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The «; coefficients are the direct form of LPC. The filter H(z) is stable if it
is minimum phase, i.e. all the roots of the equation (5.1) are within the unit
circle. If o; were quantized directly, the stability of the filter H(z) is not easily
guaranteed as the roots of equation (5.1) are not usually computed to check
for stability. Thus a more useful parameter, the PARCOR (partial correlation)
coefficients, k;, are usually used for quantization. The distribution plots of
PARCOR parameters for a 10"-order LPC filter are shown in Figure 5.1. The
forward and backward transformation are given below [3].

LPC to PARCOR:

Fori=pp—-1,...,1 (5.2)
a}’l =@ +aa_)/A-kh, 1=j<i-1
kit =al_]
PARCOR to LPC:
Fori=12...,p
at = k; (5.3)
a;:a?‘l_kiaj—} l<j<i-1

ar,':a]p, l<j<p

The LPC filter is stable if |k;| < 1.0. Although k; can easily be checked for
stability, they are not suitable for quantization because they possess a nonflat
spectral sensitivity, i.e. values of k; near unity require more quantization

accuracy than those away from unity. Thus, nonlinear functions of k; are

required, with the Log-Area Ratio (LAR) and inverse sine (IS) functions
being the most widely used [4]. For LAR and IS, the forward and backward

transformation are given below: '
PARCOR to LAR:

11—k
gi:10g<1—;~é), l<i<p (5.4)
e

LAR to PARCOR:

1-— 108 .
ki = (———~> , 1l<i<p (6.5)
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PARCOR to IS: 4.0 . 8.0 Lo ———
si=sin k), 1<i<p (5.6) o 80l ' {g 60p @ 1, sofw 1 f
Q Q ’
IS to PARCOR: g 20f 48 40} 43 i |
2 » 12 ) S 40} E
. o ] k] .
ki =sin(s;), 1<i<p (5.7 2 10F |2 20} 1 [
20 i
The distribution plots of LAR and IS parameters for a 10" order LPC filter ' 0.0 - 0.0 Lo , ) e
are shown in Figures 5.2 and 5.3 respectively. 4020 00 20 40 %5 Zo 00" 20 40 240 20 00 20 40

Although it is possible to design good performance quantizers using the 100 =1 15.0 e 15.0 ey

LAR and IS representations, the frame-to-frame correlation of LPC (which . 0; I ) ]

. . . . . . . . (4) . (5) (6) 1
evidently exists for slowly-varying parts of speech) is not highlighted in 8 I ] 8 2
either LAR or IS representations, i.e. it is difficult to predict frame-to-frame g 60k ] § 10.0 - 1 6 100F 7
parameter values. Thus, not all the redundancies are fully exploitable. g : 3 g

In view of the shortcomings of LAR and IS representation, the line spectral 2 4of 14 Tl 12 so0l
pairs (LSP) or frequencies (LSF) representations of LPC have been investigated P 1 2 |
[2]. The concept of LSF was introduced by Itakura, but it remained almost A
dormant until its usefulness was re-examined in the latest speech coding 0.0 L Lo 00 bt LN, 00— AN,
standards. LSFs encode speech spectral information in the frequency domain : 15‘;"0 20 00 20 40 4020 00 20 40 40 20 00 20 40

d LN B B S 15.0 g T 15.0 ——p—r—pr—ry

and have been found to be capable of improving the coding efficiency by
more than other transformation techniques, especially when incorporated into @) : - @ i - o ]
predictive quantization schemes. For use in conventional scalar quantization, o 18 00l

it has been shown by Cox [4] and others that LSF is not significantly better ' ‘ 18 '00r 1
than LAR or IS, but it does have other properties which are desirable, as
~will be discussed in later sections. The fact that LSF representation is in the

