Computer Assignment (CA) No. 9: Signal To Noise Ratio
and Filtering

Problem Statement

The assignments will now start to get a little more vague and integrate concepts. For example, in this assignment
you must connect the concepts of signal power and variance. The tasks to be accomplished are:

1. Create a function that generates a signal that consists of a sinewave plus Gaussian white noise: sig =
generate_sine(frequency_in_Hz, duration_in_secs, sample_frequency_in_Hz, snr_db) Assume the
sinewave has an amplitude of +/- 1.0. What is its power? Generate a Gaussian white noise signal such that
the signal to noise ratio of the summed signal is “snr_db” measured in dB (e.g.,
20log10(signal_energy/noise_energy).

2. For SNRs in the range [-30 db, +30 dB] in steps of 10 dB, compute and plot the first 16 lags of the
autocorrelation function for a 500 Hz sinewave sampled at 8000 Hz.

3. At what SNR does the autocorrelation start to be measurably impacted by the additive noise?

4. For SNRs of -30 dB and +30 dB, compute a 8192 point FFT and plot the magnitude spectrum from [0, 4000
Hz]. Explain any differences you observe between the two plots.

5. Process the signal corresponding to a 30 dB SNR through a digital filter of the form:

y[n] = 0.5y[n — 1] + x[n]

Compute the autocorrelation signal for y[n], and plot the magnitude spectrum of the Fourier Transform of the
autocorrelation function. Similarly plot the square of the magnitude spectrum of the original signal, y[n]. Plot these on
the same scale and compare/contrast these plots. What did you learn from this? Explain any similarities you
observe. How does this plot compare to that obtained in (4). Can you explain the differences in terms of the
frequency response of the linear system used to filter the signal?

In [1]: S%pylab inline
import numpy as np
from scipy.stats import norm
plt.style.use('bmh")

Populating the interactive namespace from numpy and matplotlib



Approach and Results

Task 1

Generation of sine wave with a specific signal to noise ratio was rooted in the equation below, where Eg and E)
equates to the energy of the signal and noise.

ES AS
EN AN

The energy for a continous-time signal x(t) is defined as,

Es = / oolx(t)zldt

o0

which, luckily, due to the wide-sense stationary (WSS) nature of a sine wave, is equal to the variance of the signal
asz. This is also true for the energy of gaussian white noise Ey = 0]%,, as the mean of the noise is zero. If a
constant is introduced to the equation for energy to scale the amplitude of the signal to increase the energy, it would

simplifly to the following:

E, = / oo|(ax(r))2|dr = 4 / oolx(t)2| = d’c2dt

(&) (&)

As the constant can be factored out of the integral, an expression can be formulated using the SNR equation for a

scaler which would reduce or increase E) for a requested SNR. If our final signal is y = x + ae, with ¢ = a’

acting as our scaler,
2

Eg Og
Ey co}
Therefore,
c = —Gg
o Gj%loSNRQO

2

_ Og _ Os
a= \/Z 52 105VR20 ) GN\/IOSN—R/ZO

Utilizing the expression for the scaler above, the generate_sine function was written as can be seen below. Adjusting
the SNR parameter can be seen to introduce additional noise. The function also prints the SNR if the commented
line is removed.



In [2]: def generate sine(freq, duration, fs, snr):
# freq: pure signal frequancy of duration with sample rate fs
# and signal to noise ratio snr in dB.
samples = fs*duration # number of samples is equal to the samples p

er second * the number of seconds
t = np.linspace(0, duration, samples) # generate time vector

freq radians = (2*np.pi)*freq

X = np.sin(freq radians*t) # generate signal
e = norm.rvs(size=samples)
c = sqrt(np.var(x)/(np.var(e)*10**(snr/20)))

#print 20*log(var(x)/var(c*e))/log(10)

return x + c*e

# TESTING

#SNR = 30

#x = generate sine(10, 0.2, 1000, SANR)
#plot(x)

Task2 & 3

An autocorrelation function was first written utilizing the definition below,

Ry(D) = ) y(m)y(n — 1)

