm{vg}) / 6$
i5 $=6$

Step 3.)

KCL for node A and node B

Node A:
$\mathrm{i} 1=\mathrm{i} 2+\mathrm{i} 3$
$i 1=\mathrm{i} 3$

Replace i3 w/ (12-vb)/3
$\mathrm{i} 1=(12-\mathrm{vb}) / 3$

Node B:
$\mathrm{i} 3+\mathrm{i} 5=\mathrm{i} 4$
$(12-\mathrm{vb}) / 3+6=\mathrm{vb} / 6$

Step 4.)

Solve for unknowns:

$$
\begin{aligned}
& \mathrm{vb}=20 \mathrm{v} \\
& \mathrm{va}=12 \mathrm{v} \\
& \mathrm{i} 1=\mathrm{i} 3=-8 / 3 \\
& \mathrm{i} 3=-8 / 3 \\
& \mathrm{i} 4=10 / 3 \\
& \mathrm{i} 5=6
\end{aligned}
$$

Step 5.)

Use the information found in step 4 to solve for the energy stored in each component.

Find the energy stored in the capacitor via the following equation.
$U=(1 / 2)(C)\left(V^{\wedge} 2\right)$

Answer:
$U=(1 / 2)(2)\left(12^{\wedge} 2\right)=144$.

Find the energy stored in the 3 H inductor via the following equation.
$U=(1 / 2)(L)\left(I^{\wedge} 2\right)$
Answer:
$\mathrm{U}=(1 / 2)(3)\left(6^{\wedge} 2\right)=(3 / 2)(36)=54$.

Find the energy stored in the 2 H inductor via the following equation.
$U=(1 / 2)(L)\left(I^{\wedge} 2\right)$
Answer:
$U=(1 / 2)(2)(-8 / 3)^{\wedge} \mathbf{2}=7.111111$ repeated