frequency domain means that quantization can easily incorporate spectral
features known to be important in perceiving speech signals. In addition,
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LSFs lend themselves to frame-to-frame interpolation with smooth spectral 00 T 50 0.0 tosd _ ,
changes because of their intimate relationship with format frequencies. T 2o 40 , ~40-20 00 20 40 —40-20 00 20 40
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5.3 LPC to LSF Transformation g 150 1Y ]
| 2
An all-pole digital filter for speech synthesis, H(z), can be derived from linear 2 100 L :
predictive analysis and is given by i 3 .
o
H(z) = 1/4,(2) (5.8) Tosor \ I
0.0 S A H ]

where, -4.0 ;20 0.0 20 40
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40 @ 1 Lol ® 1. e ]
g 1 g 5‘0 » 1 ¢ 40f 1 The PARCOR representation is an equivalent version and its digital form is
O U H hud E . .
£ 30r 1 5, ol 1 5 a0l ] as shown in Figure 5.4, where,
g 20! S 'o [ 1S ]
< 20F 1 2 30f 1 5 20l - .
O\Oo - ; ;\2 20 ] 0\00 20 i {0 Ap—l(z) = Ap(z) + kpo—l (2) (5.10)
1.0+ . F 10k - B i
_ | of - _ , Bp(@) =z ' [By_1(2) — kpAy_1(2)] (5.11)
%% 0 o 1Jo‘2o %% 0 0'0)10420 T o’o 1|0120
-20 1.0 00 10 2 -20 -1.0 00 10 2 20 -1.0 00 10 2 ‘
' where Ag(z) = 1 and By(z) =z, and
8.0 ————r—1——7— 8.0 L 8.0 L L
ol ] o ) 70[ . By(z) =z~ A,z 1) (5.12)
Y ] ® ] sol @ ]
& 50l 1 850 - 1 g s50f 7 ~ The PARCOR representation as shown in Figure 5.4 is stable for |k;| < 1 for
3 40l 4 g a4of 1 8 40r ] all i. In Figure 5.4, the transfer function, TF, from X to Y is Hy(z), and from Y
< 30k 1 £ sof 4 5 30f ' 1 B to Z is By(z), therefore the TF from X to Z is given by equation (5.13) where
2 20 4 200k 1 ®20f . ; Ry(z) is the ratio filter,
1.0 . 101 . 1o} 4
L - x ; L 1 . PN B /WU N, VOV S 0.0 o | .. Y R — B Z A > 1
0 o 00 10 20 %o 10 00 1.0 20 20 -1.0 00 10 20 p = bp(2)/Ap(2) (5.13)
8.0 —r—r—————, The PARCOR synthesis process can be viewed as sound wave propagation
70L . through a lossless acoustic tube, consisting of p sections of equal length but
g 60} By 1 nonuniform cross sections. The acoustic tube is open at the terminal corre-
& 500 . sponding to the lips and each section is numbered from the lips. Mismatching
3 40k . between the adjacent sections p and (p + 1) causes wave propagation reflec-
é 30k . tion. The reflection coefficients are equal to the p PARCOR coefficient ky.
2 ool . Section p 4 1, which corresponds to the glottis, is terminated by a matched
1.0 1 impedance. The excitation signal applied to the glottis drives the acoustic
0.0 et - tube. i
-2.0 -1.0 00 1.0 20 . o L .
. In PARCOR analysis, the boundary condition at the glottis is impedance- -
Figure 5.3 The distribution plots of inverse sine parameters (horizontal axis Is matched. Now consider a pair of artificial boundary conditions where the !
in radians) acoustic tube is completely closed or open at the glottis. These conditions I
correspond to kpy1 = 1 and kp+1 = —1, a pair of extreme values for the h?
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artificially-extended PARCOR coefficients which correspond to perfectly loss-

less tubes. The value Q of each resonance becomes infinite and the spectrum

of distributed energy is concentrated in several line spectra. The feedback
conditions for k,;1 = —1 correspond to a perfect closure at the input (glottis)
and for ky;1 = 1 correspond to an opening to infinite free space. To derive
the line spectra or line spectrum frequencies (LSF), we proceed as follows

(it is assumed that the PARCOR filter is stable and the order is even). Ay (z)

may be decomposed to a set of two transfer functions, one having an even
symmetry and the other having an odd symmetry. This can be accomplished
by taking a difference and sum between Ay(z) and its conjugate functions.
Hence the transfer functions with k, 1 = £1 are denoted by Pp.1(z) and

Qp+1 (z).

