Computer Assignment (CA) No. 8: Central Limit Theorem

Tyler Berezowsky

March 15, 2015

1 Problem Statement

The goal of this assignment is to demonstrate an application of the Central Limit Theorem. The tasks to be accomplished are:

1. Generate a sum of uniformly distributed mutually independent random variables:

$$
\begin{equation*}
S_{n}=X_{1}+X_{2}+\cdots+X_{n} \tag{1.1}
\end{equation*}
$$

Write this as a function in MATLAB with arguments that include the number of random variables (n), the number of total samples generated (N), and the range of the uniform random number generator (e.g., $\min =-1, \max =1$).
2. In the main part of your program, write a loop for $\mathrm{n}=1,100$, and call this function for $\mathrm{N}=10,000$ with a range of $[-1,1]$. For each iteration, compute the mean and variance of the output sequence, Sn , and plot the RMS error between a Gaussian fit of this distribution and the actual distribution (I hope you are using your code from a previous homework assignment in a function!).
3. Plot the RMS error as a function of the value of n. Also display the actual distribution and overlay its Gaussian fit for $\mathrm{n}=1, \mathrm{n}=10$ and $\mathrm{n}=100$.
4. Consider the following technique for generating a Gaussian distribution from a uniform random number generator:
http://en.wikipedia.org/wiki/Box $\backslash E 2 \backslash 80 \backslash 93 M u l l e r \backslash _t r a n s f o r m . ~$
Generate $\mathrm{N}=10,000$ random numbers using this technique, estimate a pdf, and compare the result using the RMS error to (2) for $\mathrm{n}=10, \mathrm{~N}=10,000$, range $=[0,1]$. Time the code in both cases using MATLABs built-in timing tools. Which technique gives the better fit? Which technique is faster? How low can you set n to get comparable performance in both time and RMS error?

Discuss how (1)-(3) demonstrates the Central Limit Theorem.

2 Approach and Results

2.1 TASKS 1 TO 3

A function uniformsum ($\mathrm{n}, \mathrm{N}, \mathrm{a}, \mathrm{b}$) was constructed which generates n random variables with a length of N and limits equal to $[b, a]$. This function was called with $n=[1,100]$ and $N=10000$, and for each value of n the PDF calculated from the resulting vector S_{n} The normal distribution was also fitted per n. The RMS error, defined below, was calculated for each value of n and plotted as a function of n where f_{1} is the fitted normal distribution and f_{2} is the PDF of S_{n}. This can be seen in figure 2.1

$$
\begin{equation*}
R M S_{\text {error }}=\sqrt{M S E}=\sqrt{E\left[\left(f_{1}-f_{2}\right)^{2}\right]} \tag{2.1}
\end{equation*}
$$

Figure 2.1: $\sqrt{M S E)}$ as a function of n

Interestingly, the $\sqrt{M S E}$ appears to converge between 0.06 and 0.04 after only ten iterations which infers diminishing returns after $n=10$. Plots of the $P D T_{S_{n}}$ are displayed in figure 2.2 with $n=\{1,10,100\}$. As previously stated, n is equal to number of uniformly distributed random variables of length N being summed to generate S_{n}.

When $n=1, S_{n}$ represents a single random variable, and is thus a uniform distribution. This is illustrated in the top subplot. When $n=10, S_{n}$ represents the sum of 10 random variables. As the middle subplot illustrates, the distribution of S_{n} now approaches a normal distribution. When $n=100$, S_{n} represents the sum of 100 random variables. The PDF of S_{n} is displayed in the bottom subplot, and as predicted by error plot in figure 2.1, the distribution appears identical in approximation to the fitted normal distribution of S_{n}.

Figure 2.2: Histogram of S_{n} and fitted normal distribution

2.2 TASK 4

The Box-Muller method was utilized to generate a normally distributed random variable and timed against the calculation for S_{n} with $n=[1,10]$. The Box-Muller method is described below where Z_{0} and Z_{1} are normally distributed random variables, and U_{1} and U_{2} are independent uniformly distributed random variables:

$$
\begin{align*}
& Z_{0}=R \cos (\theta)=\sqrt{-2 \ln U_{1}} \cos \left(2 \pi U_{2}\right) \tag{2.2}\\
& Z=R \sin (\theta)=\sqrt{-2 \ln U_{1}} \sin \left(2 \pi U_{2}\right) \tag{2.3}
\end{align*}
$$

The Box-Muller method and calculation for S_{n} was trialed 10 times for each value of n. The result was averaged per n. The RMS error between the fitted normal distribution, S_{n}, and the Box-Muller method was also determined. The results are illustrated in figure 2.3 .

