
TEMPLE UNIVERSITY COLLEGE OF ENGINEERING | ECE 3623 | SPRING 2015

Computer Assignment (CA) No. 8: Central Limit
Theorem

Tyler Berezowsky

March 15, 2015

1 PROBLEM STATEMENT

The goal of this assignment is to demonstrate an application of the Central Limit Theorem. The tasks
to be accomplished are:

1. Generate a sum of uniformly distributed mutually independent random variables:

Sn = X1 +X2 +·· ·+Xn (1.1)

Write this as a function in MATLAB with arguments that include the number of random variables
(n), the number of total samples generated (N), and the range of the uniform random number
generator (e.g., min=-1, max=1).

2. In the main part of your program, write a loop for n=1,100, and call this function for N=10,000
with a range of [-1,1]. For each iteration, compute the mean and variance of the output sequence,
Sn, and plot the RMS error between a Gaussian fit of this distribution and the actual distribution
(I hope you are using your code from a previous homework assignment in a function!).

3. Plot the RMS error as a function of the value of n. Also display the actual distribution and overlay
its Gaussian fit for n=1, n=10 and n=100.

4. Consider the following technique for generating a Gaussian distribution from a uniform random
number generator:
http://en.wikipedia.org/wiki/Box\E2\80\93Muller_transform.
Generate N=10,000 random numbers using this technique, estimate a pdf, and compare the
result using the RMS error to (2) for n=10, N=10,000, range=[0,1]. Time the code in both cases
using MATLABs built-in timing tools. Which technique gives the better fit? Which technique is
faster? How low can you set n to get comparable performance in both time and RMS error?

Discuss how (1)-(3) demonstrates the Central Limit Theorem.

1

2 APPROACH AND RESULTS

2.1 TASKS 1 TO 3

A function uniformsum(n, N, a, b) was constructed which generates n random variables with a
length of N and limits equal to [b, a]. This function was called with n = [1,100] and N = 10000, and
for each value of n the PDF calculated from the resulting vector Sn The normal distribution was also
fitted per n. The RMS error, defined below, was calculated for each value of n and plotted as a function
of n where f1 is the fitted normal distribution and f2 is the PDF of Sn . This can be seen in figure 2.1.

RMSer r or =
p

MSE =
√

E [(f1 − f2)2] (2.1)

0 20 40 60 80 100

n

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20 √
MSE

Figure 2.1:
p

MSE) as a function of n

Interestingly, the
p

MSE appears to converge between 0.06 and 0.04 after only ten iterations which in-
fers diminishing returns after n = 10. Plots of the PDTSn are displayed in figure 2.2 with n = {1,10,100}.
As previously stated, n is equal to number of uniformly distributed random variables of length N
being summed to generate Sn .

When n = 1, Sn represents a single random variable, and is thus a uniform distribution. This is
illustrated in the top subplot. When n = 10, Sn represents the sum of 10 random variables. As the
middle subplot illustrates, the distribution of Sn now approaches a normal distribution. When n = 100,
Sn represents the sum of 100 random variables. The PDF of Sn is displayed in the bottom subplot, and
as predicted by error plot in figure 2.1, the distribution appears identical in approximation to the fitted
normal distribution of Sn .

2

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

N(S1)

PMFS1

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

N(S10)

PMFS10

−1.0 −0.5 0.0 0.5 1.0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

N(S100)

PMFS100

Figure 2.2: Histogram of Sn and fitted normal distribution

2.2 TASK 4

The Box-Muller method was utilized to generate a normally distributed random variable and timed
against the calculation for Sn with n = [1,10]. The Box-Muller method is described below where Z0 and
Z1 are normally distributed random variables, and U1 and U2 are independent uniformly distributed
random variables:

Z0 = R cos(θ) =
√

−2lnU1 cos(2πU2) (2.2)

Z‘ = R sin(θ) =
√

−2lnU1 sin(2πU2) (2.3)

The Box-Muller method and calculation for Sn was trialed 10 times for each value of n. The result
was averaged per n. The RMS error between the fitted normal distribution, Sn , and the Box-Muller
method was also determined. The results are illustrated in figure 2.3.

