Computer Assignment (CA) No. 11: Autocorrelation And
Power Spectral Density

Problem Statement

Recall the autocorrelation function is defined as:
N-1

R(z) = Zx[n]x[n —17,t=0,1,2,....M
n=0

Compute and plot the autocorrelation function for the following signals, and then plot the power spectral density by
computing the Fourier transform of the autocorrelation function.

Gaussian white noise: N=100, M=20.

An impulse function, : N = 100, M=20.

A periodic impulse train with a period of 20 samples: N = 200, M = 60.

A sinewave with a period of 20 samples: N = 200, M = 60.

Repeat no. 4 for N = 14, 17, 20, 23, 26. Analyze the behavior that you observe and relate it to the period of
the signal.

6. The sum of (1) and (4) at an SNR of 10 dB (assume the sinewave is the signal and the Gaussian white
noise is the noise): N = 200, M = 60. Explain what you observe.

a DN~

Approach and Results

The autocorr() and generate_sine() functions were first reconstructed as can be seen below. The numpy and scipy
libraries were also loaded, and a plot style was applied because it looks awesome. The power spectral density is
considered,

F[R(7)] = Si(w)

where F[. ..] is the fourier transform.

In [7]: %pylab inline
from scipy.stats import norm
plt.style.use('bmh")

def generate sine(freq, duration, fs, snr):
freq: pure signal frequancy of duration with sample rate fs
and signal to noise ratio snr in dB.
samples = fs*duration # number of samples is equal to the samples p
er second * the number of seconds
t = np.linspace(0, duration, samples) # generate time vector
freq radians = (2*np.pi)*freq

X = np.sin(freq radians*t) # generate signal
e = norm.rvs(size=samples)
c = sqrt(np.var(x)/(np.var(e)*10**(snr/20)))

print 20*log(var(x)/var(c*e))/log(10)
return x + c*e

def autocorr(x, M):

Autocorrlates signal X with a delay of M samples.
Returns $R {xx}(t, t-\tau). The function autocorrlated in indexe
d past the lag point.

Ryy = zeros(M+1)
for tau in range(M+1):

#print x[M:]

#print x[M-tau:-tau]

Ryy[tau] = sum(Xx[M:]*x[M-tau:len(x)-tau])
return Ryy

Populating the interactive namespace from numpy and matplotlib

Task 1

White noise N() is defined as a random signal which is normally distributed, contains a flat power spectral density (
Syn (@) = ¢ for all @) and an expected value of O, (E[N(?)] = 0).

The autocorrelation of white noise is calculated as follows,

Ryn(t,t —7) = EIN(ON(t — 7)],

but as every sample in white noise is independent, white noise should result in an autocorrelation of zero for every
value except when 7 = 0. Further, when 7 = 0, the autocorrelation of N(f) becomes the E[N(f)?], and with
E[N(1)] = 0 the autocorrelation becomes

Ryn(7) = 6}6(7)

Strangely, this is not exactly what appears in the plot below. The autocorrelation does spike when 7 = 0, but the
autocorrelation does not appear to be diminishing as the lag increases. Instead, it fluctuates around the predicted
value.

The power spectral density of white noise should result in a uniform distribution. The plot after R, displays the the
power spectal density S, (@), and it is not flat. This is likely due to the limited sample size.

In [14]: 1) White Noise

100

20

norm.rvs(size=N)

autocorr(x, M)

fig figure()

ax = subplot(11l)

ax.plot(range(M+1), Rxx, label=r"$R {XX}(\tau)$")
ax.set xlabel(r"sτ")

ax. legend()

X

fig = figure()

fuck = fft.rfft(Rxx, n=8192)
plot(abs(fuck), label=r"$S {XX}(\omega)$")
xlabel("Frequency")

legend()

ylim([0, 300])

Out[14]: (0O, 300)

ol i 1 1 i i
) 500 1000 1500 2000 2500 3000 3500 4000 4500

Frequency

Task 2

The autocorrelation of an impulse response, x(1) = 6(t — 10), is displayed below. As the plot illustrates, the
autocorrelation is zero for all of 7. The calculation for the autocorrelation of x(#) is as follows:

R(t,t — 1) = E[6(t — 10)6(r — 10 — 7)]

Note thatwhent — 10 = t — 10 — 7 = 0, in other words when 7 = 0, there should be an impulse! The fourier
transform of the autocorrelation will, therefore, be uniform for all frequency content. This is displayed in the second
plot below.