The top subplot illustrates the time for each function given n. As expected the time to complete the calculation for S_{n} increases with n. The Box-Muller method is constant as n is irrelevant for the calculation. The functions intersect when $n \approx=2$. The bottom subplot illustrates the error between the normal distribution and the PDF of the Box-Muller method and S_{n}. As previously described, the RMS between S_{n} and the normal decreases with n. The Box-Muller method is constant because n is irrelevant in the calculation. The error of the Box-Muller method is consistently lower than that of S_{n} as seen for $n=[1,10]$. Figure 2.1] displays that the error converges to 0.06 and 0.04 as n increases beyond 10 , therefore it can be expected that the Box-Muller will be more accurate despite increasing values of n. Further trials would have to be attempted to confirm the previous assumption, but if error for S_{n} does decrease with n, the time required would be magnitudes larger than that of the Box-Muller method.

Figure 2.3: Comparison of calculation for S_{n} and Box-Muller method for the generation of a random normally distributed vector.

3 Source Code

```
import numpy as np
import scipy.stats as stats
from numpy.random import rand
import matplotlib.pyplot as plt
import time
plt.style.use('bmh')
def uniformSum(n, N, a, b):
    X_n = (b - a)*rand (N, n) + a # generate uniform RVs between b and a
    S_n = np.sum(X_n, axis=1) # sum
    S_n = S_n/max(abs(S_n))
    return S_n
def normal(x, mu, variance):
    pdf = (1./np.sqrt (2*np.pi*variance ) ) *np.exp ((- (x-mu) **2)/(2*variance ))
    return pdf
```

def findcenterbins(bins):
centerBins $=n p . z e r o s(l e n(b i n s)-1)$
for index in range (0 , len(bins) - 1):
centerBins[index] = np.mean([bins[index + 1], bins[index]])
return centerBins
def $\operatorname{MSE}(\mathrm{f} 1, \mathrm{f} 2):$
mse $=\mathrm{np} \cdot \operatorname{mean}((\mathrm{f} 1-\mathrm{f} 2) * * 2)$
return mse
\# PARAMETERS
$\mathrm{N}=10000$
$\mathrm{a}=-1$
$\mathrm{b}=1$
BINS = 100
NSUMS = 100
\# MEMORY ALLOCATION
S_n = np.zeros (N)
error $=n p . z e r o s(N S U M S)$
for n in range (1, NSUMS+1):
S_n = uniformSum (n, $\mathrm{N}, \mathrm{a}, \mathrm{b}) \quad$ \# generate sum
$\mathrm{sVar}=\mathrm{np} . \operatorname{var}\left(\mathrm{S} _\mathrm{n}\right) \quad$ \# compute variance
$\mathrm{sMu}=\mathrm{np} . \operatorname{mean}\left(\mathrm{S} _\mathrm{n}\right) \quad$ \# compute mean
sPDF, bins = np.histogram(S_n, bins=BINS, normed=True) \# compute PDF
centerbins $=$ findcenterbins (bins) \# compute the center of bins
sNormal $=$ normal (centerbins, sMu, sVar) \# compute norm dis via metrics
error $[\mathrm{n}-1]=\mathrm{np} . \operatorname{sqrt}(\operatorname{MSE}(\mathrm{sPDF}, \mathrm{sNormal}))$
\# PLOTS
$\mathrm{n}=$ range $(1$, NSUMS+1)
eplt = plt.figure(1)
ax = eplt.add_subplot(111)
ax. plot (n, error, label=r'\$ ${ }^{\prime}$ sqrt $\{\mathrm{MSE}\}{ }^{\prime}$ ')
ax.legend ()
ax.set_xlabel (r'\$n\$')
plt.show()
\# plot $n=\{1,10,100\}$
ns $=$ [1, 10, 100]
hplt, axs $=$ plt.subplots (3, 1 , sharex=True, sharey=True)
for n, ax in $\mathbf{z i p}(n s$, axs):
$\mathrm{S} _\mathrm{n}=\operatorname{uniformSum}(\mathrm{n}, \mathrm{N}, \mathrm{a}, \mathrm{b})$
sVar $=$ np. var (S_n) \# compute variance
$\mathrm{sMu}=\mathrm{np} . \operatorname{mean}\left(\mathrm{S} _\mathrm{n}\right) \quad$ \# compute mean
centerbins $=$ findcenterbins (bins) \# compute the center of bins
sNormal $=$ normal (centerbins, sMu, sVar) \# compute norm dis via metrics
ax.hist(S_n, bins=BINS, normed=True, alpha=0.5, label=r'\$PMF_\{S_\{\%d\}\}\$' \% n) ax. plot (centerbins, sNormal, label=r'\$N(S_\{\%d\})\$' \% n) ax.legend ()

```
# BOX-Muller Transform
```