Forkyi1 =1, Pyi1(z) = Ap(z) — Bp(z) (Difference filter)

(5.14)
Forkyi1 = -1, Qpu1(2) = Ap(2) + By(z) (Sum filter)
1
= Ap(2) = -2-[Pp+1(2) + Qp+1(2)] (5.15)
Substituting equation (5.12) into (5.14),
Ppi1(z) = Ap(z) — 27 PV A, (5.16)
=1+ (01~ o)zt + . (p — o)z 7P~z P
p+1
=z~ P+l l—[ (z +ap)
i=0
where 4; is generally complex. Similarly,
ptl ,
Q@ =z PV [TE+b (5.17)
i=0 '

As we know that two roots exist (ky+1 = +1), the order of P, 41(z) and Qp+1(2)
can be reduced, i.e.

Pp+1(z)
(1~2)

= A2 + A1Z(p>1) + ...+ Ap

P(z) = (5.18)
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and,
Qp+1 (z)
/
Z) = ———
Q@) 132 (5.19)
=By’ + Bz + .. 4+ B,
where,
Ag =1 (5.20)
Bo=1 (5.21)
A = (ax — dpr1-k) + Ajq (5.22)
Bi = (ap + oty 1) — By (5.23)

fork=1,....,p

The LSFs are the angular positions of the roots of P'(z) and Q'(z) with
0 < w; = 7. The roots occur in complex conjugate pairs and have the
following properties:

1. All roots of P'(z) and Q'(z) lie on the unit circle.
2. The roots of Q'(z) and P’(z) alternate with each other on the unit circle, i.e.
the following is always satisfied, 0 < Wy 0 < Wpp < W1 < Wpy..., <.

5.3.1 Complex Root Method

The roots of equation (5.18) can be solved using complex arithmetic. This
will give complex conjugate roots on the unit circle and the frequencies are
then given by the inverse tangent of the roots. This method is obviously very
complex as it involves solving two polynomials of p order using complex
arithmetic. Also, as it uses an iteration procedure for determining the roots,
the time required for this method is not deterministic which is undesirable
for real-time implementations.

5.3.2 Real Root Method

As the coefficients of P'(z) and '(z) are symmetrical the order of equation
(5.18) can be reduced to p/2.

Pl(z) = Ag? + A 44 Azl 4 Ag (5.24)
= PPAg@ P + 27 4+ A EPRD 4 00y LA
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Similarly,

Q') =Bo + B/ '+ ...+ Bz + By (5.25)
= 2PP[By(? + 2777 + By P2 7D 4 7%/ 1 4B ]

As all roots are on the unit circle, we can evaluate equation (5.24) on the unit
circle only.

Letz = ¢ thenz! +z7! = 2 cos{w) (5.26)

| 2 1
P'(z) = 2¢lr2 [Ao cos (Ew) + A1 cos (%a)) o+ EA”/ZJ (5.27)

: -2 1
Q'(z) = 2e/P/? [BO o8 (ga)) + By cos (E-é—a)) + .+ EBP/Z] (5.28)

By making the substitution x = cos(w), equations (5.27) and (5.28) can be
solved for x. For example, with p = 10, the tollowing is obtained:

Po(x) = 16A0x” + 8A1x* + (4A; — 20A0)x° + (243 — 8A;)x>
+(5Ag — 3Ay + Ag)x + (A1 — Az + 0.5A5) (5.29)

and similarly,

Qho(%) = 16Box” + 8B1x* -+ (4By — 20Bg)x” + (2B3 — 8B7)x>
10

+(5By — 3By + By)x + (B1 — B3 + 0.5Bs) (5.30)
The LSFs are then given by:
LsFG) = ) gy e 531)
T 2T =t=r '

The distribution plots of LSFs for a 10% order LPC filter are shown in
Figure 5.5 and a typical LSF plot is shown in Figure 5.6, where the first half
is active speech and the second half is silence. Notice that during silent
regions the frequencies are evenly spread between 0 and f;/2 where f; is the
sampling frequency. This method is obviously considerably simpler than the
complex root method, but it still suffers from indeterministic computation
time. However, a faster root search can be accomplished by noting that the
change from one LSF vector to the next is not too drastic in most cases. Thus
by using the previous values as the starting estimates of the roots, the number
of iterations required per root is considerably reduced, e.g. typically from 5
to 10 iterations.
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Figure 5.6 Typical LSF trajectories for voiced and unvoiced speech

5.3.3 Ratio Filter Method

The expression for the ratio filter is given by equation (5.32). The phase
response, ¢(kfs), of the ratio filter is given by equation (5.34). The frequency

corresponding to a multiple of —7 and —27 radians are the lower and upper
line spectra of the LSF [5].

Z“(”H)Ap(z*l)

Rp(z) = A,z

(5.32)

where,

Ape)=1-3% piz (5.33)

i=1

LPC fo LSF Transformation

and B; = —«; where «; are the LPC.

P kfs) = —(n + 12 Tkf;)

> BisinQ@miTkf)
~2tan~! { =L (5.34)
1- Zﬁ,’ cos(2miTkf;)

=1

where T is the sampling period, f; is the frequency step, and k = 1,2,3,.. .,
Kinax-

By performing a Discrete Fourier Transform (DFT) on the coefficient
sequence, A; and By, w; can be solved as the zero-valued frequencies of a
power spectrum. A typical plot, showing the partial minima of the spectrum,
is shown in Figure 5.7.

If the spectrum were to be obtained directly, it would involve an enormous
number of computations. Fortunately, a number of computation reductions
can be made. The aim is to find the partial minima of the response, thus

5.0
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i
o
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2 i 2 i
0.0 100.0 200.0
Frequency/4000/512Hz per div

Figure 5.7 Zero frequency plot for one frame of the DFT-LSF method
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the absolute values of the response are not critical; only the locations of the
minima are vital. The spectrum is given by equation (5.35) where P is the
spectrum, W is the L x L DFT kernel, and S is the input sequence. L is the size

of the transform.
[HW}H 654

As the input sequences Ag and By are real, we can move them from the start
to the middle of S with zeros elsewhere. This will produce an even spectrum
which means that only f;/2 terms need to be computed. Also, the spectrum
will be real, thus only the cosine-terms in the kernel require computing. Since
the sequences Ay and By are even, only half of the values need to be computed,
ie. Ag to Aypy and 1/2A,, and similarly for Bx. With these savings the
number of multiply~adds is reduced to p/2 + 1 per spectrum point. The
cosine terms are fixed for a particular transform size, therefore they can be
pre-computed and stored in a lookup table. '

Once the spectrum is found the partial minima need to be located and this
involves computationally expensive comparisons. As the LSF are naturally
ordered, i.e. the frequencies alternate between Q(z) and P(z), they can be
located in an efficient manner. The first Q(z) LSF starts at the origin, then the
first P(z) LSF starts from the previous Q(z) LSF location. Once the first P(z)
LSF is found the second Q(z) LSF is located, starting from the previous P(z)
location. This alternation is repeated until all LSFs are found. Thus in total
only one pass of the frequency range is made instead of two.