In [3]: def autocorr(x, M):
Autocorrlates signal X with a delay of M samples.
Returns $R {xx}(t, t-\tau). The function autocorrlated in indexe

d past the lag point.
Ryy = zeros(M+1)
for tau in range(M+1):
#print x[M:]
#print x[M-tau:-tau]
Ryy[tau] = sum( x[M:]*x[M-tau:len(x)-tau] )
return Ryy
#TESTING
#noise = [-30, -20, -10, 0, 10, 20, 30]
#for n in noise:
# X = generate sine(500, 0.2, 8000, n)
# print n, autocorr(x, 16)



A list was then generated containing the requested SNR values. The list was step through, and at each iteration a
signal of the specific SNR was generated and the autocorrelation plotted. This can be seen in the plots below.

From the plots it can be noted that at a SNR of 0dB or greater a sine function appears as a complete cycle in the 16

lags. The signal requested was a sine wave of 500 Hz with a sampling frequency of 8 kHz. This would result in
8000

0 = 16 samples per cycle. The autocorrelation function appears to filter out a portion of the gaussian noise, and

leave the original signal intact. If X representes the sine wave, a is a scaler, and 7 is white noise, the output signal
can be represented again in the following form:
y=Xx4+aXn.

The autocorrelation of the signal would be equal to

Ryy(T) = R (1) + aRy, (1) + aR,,(7) + aann (7),

but as x(¢) and n(t) are independent their crosscorrelation (R,,, and R,,,) is equal to a product of their means which
is equal to zero reducing the autocorrelation sum to

Ryy (1) = Ru(7) + aann (7).

Luckily, the autocorrelation of white noise is zero except when the lag value is equal to zero; thus,
R, (7) = R, (7)8() which simplies to 625(7) as the E[n(¢)] = 0. This results in the final expression for the
autocorrelation for output signal with a specific SNR

Ry, (2) = Ry (7) + a°638(2).

It is understandable that the autocorrelation of y(#) should therefore include a noise spike at a lag of 0, but it is still
unclear why the signals with a SNR of less than 0dB appear destroyed. Shouldn't they still exist? For a closer look, |
altered the autocorrelation plot abscissa to ignore when 7 = () to avoid autoscaling any waveform. A waveform is
now distinguishable at a SNR of -20dB. Noise is indistinguishable at 0dB.

In [4]: noise = [-30, -20, -10, O, 10, 20, 30] # dB vector for noise
L =16
for n in noise:
X = generate sine(500, 1, 8000, n)
R = autocorr(x, L)
fig figure()
axl = fig.add subplot(212)
ax2 = fig.add subplot(211)
ax2.plot(x[0:100])
axl.plot(R[1:16], label="SNR: %d dB" %n)
axl.set xlabel(r'Lag ($1%)"')
axl.set ylabel(r'Normalized $R {xx}$')
ax1l.legend()



Normalized i,

Normalized i,

Normalized R,




Normalized i,

Normalized i,

Normalized R,

4000
3000
2000
1000

—=1000
—2000
—3000
—4000

0




— SNR: 30 dB

Normalized i,
|
AR
[=]
=
L}
T

Task 4

The fourier transform of a signal with a -30 SNR and 30 SNR is displayed in the top and bottom subplot, respectively,
of the figure below. The magnitude of the fourier transform is logarithmic. The fourier transform of the signal with a
-30dB SNR displays power across the entire retrievable spectrum of the sampling frequency. This is due to the
dominance of the noise in the signal. An impulse is visiable at 500 Hz still. The bottom subplot displaying the 30dB
SNR signal contains an impulse at 500Hz and random noise along the floor of the fourier transform. This is due to
the sine signal's dominance.



