Dennis Chong
Exam 2 Redo

Question 1

Let the node connecting $\mathrm{R}_{1}, \mathrm{R} 2$ and R_{3} be V
For an ideal op-amp, $\mathrm{I}-\mathrm{I}+=0$ and $\mathrm{V}_{1}=\mathrm{V}$
KCL @ Node V (Nodal analysis)
$\mathrm{V} / 1+\left(\mathrm{V}-\mathrm{V}_{0}\right) / 2+\left(\mathrm{V}-\mathrm{V}_{2}\right) / 2+\mathrm{I}_{2}=0$
$\mathrm{V}_{1} / 1+\left(\mathrm{V}_{1}-\mathrm{V}_{0}\right) / 2+\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right) / 2=0$
$2 \mathrm{~V}_{1}+\mathrm{V}_{1}-\mathrm{V}_{0}+\mathrm{V}_{1}-\mathrm{V}_{2}=0$
$\mathrm{V}_{0}=4 \mathrm{~V}_{1}-\mathrm{V}_{2}$
As a test, I set V_{1} and V_{2} to be 2 V and 1 V respectively on multisim. As shown in the above, I obtained V_{0} as 7 V , justifying the equation $V_{0}=4 V_{1}-V_{2}$

Question 2

For the first part, open current source.

Let I_{o} be the total current.
$\mathrm{R}_{\text {total }}=1+(1 \mathrm{II} 1)=1.5 \mathrm{ohms}$
$\mathrm{I}_{\mathrm{o}}=\mathrm{V}_{\mathrm{s}} / \mathrm{R}_{\text {total }}$
$\mathrm{I}_{\mathrm{o}}=2 /(1.5)=2 / 3 \mathrm{~A}$
$\mathrm{R}_{\mathrm{L}}=\mathrm{R}_{\mathrm{th}}=1.5 \mathrm{ohms}$
$\mathrm{P}_{\mathrm{L}}=(2 / 3)^{\wedge} 2 *(3 / 2)=2 / 3 \mathrm{~W}$

For the second part,

Short the voltage source, circuit becomes

$\mathrm{R}_{\mathrm{L}}=\mathrm{R}_{\mathrm{th}}=1.5 \mathrm{ohms}$
Let I_{sc} be the current flowing through the branch on the furthest right.

Since the resistance on the left and right side of the current source is equal, therefore the current is equally split between both the branches.
$\mathrm{I}_{\mathrm{sc}}=3 / 2=1.5 \mathrm{~A}$
$\mathrm{P}{ }_{\mathrm{L}}=(3 / 2)^{\wedge} 2 *(3 / 2)$
$P{ }^{\prime}{ }_{L}=27 / 8 \mathrm{~W}$
Therefore, total power is
$\mathrm{P}_{\mathrm{o}}=\mathrm{P}^{\prime}{ }_{\mathrm{L}}+\mathrm{P}{ }^{\prime}{ }_{\mathrm{L}}=2 / 3+27 / 8$
$\mathrm{P}_{\mathrm{o}}=97 / 24 \mathrm{~W}$

Question 3

The first step to this problem is to have the inductors be short circuit and capacitors to be open circuit.

The circuit should turn out like below.

There are two methods to calculate the current across the 3ohms resistor, the mesh and nodal analysis.

Mesh Analysis

Let $\mathrm{I}_{1}=$ the current flowing in the left loop
$\mathrm{I}_{2}=6 \mathrm{~A}$
KVL@ left loop
$-12+3 \mathrm{I}_{1}+6\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right)=0$
$3 \mathrm{I}_{1}+6 \mathrm{I}_{1}+36=12$
$\mathrm{I}_{1}=-8 / 3=-2.667 \mathrm{~A}$
Since $P=I^{\wedge} 2 R$,
Therefore, Power across 3ohms: $\mathrm{P}_{3 \text { ohms }}=(-8 / 3)^{\wedge} 2 *(3)=64 / 9 \mathrm{~W}$

Nodal Analysis

Let V_{2} be the middle node and V_{1} be at the left node.
Note that $\mathrm{V}_{1}=12 \mathrm{~V}$
$\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right) / 3-6+\mathrm{V}_{2} / 6=0$
$\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right) / 3+\mathrm{V}_{2} / 6=6$
$2\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right)+\mathrm{V}_{2}=36$
$3 \mathrm{~V}_{2}-2 \mathrm{~V}_{1}=36$
$\mathrm{V}_{2}=20$
$\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{1}-\mathrm{V}_{2}=-8 \mathrm{~V}$ (Current flowing from right to left across the 3ohms resistor)
$\mathrm{I}_{3 \text { ohms }}=\mathrm{V}_{0} / \mathrm{R}_{1}=8 / 3 \mathrm{~A}$
Since $P=I^{\wedge} 2 R$,
Therefore, Power across 3ohms: $\mathrm{P}_{3 \text { ohms }}=(8 / 3)^{\wedge} 2 *(3)=64 / 9 \mathrm{~W}$
(The above set of workings function as a prove that I am able to find Power and Current across each device)

For 3H inductor

We know that a current of 6 A is flowing through the inductor.
The formula of energy dissipation of an inductor is given as
$\mathrm{E}=1 / 2 \mathrm{~L}\left(\mathrm{I}^{\wedge} 2\right)$
$\mathrm{E}=1 / 2(3)(36)=54 \mathrm{~W}$

For 2F Capacitor
We know that the Voltage across the branch with capacitor is parallel to the $\mathrm{V}_{\text {source }}$ on the left.
$\mathrm{V}_{\mathrm{c}}=\mathrm{V}_{\text {source }}=12 \mathrm{~V}$
Dissipation of energy of a capacitor is $1 / 2 \mathrm{CV}^{\wedge} 2$
$\mathrm{E}=1 / 2(2)(144)=144 \mathrm{~W}$