5.3.4 Chebyshev Series Method

Another step-wise method which requires no prior storage or calculation of
trigonometric functions is the Chebyshev Series Method [6]. By expanding
equation (5.24) with the Chebyshev polynomial set, the mapping x = cos(w)
maps the upper semicircle in the z-plane to the real interval [+1, —1]. There-
fore, all the roots x; lie between —1 and +1, with the root corresponding to
the lowest frequency LSF being the one nearest to +1. Thus the basic task
is similar to the DFT method, i.e. we isolate the roots of P'(z) and Q'(z)
by searching incrementally for intervals in which the sign changes which is
refined by successive bisections of the root interval.

5.3.6 Adaptive Sequential LMS Method

All of the previously described methods for deriving the LSF parameters
required the intermediate step of calculating the LPC before proceeding
to the computation of the LSF parameters. However, using a Least Mean
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Squares adaptive method [7] the LSF parameters can be computed directly
from the speech samples themselves. The LMS algorithm aims to minimize
the mean-square value of the PARCOR lattice filter output, and thus flatten
its frequency spectrum by a ‘noisy steepest-descent’ procedure which uses
the squared value of a single output sample to approximate the mean-square
value. Thus the algorithm begins the sequential estimation using evenly-
distributed estimated LSFs and, as each sample of speech is processed, a
new LSF vector estimate is obtained. Depending on the adaptation rate
required, the algorithm converges to the correct value after around 100
samples of input.

The LMS method is very attractive because it requires no LPC analysis.
However, as it is a ‘learning’ type algorithm, it is susceptible to ‘out-lier’
input samples, i.e. samples which are different in character to the majority of
speech samples. The effect of these unusual inputs is to throw the algorithm
off its convergence curve; if this occurs at the end of a frame there will be no
time for correction before the final values are used.

5.4 LSF to LPC Transformation

There are two methods for the inverse transformation, neither of which
is as computationally intensive as the forward transformation. The two
methods are equivalent but the LPC synthesis method is perhaps more easily
visualized.

5.4.1 Direct Expansion Method

In all of the LPC to LSF methods above the aim is to find the roots of
equation (5.16), i.e. 4; and b;. Having found these roots using any of the
methods, the LPC, «;, can be simply found by multiplying out the product
terms of equation (5.16), i.e.

Ppi1(2) =2~ POP (1 - 2)] (5.36)
=271 — )@ - r)z 1) ...z~ 1)z — 50
= z7PTO[A ~ 2)(2% — 2upz + ) .. (2% = 2uppz + tp2)]
=So+S1z7 4. 4 Spz P+ Sppqz PFD (5.37)

Similarly,

Qpi1@ =To+ Tzt 4+ Tpz P + Tpz PHY (5.38)
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where,

ri=ui+ju; and  rf =u;— ju;
= ri+rf=2u; and rixr;“:uiz%—v?:ti

Equating the terms of equations (5.37) and (5.16),

So=1
To=1
Sps1 = —1
Tpr1=1
o= =(T; + 5;)
1

Appi-i = E(Ti -5
fori=1,...,P/2

5.4.2 LPC Synthesis Filter Method

An LPC synthesis can be constructed directly using the LSF coefficients. The

filter is derived from the following,

H(z) = 1/Ap(z) = 1/[1+ (Ap(z) — ]
1
T 1+ 1/2[(Ppr1(@) — 1) + (Qpri(z) — D]

ie.