In [5]: F = 800
L=3
Fs = 8000
N = 8192

SNRs = [-30, 30]
fig, axes = plt.subplots(2, 1, sharex=True, figsize=(12, 6))
for SNR, ax in zip(SNRs, axes):
X = generate sine(500, 2, 8000, SNR)
FFTsig = fft.rfft(x, n=N)
FFTfreq = fft.rfftfreq(N, d=1./Fs)
ax.plot(FFTfreq, log(abs(FFTsig)), label='SNR = ' + str(SNR))
ax.legend()
ax.set xlabel('Frequency (Hz)"')

Qut[5]: <matplotlib.text.Text at Ox7f2ecc9d2510>

I I I I I I
0 500 1000 1500 2000 2500 3000 3500 4000
Frequency (Hz)

Task 5

The output of the digital filter: y[n] = 0.5y[n — 1] + x[n], is displayed in the time domain below in the first plot.
The filter produces a small gain, and appears to act as a low pass filter reducing gaussian noise. The autocorrelation
of y[n], (R,y(7)), is plotted next, followed by the fourier transform of the autocorrelation of y[#] and the square of
the fourier transform of y[#]. The autocorrelation of y[#] produces changes similar to the autocorrelation x[#] in
task 2 & 3. The remaining non-periodic noise in the signal is eliminated, and a phase shift is introduced.

The fourier transform of Ryy(r) and the squared fourier transform of y[n] as to be expected resulted in plots with
impulses at 500 Hz corresponding to the frequency of the orignal signal. Ryy (7) contains less noise as the
autocorrelation process removes non-periodic noise. The magnitude of the impulse for each function has the same
order of magnitude but varies by nearly 50%

In [6]: '''
Generate signal (x[n]) and filter (y[n])

N = 8192



Fs = 8000

generate sine(500, 3, Fs, 30)

zeros(len(x))

or n in np.arange(0, len(x)):
y[n] = 0.5*y[n-1] + x[n]

fig = figure()

axl = fig.add subplot(11l1)

axl.plot(y[200:250], label="y[n]")

axl.plot(x[200:250], label="x[n]")

axl.legend()

Compute Ryy[\tau]
Don't forget to plot FFT of autocorrelation or Syy[\tau]

# set up figures and axes

fig = figure(figsize=(12, 6))
axl = fig.add subplot(311)
ax2 = fig.add subplot(312)
ax3 = fig.add subplot(313)

# calculate Ryy
Ryy = autocorr(y, 8192)
print len(Ryy)

# plot Ryy
axl.plot(Ryy[50:100], label=r"$R {yy}[\tauls$")
axl.plot(max(Ryy)/max(y)*y[50:100], '--', label="y[n] (scaled)")

axl.set xlabel("Samples")
axl.legend()

# calculate FFT(Ryy)
FFTsig = fft.rfft(Ryy, n=N)
FFTfreq = fft.rfftfreq(len(Ryy), d=1./Fs)

#plot FFT(Ryy)

ax2.plot(FFTfreq, log(abs(FFTsig)), label=r"$FFT(R {yy}(\tau))s$")
print max(abs(FFTsig))

ax2.set xlabel("Frequency (Hz)")

ax2.legend()

ax3.set ylim([-8, 20])

# calculate FFT(y[n])"2

FFTsig = fft.rfft(y, n=N)

FFTfreq = fft.rfftfreq(N, d=1./Fs)
print len(FFTsig)

#plot FFT(y[n])"2

ax3.plot(FFTfreq, log(abs(FFTsig)**2), label=r"$FFT(y[n])"~2%$")
print max(abs(FFTsig**2))

ax3.legend()

ax3.set ylim([-8, 20])



8193
98984785.9954
4097

51550093.1708
Out[6]: (-8, 20)

20000 ~ s P — R”H -

- - yln] (scaled) :

—20000 L

1 1 1
o 500 1000 1500 2000 2500 3000 3500 4000

Conclusions

The autocorrelation of a signal reduces non-periodic noise, and retains any periodic signals at the same period. The
mathamatics predicted the removal of all non-periodic signals. Therefore, the removal of all noise, but this proved
false. For a SNR of 30dB the original signal was unrecoverable. The fourier transform of an autocorrelated signal
appears grossly simlar to the fourier transform of the original signal. The magnitude of the impulse in the fourier
transform of Ryy () was twice that of the corresponding impulse in the square of the fourier transform of y[n].



