
TEMPLE UNIVERSITY COLLEGE OF ENGINEERING | ECE 3623 | SPRING 2015

Computer Assignment (CA) NO.6: Mean and
Variance Revisited

Tyler Berezowsky

March 1, 2015

1 PROBLEM STATEMENT

Use MATLAB’s random number generator and generate uniformly distributed random numbers on
the range [0,1]. We all agree that the mean, µ, should be 0.5, and the variance, σ2, should be ??? (can
you derive this?). The tasks to be accomplished are:

1. Generate N random numbers, denoted by the signal x[n]. Estimate the mean (equation 1.1)
and variance (equation 1.2) using N data points. Compute the error of these estimates as:
Eµ̃[N] = µ̃X [N]−µ and Eσ̃[N] = σ̃2

X [N]−σ2.

µ̃x [N] = 1

n

N−1∑
n=0

x[N] (1.1)

σ̃2[N] = 1

N

N−1∑
n=0

(x[n]− µ̃)2 (1.2)

Plot Eµ̃[N] and Eµ̃[N] for N = [1,1e6]. Use a log base 10 scale for the horizontal axis (n - the
number of points) and a linear scale for the error. Explain this plot.

2. Estimate the pdf of x[n] using a bin size of 0.01 (100 bins for the range [0,1]). Plot the mean-
squared error between the measured distribution and the actual distribution using:

MSE = 1

B

B−1∑
b=0

[p̃X (x)−p(x)]2 (1.3)

where B is the number of bins, p(x) is the “true” distribution (a uniform distribution in this
case), and is the estimate of the distribution. Obviously, for N < B , some of the bins will be
empty. Does that remind you of the exam problem? Estimate the pdf for N = [1,1e6], and plot
MSE [N] using the same linear/log scale as above. Explain your findings. Plot the pdfs for N =
101, 103, and 106 and compare/contrast them.

1

2 APPROACH AND RESULTS

A uniform distribution is described by equation 2.1 below. The variance of a uniform distribution was
calculated by finding the second moment of the distribution and subtracting it from the first squared.
The result is displayed below.

pX (x) =
{ 1

b−a : a ≤ x ≤ b
0 : other wi se

(2.1)

σ2
X = E [X]2 −E [X 2] = 1

2
(b +a)−

∫ b

a
x2px (x)d x = 1

12
(b −a)2 (2.2)

Instead of utilizing MATLAB for calculations, python coupled with numpy and matplotlib was uti-
lized. The script ca_06.py generates a random uniformly distributed vector (x) of 1×106 samples.
Equations 1.1 to 1.3 are then run on the vector. The results are stored to file. An additional script was
written, ca_06_publishing.py, to load the data, generate the requested histograms, and the error
plots. The scripts were separated to run the bulk of the calculation on the electrodata server provided
by Temple.

The results are listed below. Figures 2.1 to 2.3 display the error between the estimated mean, variance
and pdf, and their actual values for a uniform distribution. The abscissa is base-10 logarithmically
scaled and represents the number of samples taken from x for the calculated. The error for figure 2.1
and figure 2.2 is scaled linearly. The MSE between the estimated and expected pdf is scaled logarith-
mically.

0 1 2 3 4 5 6

N

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1
Mean Error

Figure 2.1: Er r [µ̃X](N), N = [1,1e6]

2

0 1 2 3 4 5 6

N

−0.10

−0.08

−0.06

−0.04

−0.02

0.00

0.02

0.04
Variance Error

Figure 2.2: Er r [σ̃2
X](N), N = [1,1e6]

3

0 1 2 3 4 5 6

N

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
MSE

Figure 2.3: Er r [MSE](N), N = [1,1e6]

Figure 2.4 below illustrates the histogram or pdf of the data when 10, 1,000 and 1,000,000 samples are
taken from x. The abscissa is represents the possible values of the vector, and the y-axis represents the
probability of each value.

For a uniform distribution with 100 bins, the probability of each bin should be 0.01. As the number of
samples increases, the histograms approach the actual distribution. This is reflected visually in the
three plots below, but also through error of the metrics calculated above. As N increases, the error
between the metrics decrease because the sample space, with more data, is more reflective of the
uniform distribution.

4

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.02

0.04

0.06

0.08

0.10

0.12
N
 =
 1
0
.0

0.0 0.2 0.4 0.6 0.8 1.0
0.000
0.002
0.004
0.006
0.008
0.010
0.012
0.014
0.016
0.018

N
 =
 1
0
0
0
.0

0.0 0.2 0.4 0.6 0.8 1.0
0.000

0.002

0.004

0.006

0.008

0.010

0.012

N
 =
 1
0
0
0
0
0
0
.0

Figure 2.4: Histogram of random uniform distributed vector, px (N), of N elements.