In [15]: # 2) Impulse Response
N = 100

M= 30
X = 80*%[0] + [1] + 9*[0]

print x

X = array(x)

Rxx = autocorr(x, M)

print Rxx

fig = figure()

ax = subplot(111)

ax.plot(range(M+1), Rxx, label=r"$R {XX}(\tau)$")
ax.set xlabel(r"sτ")

ax.legend()

fig = figure()

fuck = fft.rfft(Rxx, n=8192)
plot(abs(fuck), label=r"$S {XX}(\omega)$")
xlabel("Frequency")

legend()

<matplotlib.legend.Legend at 0x7fdabb9ad610>

Out[15]:

RJ.'J:[T]'

10

5

20

15

10

B

Syl)

2500 3000 3500 4000 4500

2000
Fequency

1500

1000

Task 3

The autocorrelation of an impulse train also know as the Dirac Comb, x(f) =).~ 8(t — nT) where the period

T in this case is 20 returns an impulse train with an identical period. This can be seen in the first plot below.
0

Ry(t,t—7)=E[) 8(t—nT) Y 8t—t—kDl= Y Y E[S(t—nT)t—1—KkT)]
k=—o0

n=—oo n=—oo0 k=—o00

This signal will deliver avaluewhent — nT =t —7— kT =0
t—nT—(t—-7t—-kTN'=0=7t+k-nT =0

As k and n are integers, T must be equal to a multiple of the period T for the expected value to have any value.
This, in turn, would generate an impulse train with an identical period to that of x(¢). The fourier transform of the
autocorrelation function will also generate an impulse train as proven in signals. This can be seen in the second plot
below.

In [16]: # 3) Impulse Train with period of 20, N = 200, M = 60
x = [1] + [0]*19
X = 10*x
X = np.array(x)
M = 60
Rxx = autocorr(x, M)
fig = figure()
ax = fig.add subplot(111)
ax.stem(range(M+1), Rxx, label=r"$R {XX}(\tau)s$")
ax.set xlabel(r"τs")
ax.legend()

fig = figure()

FFTsig = fft.rfft(Rxx, n=128)
plot(abs(FFTsig), label=r"$S {XX}(\omega)$")
xlabel ("Frequency")

legend()

OQut[16]: <matplotlib.legend.Legend at 0x7fdabc473f50>

?r """""" | B | I — . T -

-
o 10 20 30 40 50 &0 70
Freguency

Task 4

The autocorrelation of a sine wave, x(f) = a sin(wt), returns a sine wave as illustrated by the plot below with an
identical period and an amplitude equal to 140/2. Explaining this value was an interesting journey. First, | examined
the autocorrelation of a continous sine.

2
R, (t,t — 1) = azE[sin(u) sin(u — 7)] = %E[cos(u —(u—1) —cos(u+u—1)]
2
Ru(t,t — 1) = %E[cos(r) — cosu — 17)]

The expected value of COS for all values of f is zero leaving,

Ro(t.f— 1) = %COS(T)

... but, then | cried because everything we do is digital and our equation for autocorrelation is reaaaaallllly this.

N—-1
R[n,n—1] = Zx[n]x[n —1,7=0,1,2,....M
n=0
thus
N-1
R.[nn—1]= Z & sin(on) sin(w(n — 7)), = 0,1,2,....M
n=0
lets assume g*> = | for simplicity. The trigonometry still holds from the continous example.
1 N-1
Rulnn =1l = = Z(cos(a)r) —cosQwn —1),7=0,1,2,....M
n=0

The summation of cos(2awn — 7) will average to zero, leaving
1S N
R.[7] = = Z cos(wt) = —cos(wr).
2 —~ 2

Wait a second! That still is not equal to 70. Your signal is 200 samples long! What is this 70 giberish. | know this had
me up a tree. The signal is 200 samples in length, therefore to calculate the autocorrelation, the function starts the
summations at the lag value to ensure the calculation will remain in the bounds of the vector. Therefore, despite
taking the autocorrelation of signal that is 200 samples long, the result is the autocorrelation of a signal N — M
samples long, and, therefore, the amplitude of the signal after autocorrelation is (N — M)/2 = 70.

Sxx (@) will contain a single impulse as the frequency content of Ryy (7) is at one frequency. This is proven in the
second plot below.