def boxmuller (N) :
$\mathrm{a}=0 ; \mathrm{b}=1 ; \mathrm{n}=1$
$\mathrm{U} 1=(\mathrm{b}-\mathrm{a}) * \operatorname{rand}(\mathrm{~N}, \mathrm{n})+\mathrm{a}$
$\mathrm{U} 2=(\mathrm{b}-\mathrm{a}) * \operatorname{rand}(\mathrm{~N}, \mathrm{n})+\mathrm{a}$ \# generate uniform RVs between b and a
$\mathrm{R}=\mathrm{np} . \operatorname{sqrt}(-2 * \mathrm{np} . \log (\mathrm{Ul}))$
theta $=2 * n p . \mathrm{pi} * \mathrm{U} 2$
$\mathrm{Z} 1=\mathrm{R} * \mathrm{np} . \cos ($ theta)
return Z 1
\# TIME TEST
$\mathrm{N}=10000$
ns $=\operatorname{range}(1,11)$
trials $=\operatorname{range}(0,10)$
start $=$ zeros(10)
end $=\operatorname{zeros}(10)$
tstart $=$ zeros(10)
tend $=$ zeros(10)
for n in $n s$:
for trial in trials:
tstart trial$]=$ time.time ()
uniformSum (n, N, 0, 1)
tend $[$ trial $]=$ time.time ()
start $[\mathrm{n}-1]=\mathrm{np} . \operatorname{mean}(\mathrm{tstart})$
end $[n-1]=$ np.mean(tend)
utime $=$ end - start
S_n = []
error2 = []
for trial in trials:
start[trial] $=$ time.time ()
S_n = boxmuller (N)
end $[$ trial $]=$ time.time ()
print S_n
sVar $=$ np.var (S_n) \# compute variance
$\mathrm{sMu}=\mathrm{np} . \operatorname{mean}\left(\mathrm{S} _\mathrm{n}\right) \quad$ \# compute mean
sPDF, bins = np.histogram(S_n, bins=BINS, normed=True) \# compute PDF
centerbins $=$ findcenterbins (bins) \# compute the center of bins
sNormal $=$ normal (centerbins, sMu, sVar) \# compute norm dis via metrics
error2 $=$ np.sqrt (MSE(sPDF, sNormal) $)$
btime $=$ np.mean $($ end - start $)$
tplot $=$ plt.figure (3)

```
123 ax1 = tplot.add_subplot(211)
124 ax2 = tplot.add_subplot(212)
125 axl.plot(ns, utime, label='$S_n$ (10 trials per n)')

\section*{4 Conclusions}

Due to the Central Limit Theorem, as \(n\) is increased the sum of \(n\) uniformly distributed random variables approaches a vector which is normally distributed. Central Limit Theorem: The arithmetic mean of a sufficient number of independent random variables will be approximately normally distributed given the random variables are identically distributed \({ }^{1}\)

This theorem can be utilized to generate a random normally distributed variable, but as displayed takes considerable effort in comparison to other methods such as the Box-Muller method. Further exploration is required to understand why the RMS error appears to converge as \(n\) increases. The proof of the Central Limit Theorem states given any random variable \(Y\) with \(E(Y)=0\) and \(\operatorname{var}(Y)=1\) summed \(n\) times as \(\lim _{n \rightarrow \infty}\) the approximation approaches \(e^{-t / 2}\) which would be equal to \(N(0,1)\). Therefore, error should decrease as \(n\) increases.

\footnotetext{
\({ }^{1}\) http://en.wikipedia.org/wiki/Central_limit_theorem
}```