3 PYTHON CODE

ca_06 . py
import numpy as np
import matplotlib . pyplot as p l t
from numba import j i t

p l t . s t y l e . use (’ ggplot ’)

GENERATE RANDOM VECTOR [0 , 1]
N = 1e3
MAX = 1.0
MEAN = MAX/2
VAR = (1 . / 1 2) * (1 − 0)**2
BINS = 100
PDF = 1 . / (MAX*N)

x = np . random . random_integers (0 , MAX*N, N) /N

DEFINE FUNCTIONS

5

@ j i t
def xMean(x , N) :

’ ’ ’
x = vector of random values .
N = index to which mean i s calculated to .
’ ’ ’

m = np .mean(x [:N])
return m

@ j i t
def xVar (x , N) :

’ ’ ’
x = vector of random values .
N = index to which variance i s calculated to .
’ ’ ’
v = np . var (x [:N])
return v

@ j i t
def xPDF(x , N) :

pdf , binEdges = np . histogram (x [:N] , bins=BINS , density=True)
return pdf , binEdges

MeanError = np . zeros (N)
VarError = np . zeros (N)
MSE = np . zeros (N)

index = range (1 , len (x)+1)
for i in index :

MeanError [i −1] = xMean(x , i) − MEAN
VarError [i −1] = xVar (x , i) − VAR
MSE[i −1] = (1 . / BINS) *sum((xPDF(x , i) [0] − PDF) * * 2)
print (i)

SAVE Data
FILE1 = ’ mean_error ’
FILE2 = ’ variance_error ’
FILE3 = ’mse ’
np . save (FILE1 , MeanError)
np . save (FILE2 , VarError)
np . save (FILE3 , MSE)

PLOTS

p l t . f i g u r e (1) # mean er ror
Lindex = np . log (index) /np . log (10)
p l t . plot (Lindex , MeanError)

6

p l t . t i t l e (’Mean Error ’)
p l t . x label (’N’)

p l t . f i g u r e (2)
p l t . plot (Lindex , VarError)
p l t . t i t l e (’ Variance Error ’)
p l t . x label (’N’)

p l t . f i g u r e (3)
p l t . plot (Lindex , np . log (MSE)/np . log (1 0))
p l t . t i t l e (’MSE’)
p l t . x label (’N’)

’ ’ ’
ca_06_publishing . py
Loads data from ca_06 . py to plot MSE, variance error
and mean error .

’ ’ ’
import numpy as np
import matplotlib . pyplot as p l t
from numba import j i t

p l t . s t y l e . use (’ ggplot ’)
p l t . close (’ a l l ’)

GENERATE RANDOM VECTOR [0 , 1]
N = 1e6
MAX = 1.0
MEAN = MAX/2
VAR = (1 . / 1 2) * (1 − 0)**2
BINS = 100
PDF = 1 . / (MAX*N)

x = np . random . random_integers (0 , MAX*N, N) /N

’ ’ ’
DEFINE FUNCTIONS
’ ’ ’
@ j i t
def xMean(x , N) :

’ ’ ’
x = vector of random values .
N = index to which mean i s calculated to .
’ ’ ’

m = np .mean(x [:N])
return m

@ j i t

7

def xVar (x , N) :
’ ’ ’
x = vector of random values .
N = index to which variance i s calculated to .
’ ’ ’
v = np . var (x [:N])
return v

@ j i t
def xPDF(x , N) :

pdf , binEdges = np . histogram (x [:N] , bins=BINS , density=False)
return pdf , binEdges

’ ’ ’
Plot PDFs
’ ’ ’
index = [1 e1 , 1e3 , 1e6]
subplots = [1 , 2 , 3]
for i , j in zip (index , subplots) :

pdf , binedges = xPDF(x , i)
p l t . f i g u r e (4)
p l t . subplot (3 , 1 , j)
p l t . bar (binedges [: −1] , pdf/ i , width =0.01)
p l t . xlim (0 , 1)
p l t . y label (r ’N = ’+ s t r (i))

’ ’ ’
Load Data from ca_06 . py
’ ’ ’

MeanError = np . load (’ mean_error . npy ’)
VarError = np . load (’ variance_error . npy ’)
MSE = np . load (’mse . npy ’)

index = linspace (1 , N, N)

p l t . f i g u r e (1) # mean er ror
Lindex = np . log (index) /np . log (10)
p l t . plot (Lindex , MeanError)
p l t . t i t l e (’Mean Error ’)
p l t . x label (’N’)

p l t . f i g u r e (2)
p l t . plot (Lindex , VarError)
p l t . t i t l e (’ Variance Error ’)
p l t . x label (’N’)

p l t . f i g u r e (3)
p l t . plot (Lindex , np . log (MSE)/np . log (1 0))

8

p l t . t i t l e (’MSE’)
p l t . x label (’N’)

4 CONCLUSIONS

As a sample space increases with valid data, the space better reflects its governing distribution. This is
clearly illustrated through the histograms and the three error plots. Therefore, if the sample space is
not sufficiently large any metrics calculated to represent the space would not reflect the governing
distribution.

9