The top subplot illustrates the time for each function given n. As expected the time to complete
the calculation for Sn increases with n. The Box-Muller method is constant as n is irrelevant for the
calculation. The functions intersect when n ≈= 2. The bottom subplot illustrates the error between
the normal distribution and the PDF of the Box-Muller method and Sn . As previously described, the
RMS between Sn and the normal decreases with n. The Box-Muller method is constant because n is
irrelevant in the calculation. The error of the Box-Muller method is consistently lower than that of
Sn as seen for n = [1,10]. Figure 2.1 displays that the error converges to 0.06 and 0.04 as n increases
beyond 10, therefore it can be expected that the Box-Muller will be more accurate despite increasing
values of n. Further trials would have to be attempted to confirm the previous assumption, but if error
for Sn does decrease with n, the time required would be magnitudes larger than that of the Box-Muller
method.

3

1 2 3 4 5 6 7 8 9 10
0.0010

0.0015

0.0020

0.0025

0.0030

0.0035
t

(s
e
cs

)
Sn (10 trials per n)

Box Muller

1 2 3 4 5 6 7 8 9 10

n

0.00

0.05

0.10

0.15

0.20

√ M
S
E

Err(Box-Muller)
Err(Sn)

Figure 2.3: Comparison of calculation for Sn and Box-Muller method for the generation of a random
normally distributed vector.

3 SOURCE CODE

1 import numpy as np
2 import scipy . s t a t s as s t a t s
3 from numpy. random import rand
4 import matplotlib . pyplot as p l t
5 import time
6 p l t . s t y l e . use (’bmh’)
7
8
9 def uniformSum(n , N, a , b) :

10 X_n = (b − a) * rand (N, n) + a # generate uniform RVs between b and a
11 S_n = np .sum(X_n , axis =1) # sum
12 S_n = S_n/max(abs (S_n))
13 return S_n
14
15
16 def normal (x , mu, variance) :
17 pdf = (1 . /np . sqrt (2*np . pi * variance)) * np . exp ((−(x−mu) * * 2) / (2 * variance))
18 return pdf
19
20

4

21 def f indcenterbins (bins) :
22 centerBins = np . zeros (len (bins) − 1)
23 for index in range (0 , len (bins) − 1) :
24 centerBins [index] = np .mean([bins [index + 1] , bins [index]])
25 return centerBins
26
27
28 def MSE(f1 , f2) :
29 mse = np .mean((f1−f2) * * 2)
30 return mse
31
32
33 # PARAMETERS
34 N = 10000
35 a = −1
36 b = 1
37 BINS = 100
38 NSUMS = 100
39
40 # MEMORY ALLOCATION
41 S_n = np . zeros (N)
42 error = np . zeros (NSUMS)
43 for n in range (1 , NSUMS+ 1) :
44 S_n = uniformSum(n , N, a , b) # generate sum
45 sVar = np . var (S_n) # compute variance
46 sMu = np .mean(S_n) # compute mean
47 sPDF , bins = np . histogram (S_n , bins=BINS , normed=True) # compute PDF
48 centerbins = findcenterbins (bins) # compute the center of bins
49 sNormal = normal (centerbins , sMu, sVar) # compute norm dis via metrics
50
51 error [n−1] = np . sqrt (MSE(sPDF , sNormal))
52
53 # PLOTS
54 n = range (1 , NSUMS+1)
55 eplt = p l t . f i g u r e (1)
56 ax = eplt . add_subplot (111)
57 ax . plot (n , error , l ab e l =r ’ $\ sqrt {MSE} $ ’)
58 ax . legend ()
59 ax . s e t _ x l a b e l (r ’n ’)
60 p l t . show ()
61
62 # plot n = { 1 , 10 , 100}
63 ns = [1 , 10 , 100]
64 hplt , axs = p l t . subplots (3 , 1 , sharex=True , sharey=True)
65 for n , ax in zip (ns , axs) :
66 S_n = uniformSum(n , N, a , b)
67 sVar = np . var (S_n) # compute variance
68 sMu = np .mean(S_n) # compute mean
69 centerbins = findcenterbins (bins) # compute the center of bins
70 sNormal = normal (centerbins , sMu, sVar) # compute norm dis via metrics
71