In [18]: # 4) A sinewave with a period of 20 samples: N = 200, M = 60.
N = 200
M = 60
t =

np.arange(N)

y = sin(2*pi/20*t)

autocorr(y, M)

figure()

ax = fig.add subplot(111)

ax.plot(range(M+1), Ryy, label=r"$R {XX}(\tau)s$")
ax.set xlabel(r"τs")

ax.legend()

fig = figure()

FFTsig = fft.rfft(Ryy, n=60)
stem(abs(FFTsig), label=r"$S {XX}(\omega)$")
xlabel ("Frequency")

legend()

OQut[18]: <matplotlib.legend.Legend at Ox7fdabbcac190>

DL_-_-__-_A_-_-_-_-_‘_-_-_-_-_Q_-_-_-_-_‘_-_-_-_-_*_-_-_-_-_J
0 5 10 15 20 25 30
Frequency

Task 5

Utilizing the IV reduction quirk of the autocorrelation function, N was reduced for the following signals. As calculated

for task 4, the amplitude of the resulting waveform is equal to %

Sy x (@) would be equal to the PSD for task 4 as the signals are identical. The only variation is the amplitude;
therefore, the magnitude of the impulses would differ.

In [15]: # 4) Repeat no. 4 for N = 14, 17, 20, 23, 26.
Analyze the behavior that you observe and relate it to the period o
f the signal.
N=1[14, 17, 20, 23, 26]
M= 60
t = np.arange(200)
y = sin(2*pi/20*t)
fig = figure()

for n in N:
Ryy = autocorr(y, 200 - n)
ax = fig.add subplot(111)
ax.plot(Ryy[0:60], label=r"$R {yy}[\taul$, $N = %d$" %(n))
ax.legend()

ax.set xlabel(r"sτ")
Out[15]: <matplotlib.text.Text at 0x7f8d2e75b410>

Task 6

As displayed also in computer assignment 9, the autocorrelation of a signal containing white noise filters out a
portion of the noise.

If X representes the sine wave, a is a scaler, and 7 is a white noise signal, the output signal can be
represented in the following form:
y=Xx+aXn.

The autocorrelation of the signal would be equal to

Ry (7) = R (7) + aRy, (7) + aRy(7) + a* Ry, (1),

but as x(¢) and n(t) are independent, their crosscorrelation (R,,, and R,,;) is equal to a product of
their means which is equal to zero, reducing the autocorrelation sum to

Ryy(T) = R (7) + aann (7)

Luckily, the autocorrelation of white noise is zero except when the lag value is equal to zero, thus
R, (7) = R, (7)8() which simplifies to 625(7) as the E[n(¢)] = 0. This results in the final
expression for the autocorrelation for output signal with a specific SNR:
2
Ry, (1) = R (7) + a 6]%,5(1').

The amplitude of the waveform after the spike from the noise when 7 is equal to 0 appears to be identical to that of
the signal in task 4 which is predicted by the equation above. The power spectual density will be equal to an impulse
at the frequency of the original signal.

In [21]: N = 200
M = 60
p =10
X = generate sine(p, N, 1, 20)

plot(x, label=r"x(t)")

legend()

xlabel ("Samples")

Rxx autocorr(x, M)

fig figure()

ax = fig.add subplot(111)

ax.plot(range(M+1), Rxx, label=r"$R {XX}(\tau)$")
ax.set xlabel(r"τ")

ax.legend()

fig = figure()

FFTsig = fft.rfft(Rxx, n=60)
stem(abs(FFTsig), label=r"$S {XX}(\tau)$")
xlabel("Frequency")

legend()

20.0
OQut[21]: <matplotlib.legend.Legend at 0x7fdabba@f710>

15 ! ! !
140

os F-}---4-4--

Samples

2500 ! ! ! ! '

2000
%) S S S S —
1o0n SR S RRRIEN SRS FISRIS WSS M

500 - R S — A — e — e S —

Frequency

Conclusions

Through the derivations, it has been displayed that autocorrelation cancels any non-periodic signals, when 7 > 0.
Application of the theory provides slightly different results. For example, the autocorrelation of white noise should
result in only a single impulse at 7 = (. Instead, our discrete computations of autocorrelation of white noise
provided an impulse at 7 = 0 followed by what appears to be random noise at a much lower amplitude centered
around a zero. When white noise is added to the sine wave at a low SNR, autocorrelation does not recover the
original signal without distortion. I'm not quite sure why in discrete application these phenomenons occur. The limited
resolution of digital signals could be the reason.

