
OOIOOIOIIIOIOIOIOIOOIOIOIOI
OOIOIOOOIOOOIOIOIOIIIOIOIOI
OIOOIOIOIOIOIOOI0IOIOIOOI0

OOOOIIIOIOIOIIOOIIIOIOOIOIIOI
OOIOIOICL0SING IN ON
OTHEPERFECT

OCODE
OIOOIOIOIOIOIOOI0IOIOIOOI0
OOIOOIOIIIOIOIOIOIOOIOIOIOI

OOIOIOOOIOOOIOIOIOIIIOIOIOI
OIOOIOIOIOIOIOOI0IOIOIOOI0
OIOOIOIOIOIOIOOI0IOIOIOOI0
OOIOOIOIIIOIOIOIOIOOIOIOIOI

TURBO CODES, which let
engineers pump far more

error-free data through
a channel, will be the key to the
next generation of multimedia

cellphones By Erico Guizzo

t’s not often in the rarefied world of technological research
that an esoteric paper is greeted with scoffing. It’s even rarer
that the paper proves in the end to be truly revolutionary.

It happened a decade ago at the 1993 IEEE Inter-
national Conference on Communications in Geneva,
Switzerland. Two French electrical engineers, Claude
Berrou and Alain Glavieux, made a flabbergasting claim:
they had invented a digital coding scheme that could pro-
vide virtually error-free communications at data rates
and transmitting-power efficiencies well beyond what
most experts thought possible.

The scheme, the authors claimed, could double data through-
put for a given transmitting power or, alternatively, achieve a
specified communications data rate with half the transmitting
energy—a tremendous gain that would be worth a fortune to
communications companies.

Few veteran communications engineers believed the results.
The Frenchmen, both professors in the electronics department at
the Ecole Nationale Supérieure des Télécommunications de
Bretagne in Brest, France, were then unknown in the information-
theory community. They must have gone astray in their calculations,

I

+COMMUNICATIONS

March 2004 | IEEE Spectrum | NA 37

R
EM

I B
EN

A
LI

FRENCH CONNECTION: Turbo

codes inventors Claude Berrou [left]

and Alain Glavieux, both professors

at the Ecole Nationale Supérieure

des Télécommunications de

Bretagne in Brest, France, solved a

communications puzzle that had

lasted for more than 40 years.

38 IEEE Spectrum | March 2004 | NA

JO
H

N
 M

A
C

N
EI

LL

INTERLEAVER
ENCODER 2

ENCODER 1

HOW TURBO CODES WORK
Turbo codes use two encoders

at the transmitter and two decoders

at the receiver. With this divide-and-conquer

approach, turbo codes outperform

all previous error-correction codes.

Data bits enter the
transmitter and are
copied to ENCODER 1 and
ENCODER 2. Before
entering ENCODER 2, the
data bits are scrambled
by the INTERLEAVER.

1

S
T

A
R

T

3
The original data bits plus the two strings of parity bits are combined
into a single block and then sent over the channel, where noise can
cause errors in the transmission.

2
Each encoder generates a string of
error-correction bits (parity bits) by
perfoming a series of calculations on
the data bits it receives.

Data bits Parity bits

some reasoned. The claims were so preposterous that many experts
didn’t even bother to read the paper.

Unbelievable as it seemed, it soon proved true, as other researchers
began to replicate the results. Coding experts then realized the sig-
nificance of that work. Berrou and Glavieux were right, and their error-
correction coding scheme, which has since been dubbed turbo codes,
has revolutionized error-correction coding. Chances are fairly good
that the next cellphone you buy will have them built in.

From a niche technology first applied mainly in satellite links and
in at least one deep-space communications system, turbo codes are
about to go mainstream. As they are incorporated into the next-
generation mobile telephone system, millions of people will soon have
them literally in their hands. This coding scheme will let cellphones
and other portable devices handle multimedia data such as video
and graphics-rich imagery over the noisy channels typical of cellu-
lar communications. And researchers are studying the use of turbo
codes for digital audio and video broadcasting, as well as for increas-
ing data speeds in enhanced versions of Wi-Fi networks.

With possibilities like these, turbo codes have jumped to the
forefront of communications research, with hundreds of groups work-
ing on them in companies and universities all over the world. The
list includes telecommunications giants like France Télécom and NTT
DoCoMo; high-tech heavyweights like Sony, NEC, Lucent, Samsung,
Ericsson, Nokia, Motorola, and Qualcomm; hardware and chip man-
ufacturers like Broadcom, Conexant, Comtech AHA, and
STMicroelectronics; and start-ups like Turboconcept and iCoding.