5

72 ax . h i s t (S_n , bins=BINS , normed=True , alpha =0.5 , l ab e l =r ’$PMF_{ S_{%d } } $ ’ % n)
73 ax . plot (centerbins , sNormal , l a be l =r ’$N(S_{%d }) $ ’ % n)
74 ax . legend ()
75
76
77 # BOX−Muller Transform
78 def boxmuller (N) :
79 a = 0 ; b = 1 ; n = 1
80 U1 = (b − a) * rand (N, n) + a
81 U2 = (b − a) * rand (N, n) + a # generate uniform RVs between b and a
82 R = np . sqrt (−2*np . log (U1))
83 theta = 2*np . pi *U2
84 Z1 = R*np . cos (theta)
85 return Z1
86
87 # TIME TEST
88
89 N = 10000
90 ns = range (1 , 11)
91 t r i a l s = range (0 , 10)
92 s t a r t = zeros (10)
93 end = zeros (10)
94 t s t a r t = zeros (10)
95 tend = zeros (10)
96
97 for n in ns :
98 for t r i a l in t r i a l s :
99 t s t a r t [t r i a l] = time . time ()

100 uniformSum(n , N, 0 , 1)
101 tend [t r i a l] = time . time ()
102 s t a r t [n−1] = np .mean(t s t a r t)
103 end [n−1] = np .mean(tend)
104 utime = end − s t a r t
105
106 S_n = []
107 error2 = []
108 for t r i a l in t r i a l s :
109 s t a r t [t r i a l] = time . time ()
110 S_n = boxmuller (N)
111 end [t r i a l] = time . time ()
112 print S_n
113 sVar = np . var (S_n) # compute variance
114 sMu = np .mean(S_n) # compute mean
115 sPDF , bins = np . histogram (S_n , bins=BINS , normed=True) # compute PDF
116 centerbins = findcenterbins (bins) # compute the center of bins
117 sNormal = normal (centerbins , sMu, sVar) # compute norm dis via metrics
118 error2 = np . sqrt (MSE(sPDF , sNormal))
119
120 btime = np .mean(end − s t a r t)
121
122 t p l o t = p l t . f i g u r e (3)

6

123 ax1 = t p l o t . add_subplot (211)
124 ax2 = t p l o t . add_subplot (212)
125 ax1 . plot (ns , utime , l a be l = ’ S_n (10 t r i a l s per n) ’)
126 ax1 . plot (ns , [btime] * 1 0 , l a be l = ’Box Muller ’)
127 ax2 . plot (ns , [error2] * len (ns) , l a be l =r ’ Err (Box−Muller) ’)
128 n = np . arange (1 , 11)
129 ax2 . plot (n , error [0 : len (n)] , l a be l = ’ Err (S_n) ’)
130 z = np . p o l y f i t (ns , utime , 1)
131 p = np . poly1d (z)
132 ax1 . plot (ns , p(ns) , ’−− ’)
133 ax1 . legend ()
134 ax2 . s e t _ x l a b e l (r ’n ’)
135 ax1 . s e t _ y l a b e l (r ’ t (secs) ’)
136 ax2 . s e t _ y l a b e l (r ’ $\ sqrt {MSE} $ ’)
137
138 ax2 . legend ()
139 t p l o t . t ight_layout ()

4 CONCLUSIONS

Due to the Central Limit Theorem, as n is increased the sum of n uniformly distributed random vari-
ables approaches a vector which is normally distributed. Central Limit Theorem: The arithmetic mean
of a sufficient number of independent random variables will be approximately normally distributed
given the random variables are identically distributed.1

This theorem can be utilized to generate a random normally distributed variable, but as displayed
takes considerable effort in comparison to other methods such as the Box-Muller method. Further
exploration is required to understand why the RMS error appears to converge as n increases. The
proof of the Central Limit Theorem states given any random variable Y with E (Y) = 0 and var (Y) = 1
summed n times as limn→∞ the approximation approaches e−t/2 which would be equal to N (0,1).
Therefore, error should decrease as n increases.

1http://en.wikipedia.org/wiki/Central_limit_theorem

7

	Problem Statement
	Approach and Results
	Tasks 1 to 3
	Task 4

	Source Code
	Conclusions