Turbo codes do a simple but incredible thing: they let engineers
design systems that come extremely close to the so-called channel
capacity—the absolute maximum capacity, in bits per second, of a
communications channel for a given power level at the transmitter.
This threshold for reliable communications was discovered by the
famed Claude Shannon, the brilliant electrical engineer and mathe-
matician who worked at Bell Telephone Laboratories in Murray Hill,
N.J., and is renowned as the father of information theory [see side-
bar, “Shannon: Cracking the Channel”].

In a landmark 1948 paper, Shannon, who died in 2001, showed
that with the right error-correction codes, data could be trans-
mitted at speeds up to the channel capacity, virtually free from
errors, and with surprisingly low transmitting power. Before
Shannon’s work, engineers thought that to reduce communica-
tions errors, it was necessary to increase transmission power
or to send the same message repeatedly—much as when, in a
crowded pub, you have to shout for a beer several times.

Shannon basically showed it wasn’t necessary to waste so
much energy and time if you had the right coding schemes. After
his discovery, the field of coding theory thrived, and researchers
developed fairly good codes. But still, before turbo codes, even the
best codes usually required more than twice the transmitting power
that Shannon’s law said was necessary to reach a certain level of
reliability—a huge waste of energy. The gap between the practical
and the ideal, measured in decibels—a ratio between the signal
level and the noise level on a logarithmic scale—was about

March 2004 | IEEE Spectrum | NA 39

ERROR

DECODER 2

DECODER 1

INTERLEAVER
FIN

IS
H

The received analog signal is sampled and assigned integers indicating how likely
it is that a bit is a 0 or a 1. For example, -7 means the bit is almost certainly a 0;
+7 means it is almost certainly a 1. Note that an error occurred in the fifth bit in
the block: originally a 1, it now has a negative value, which suggests a logical 0.

4

5
Each decoder takes the noisy data and respective parity infor-
mation and computes how confident it is about each decoded
bit. The two decoders exchange this confidence information
repeatedly, and after a number of iterations, typically four to
10, they begin to agree on all decoded bits.

3.5 dB. To chip away at it, engineers needed more elaborate codes.
That was the goal that persisted for more than four decades, until

Berrou and Glavieux made their discovery in the early 1990s. When
they introduced turbo codes in 1993, they showed it was possible to
get within an astonishing 0.5 dB of the Shannon limit, for a bit-error
rate of one in 100 000. Today, turbo codes are still chipping away at
even that small gap.

The solution to overcoming the noise that plagued all commu-
nications channels, according to Shannon’s seminal paper, was to
divide the data into strings of bits and add to each string a set of
extra bits—called parity bits—that would help identify and correct
errors at the receiving end. The resulting group of bits—the data
bits plus the parity bits—is called a codeword, and typically it rep-
resents a block of characters, a few image pixels, a sample of voice,
or some other piece of data.

Shannon showed that with the right collection of codewords—
with the right code, in other words—it was possible to attain the
channel capacity. But then, which code could do it? “Shannon left
unanswered the question of inventing codes,” says David Forney, a
professor of electrical engineering at the Cambridge-based Massa-
chusetts Institute of Technology (MIT) and an IEEE Fellow. Shannon
proved mathematically that coding was the means to reach capaci-
ty, but he didn’t show exactly how to construct these capacity-
approaching codes. His work, nevertheless, contained valuable clues.

Shannon thought of codewords as points in space. For example,
the codeword 011 can be considered a point in a three-dimensional

space with coordinates x = 0, y = 1, and z = 1. Codewords with more
than three bits are points in hyperspace. Noise can alter a code-
word’s bits, and therefore its coordinates, displacing the point in
space. If two points are close to each other and one is affected by noise,
this point might fall exactly onto the other, resulting in decoding
error. Therefore, the larger the differences in codewords—the far-
ther apart they are—the more difficult it is for noise to cause errors.

To achieve capacity, Shannon demonstrated that you should
randomly choose infinitely long codewords. In other words, going
back to his spatial analogy, if you could make the codewords both
random and as long as you wanted, you could put the points arbi-
trarily far from each other in space. There would be essentially
no possibility of one point erroneously falling on another.
Unfortunately, such long, random codes are not practical: first,
because there is an astronomical number of codewords; second,
because this code would be extremely slow to use as you trans-
mitted many, many bits for just one codeword. Still, the random
nature of a good code would turn out to be critical for turbo codes.

Coding experts put aside Shannon’s ideal random codes, as they
concentrated on developing practical codes that could be implemented
in real systems. They soon began to develop good codes by cleverly
choosing parity bits that constrained codewords to certain values,
making these codewords unlikely to be confused with other ones.

For example, suppose we have an eight-bit codeword (seven
data bits plus one parity bit). Suppose we further insist that all
the codewords have an even number of 1s, making that extra par-

6
The decoded data is the sum
of the noisy data plus the
two final strings of confi-
dence values. The output is
converted back to binary dig-
its. Note that the fifth bit
now has the correct value.

40 IEEE Spectrum | March 2004 | NA

LE
FT

 T
O

 R
IG

H
T:

 B
EL

L
LA

B
S

, E
S

A
, D

O
C

O
M

O

OUT OF THE LAB: Europe’s SMART-1 [top] is the first probe in space using turbo codes. In Japan,

3-G cellphones [right] use turbo codes to transmit pictures, video, and e-mail. Bell Labs’ turbo decoder chip

[left] promises to boost 3-G data rates from the current 384 kb/s to 20 Mb/s in upcoming networks.

ity bit a 1 if necessary to fulfill that
requirement. Now, if any of the
eight bits is altered by noise,
including the parity bit itself, the

receiver knows there was an error, because the parity count won’t
check—there would be an odd number of 1s.

This basic scheme can detect an error, but it can’t correct it—
you don’t know which bit was flipped. To correct errors, you need
more parity bits. Coding experts have come up with numerous and
ever more sophisticated ways of generating parity bits. Block codes,
Hamming codes, Reed-Solomon codes, and convolutional codes are
widely used and achieve very low error rates.

Nevertheless, a computational-complexity problem hounded cod-
ing specialists and plagued all these codes. The complexity problem
emerges as you figure the cost of a code in terms of the amount of
computation required to decode your data. The closer you get to
Shannon’s limit, the more complicated this process becomes, because
you need more parity bits and the codewords get longer and longer.

For codewords with just 3 bits, for instance, you have a total of
only 23, or 8, codewords. To approach capacity, however, you might
need codewords with, say, 1000 bits, and therefore your decoder would
need to search through an unimaginably large collection of 21000—
approximately 10301—codewords. For comparison, the estimated
number of atoms in the visible universe is about 1080.

The upshot was that if you set about exploiting the best exist-
ing codes as your strategy for achieving arbitrarily reliable com-
munications at Shannon’s limit, you would be doomed to fail-
ure. “The computational complexity is just astronomical,” says
IEEE Fellow R. Michael Tanner, a professor of electrical and com-
puter engineering and provost at the University of Illinois at
Chicago. “These codes don’t have the capability to do it.” How
could researchers get past this barrier? It was hopeless, some
actually concluded in the late 1970s.

Turbo codes solved the complexity problem by splitting it into
more manageable components. Instead of a single encoder at the
transmitter and a single decoder at the receiver, turbo codes use
two encoders at one end and two decoders at the other [see illus-
tration, “How Turbo Codes Work”].

Researchers had realized in the late 1960s that passing data through
two encoders in series could improve the error-resistance capa-
bility of a transmission—for such a combination of encoders, the
whole is more than the sum of the parts. Turbo codes employ two
encoders working synergistically—not in series, but in parallel.

The turbo process starts with three copies of the data block to
be transmitted. The first copy goes into one of the encoders, where
a convolutional code takes the data bits and computes parity bits

from them. The second copy goes to the sec-
ond encoder, which contains an identical con-
volutional code. This second encoder gets not
the original string of bits but rather a string
with the bits in another order, scrambled by
a system called an interleaver. This encoder
then reads these scrambled data bits and com-
putes parity bits from them. Finally, the trans-
mitter takes the third copy of the original data
and sends it, along with the two strings of
parity bits, over the channel.

That rearranging of the bits in the inter-
leaver is the key step in the whole process.
Basically, this permutation brings more
diversity to the codewords; in the spatial
analogy, it pushes the points farther apart
in space. “The role of the permutation is
to introduce some random behavior in the
code,” says Berrou. In other words, the
interleaver adds a random character to the
transmitted information, much as Shannon’s
random codes would do.

But then turbo codes, like any other code with a huge number of
codewords, would also hit the wall of computational complexity. In
fact, turbo codes usually work with codewords having around a thou-
sand bits, a fairly unwieldy number. Hopeless? Yes, if you had a sin-
gle decoder at the receiver. But turbo codes use two component
decoders that work together to bypass the complexity problem.

The role of each decoder is to get the data, which might have
been corrupted by noise along the channel, and decide which is the
more likely value, 0 or 1, for each individual bit. In a sense, deciding
about the value of each bit is as if you had to guess whether it’s rain-
ing or not outside. Suppose you can’t look out a window and you
don’t hear any sounds; in this case, you basically have no clue, and
you can simply flip a coin and make your guess. But what if you
check the forecast and it calls for rain? Also, what if you suddenly
hear thunder? These events affect your guess. Now you can do bet-
ter than merely flipping a coin; you’ll probably say there’s a good
chance that it is raining and you will take your umbrella with you.

Each turbo decoder also counts on “clues” that help it guess
whether a received bit is a 0 or a 1. First, it inspects the analog sig-
nal level of the received bits. While many decoding schemes trans-
form the received signal into either a 0 or a 1—therefore throwing
away valuable information, because the analog signal has fluctua-
tions that can tell us more about each bit—a turbo decoder transforms
the signal into integers that measure how confident we can be that

a bit is a 0 or a 1. In addition, the decoder looks at its parity bits,
which tell it whether the received data seems intact or has errors.

The result of this analysis is essentially an informed guess for
each bit. “What turbo codes do internally is to come up with bit
decisions along with reliabilities that the bit decisions are correct,”
says David Garrett, a researcher in the wireless research laboratory
at Bell Labs, part of Lucent Technologies, Murray Hill, N.J. These
bit reliabilities are expressed as numbers, called log-likelihood ratios,
that can vary, for instance, between -7 and +7. A ratio of +7 means
the decoder is almost completely sure the bit is a 1; a -5 means the
decoder thinks the bit is a 0 but is not totally convinced. (Real sys-
tems usually have larger intervals, like -127 to +127.)

Even though the signal level and parity checks are helpful clues,
they are not enough. A single decoder still can’t always make cor-
rect decisions on the transmitted bits and often will come up with
a wrong string of bits—the decoder is lost in a universe of code-
words, and the codeword it chooses as the decoded data is not always
the right one. That’s why a decoder alone can’t do the job.

But it turns out that the reliability information of one decoder
is useful to the other and vice versa, because the two strings of par-
ity bits refer to the very same data; it’s just that the bits are arranged
in a different order. So the two decoders are trying to solve the same
problem but looking at it from different perspectives.

The two decoders, then, can exchange reliability information in
an iterative way to improve their own decoding. All they have to do,
before swapping reliability strings, is arrange the strings’ content in
the order each decoder needs. So a bit that was strongly detected as
a 1 in one decoder, for example, influences the other decoder’s opin-
ion on the corresponding bit.

In the rain analogy, imagine you see a colleague going outside
carrying an umbrella. It’s a valuable additional piece of information
that would affect your guess. In the case of the turbo decoders, now
each decoder not only has its own “opinion,” it also has an “external
opinion” to help it come up with a decision about each bit. “It’s as
if a genie had given you that information,” says Gerhard Kramer, a
researcher in the mathematical sciences research center at Bell Labs.
This genie whispers in your ear how confident you should be about
a bit’s being a 1 or a 0, he says, and that helps you decode that bit.

At the heart of turbo coding is this iterative process, in which
each component decoder takes advantage of the work of the other

at a previous decoding step. After a certain number of iterations,
typically four to 10, both decoders begin to agree on all bits. That means
the decoders are not lost anymore in a universe of codewords; they
have overcome the complexity barrier.

“It’s a divide-and-conquer solution,” says Robert J. McEliece,
a professor of electrical engineering at the California Institute
of Technology, in Pasadena, and an IEEE Fellow. “It broke the
problem into two smaller pieces, solved the pieces, and then put
the pieces back together.”

Another way of thinking about the turbo decoding process is
in terms of crossword puzzles, Berrou says. Imagine that Alice
solved a crossword and wanted to send the solution to Bob. Over
a noiseless channel, it would be enough to send the array with
the words. But over a noisy channel, the letters in the array are
messed up by noise. When Bob receives the crossword, many
words don’t make sense. To help Bob correct the errors, Alice
can send him the clues for the horizontal and vertical words. This
is redundant information, since the crossword is already solved,
but it nevertheless helps Bob, because, as with parity bits, it
imposes constraints on the words that can be put into the array.
It’s a problem with two dimensions: solving the rows helps to solve
the columns and vice versa, like one decoder helping the other
in the turbo-decoding scheme.

Flash back 11 years as an amused 42-year-old Berrou wanders
the corridors of the convention center in Geneva, peeking over the
shoulders of other attendees and seeing many of them trying to under-
stand his paper. At the presentation, young Ph.D. students and a
scattering of coding veterans pack the auditorium, with people stand-
ing by the door. When Berrou and Glavieux finish, many surround
them to request more explanations or simply to shake their hands.

Still, convincing the skeptics that the work had no giant over-
looked error took time. “Because the foundation of digital com-
munications relied on potent mathematical considerations,” Berrou
recollected later, “error-correcting codes were believed to belong
solely to the world of mathematics.”

What led Berrou and Glavieux to their important breakthrough
was not some esoteric theorem but the struggle to solve real-world
problems in telecommunications. In the late 1980s, when they began
to work on coding schemes, they were surprised that an important
concept in electronics—feedback—was not used in digital receivers.

March 2004 | IEEE Spectrum | NA 41

In 1948, Claude Shannon,
then a young engineer work-
ing at Bell Telephone
Laboratories in Murray Hill,
N.J., published a landmark
paper titled “A Mathematical
Theory of Communication.”

In that paper, Shannon
defined what the once fuzzy

concept of “information”
meant for communications
engineers and proposed a
precise way to quantify it: in
his theory, the fundamental
unit of information is the bit.

Shannon showed that
every communications channel
has a maximum rate for reliable
data transmission, which he
called the channel capacity,
measured in bits per second.
He demonstrated that by using
certain coding schemes, you
could transmit data up to the
channel’s full capacity, virtually
free of errors—an astonishing
result that surprised engineers
at the time.

“I can’t think of anybody
who could ever have guessed
that such a theory existed,”
says Robert Fano, an emeritus
professor of computer
science at the Massachusetts
Institute of Technology, in
Cambridge, and a pioneer in
the information theory field.
“It’s just an intellectual jump;
it’s very profound.”

The channel capacity be-
came an essential benchmark
for communications engineers,
a measure of what a system can
and cannot do, expressed in
many cases by the famous for-
mula, C = W log2 (1 + P/N). In
the formula, C is the capacity in

bits per second, W is the band-
width in hertz, P is the transmit-
ter power in watts, and N is the
noise power, also in watts.

From space probes to
cellphones and CD players,
Shannon’s ideas are invisi-
bly embedded in the digital
technologies that make
our lives more interesting
and comfortable.

A tinkerer, juggling enthusi-
ast, and exceptional chess
player, Shannon was also
famous for riding the halls of
Bell Labs on a unicycle. He
died on 24 February 2001, at
age 84, after a long battle with
Alzheimer’s disease. —E.G.

SHANNON: CRACKING THE CHANNEL

B
ELL LA

B
S

42 IEEE Spectrum | March 2004 | NA

In amplifiers, a sample of the output signal is routinely fed back
to the input to ensure stable performance. Berrou and Glavieux won-
dered, why shouldn’t it work for coding as well?

They ran the first experiments with their novel coding scheme
in 1991 using computer simulations, and when the results came out,
they were stunned. “Every day I asked myself about the possible
errors in the program,” says Berrou.

The first thing Berrou and Glavieux did after confirming that their
results were correct was to patent the invention in France, Europe,
and the United States. At the time, France Télécom was the major
sponsor of their work, so the French company took possession of
the turbo code patents. The inventors and their institution, how-
ever, share part of the licensing profits. (Turbo codes were not
patented in Asia, where they can therefore be used for free.)

It was France Télécom that asked Berrou to come up with a com-
mercial name for the invention. He found the name when one day,
watching a car race on TV, he noticed that the newly invented code
used the output of the decoders to improve the decoding process,
much as a turbocharger uses its exhaust to force air into the engine
and boost combustion. Voilà: “turbo codes”!

Turbo codes are already in use in Japan, where they have been
incorporated into the standards for third-generation mobile phone
systems, known officially as the Universal Mobile Telecom-

munications System (UMTS). Turbo codes are used for pictures,
video, and mail transmissions, says Hirohito Suda, director of
the Radio Signal Processing Laboratory at NTT DoCoMo, in
Yokosuka, Japan. For voice transmission, however, convolutional
codes are used, because their decoding delays are smaller than
those of turbo codes.

In fact, the decoding delay—the time it takes to decode the data—
is a major drawback to turbo codes. The several iterations required
by turbo decoding make the delay unacceptable for real-time voice
communications and other applications that require instant data
processing, like hard disk storage and optical transmission.

For systems that can tolerate decoding delays, like deep-
space communications, turbo codes have become an attractive
option. In fact, last September, the European Space Agency, based
in Paris, France, launched SMART-1, the first probe to go into
space with data transmission powered by turbo codes. ESA will
also use the codes on other missions, such as Rosetta, sched-
uled for launch early this year to rendezvous with a comet. The
National Aeronautics and Space Administration, in Washington,
D.C., is also planning missions that will depend on turbo codes
to boost reliable communications. “The first missions that will
be using these codes will be Mars Reconnaissance Orbiter and
Messenger,” says Fabrizio Pollara, deputy manager of the com-
munications systems and research section at NASA’s Jet
Propulsion Laboratory in Pasadena, Calif.

Digital audio broadcasting, which provides CD-quality radio pro-
grams, and satellite links, such as the new Global Area Network of
Inmarsat Ltd., in London, are both also about to incorporate turbo
codes into their systems.

And beyond error correction, turbo codes—or the so-called turbo
principle—are also helping engineers solve a number of communi-
cations problems. “The turbo-coding idea sparked lots of other ideas,”
says Lajos Hanzo, a professor in the School of Electronics and

Computer Science at the University of Southampton, United
Kingdom, and an IEEE Fellow. One example is in trying to mitigate
the effects of multipath propagation—that is, signal distortion that
occurs when you receive multiple replicas of a signal that bounced
off different surfaces. Turbo codes may eventually help portable
devices solve this major limitation of mobile telephony.

Finally, another major impact of turbo codes has been to make
researchers realize that other capacity-approaching codes existed.
In fact, an alternative that has been given a new lease on life is low-
density parity check (LDPC) codes, invented in the early 1960s by
Robert Gallager at MIT but largely forgotten since then. “In the 1960s
and 1970s, there was a very good reason why nobody paid any atten-
tion to LDPC codes,” says MIT’s Forney. “They were clearly far too
complicated for the technology of the time.”

Like turbo codes, LDPC attains capacity by means of an iterative
decoding process, but these codes are considerably different from
turbo codes. Now researchers have implemented LDPC codes so that
they actually outperform turbo codes and get even closer to the
Shannon limit. Indeed, they might prove a serious competitor to turbo
codes, especially for next-generation wireless network standards,
like IEEE 802.11 and IEEE 802.16. “LDPC codes are using many of the
same general ideas [as turbo codes],” says Caltech’s McEliece. “But
in certain ways, they are even easier to analyze and easier to imple-

ment.” Another advantage, perhaps the biggest of all, is that the
LDPC patents have expired, so companies can use them without
having to pay for intellectual-property rights.

Turbo codes put an end to a search that lasted for more than
40 years. “It’s remarkable, because there’s this revolution, and nowa-
days if you can’t get close to Shannon capacity, what’s wrong with
you?” says the University of Illinois’s Tanner. “Anybody can get close
to the Shannon capacity, but let’s talk about how much faster your
code goes...and if you are 0.1 dB from Shannon or 0.001 dB.”

It was the insight and naiveté typical of outsiders that helped
Berrou and Glavieux realize what the coding theory community was
missing. “Turbo codes are the result of an empirical, painstaking
construction of a global coding/decoding scheme, using existing
bricks that had never been put together in this way before,” they
wrote a few years ago.

Berrou says their work is proof that it is not always necessary to
know about theoretical limits to be able to reach them. “To recall a
famous joke, at least in France,” he says, “the simpleton didn’t know
the task was impossible, so he did it.” �

TO PROBE FURTHER
The 2004 International Conference on Communications,

to be held in Paris on 20–24 June, will include several ses-
sions on turbo codes. See http://www.icc2004.org/.

“What a Wonderful Turbo World,” an electronic book by
Adrian Barbulescu, contains a detailed analysis of turbo
codes and source code in C for simulations. See http://
people.myoffice.net.au/~abarbulescu/.

For a discussion of implementation issues and a presenta-
tion of a real-life prototype, see Turbo Codes: Desirable
and Designable, by A. Giulietti, B. Bougard, and L. Van der
Perre (Kluwer Academic, Dordrecht, the Netherlands, 2004).

Beyond error correction, turbo codes are helping
MOBILE DEVICES ACHIEVE BETTER RECEPTION

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