Ap(2) = 1=1/2[(Pps1(z) = 1) + (Qp+1(2) — D]
p/2
=121 -] [A~2coswiz+2%) — 1
i=1
r/2
+(1 +2z2) l_[ (1 —2cosb;z +22) -1

i=]

Let u; = ~2cosw;, v; = —2¢0s6;

(5.39)°

(5.40)
(5.41)
(5.42)
(5.43)

(5.44)

(5.45)

(5.46)

(5.47)

(5.48)
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where w; and 6; are the even and odd number LSFs given by LSF(i)2xT.

p/2
Ap(z) ~1=1/2 []‘[ (1 + ujz + 2% (5.49)
I=1

=1

p/2
~zl—[(1 ‘uz 28 -1

p/2
+1/2 H (1+ vz + 2%
=1
P2
~z[[A+oz+2) -1 (5.50)
i=1

p/2
:z/2[(u1+z)-n(1+ujz+zz)
=1

p/2-1 i
+ Z (Mip1 +Z)n(1+ujz+zz)}

p/2
+z/2 I(Ul +2z) — 1—[(1 +vjz +2%)
j=1

p/2—1 i
+ ) @1 +2) [[ad+vz+2h } (5.51)

i=1 j=1

An 8" order inverse filter is shown in Figure 5.8. The LPC are simply the
impulse response of the filter.

5.5 Properties of LSFs

A very important LSF property, as mentioned earlier, is the natural ordering
pf its parameters. This ordering property was already used to good effect
in speeding up the LPC to LSF transformation procedure. The ordering
property indicates that the LSFs within a frame, and from frame to frame, are
correlated. In order to illustrate the intra-frame correlation property of the
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Input N + Output
2z ! i P at P 7 7! )
-
2 c4 6 c8 4
Figure 5.8 Practical scheme of LSF inverse fitter (¢; = —2 cosw;, for even i, and

¢ = =2 Cos$ 6;, for odd i)

Table 5.1 Experimental conditions for
estimating  and ¥

Sampling Frequency | 8kHz

Frame Update 10ms
Window 20 ms Hamming
Analysis order 10

Number of Frames 6000

LSF vector, o, Table 5.2 presents the matrix € = {¢i;} where,
(]51‘,]‘ = Wy i X a),,,j, Z = 1,2, . ,p, ] = 1, 2, . ,],9 (552}

for the experimental conditions according to Table 5.1. The relatively high
correlation between neighbouring LSFs is clear. Similarly, to illustrate the
inter-frame correlation of the LSF parameters, Table 5.3 presents the matrix
¥ = {¢;r} where,

Gix =wni Xy i, 1=12,...,p, k=12,...,p (5.53)

From Tables 5.2 and 5.3, it is clear that there is a strong correlation between
the LSFs of adjacent frames as well as neighbouring parameters in the same
frame. Therefore, any compression algorithm that effectively makes use of
these correlations can result in improved performance over those that do not
incorporate this correlation property.

LSF Quantization 105

Table 5.2 Intra-frame correlation coefficients @

T j

- 1 2 3 4 5 6 7 8 9 [ 10 |
1] 100 | 065] 030 | 035 | ~041 | 049 | 039 | —0.40 | —03¢ —0.20
2] 065 1001 028 011007 ] —013 | —0.07 | 005 | —006 —0.07
31030 028] 100| 072 050| 05| o046 | 0541 039 0.28
(4] 035 011 ] 072 100] 072] o062| o046 042 oas 0.21
5] 041 007 | 050 | 072] 100] 079 0521 047 | 03 0.26
6049 | -013 | 053] 062| 079| 100] 071] 061 | 049 028
7,039 007 | 046| 046 052 071| 100| 073| 058 o
8| ~040 | —005| 054 042| 047 | 061] 073 ] 100] 0581 04e
9] -036 | 006 | 039 045| 034 | 049 058 | 058 1.00| 041
10 ~020 | ~007 | 028 | 021 026| 028| 041 | 046 041 1.00

Table 5.3 Inter-frame correlation coefficients w
k

1 2 3 4|5 61 7758 9 10
09310841076 068! 061 | 055! 050 045 | 041 ] 0.36
089 | 0.75 | 0.63 ] 0.54 | 046 | 0.38 | 0.32 | 027 0.22 | 0.18
0.92 1 080 070 | 0.60 | 051 | 043 | 0.36 030 | 0.24 | 0.20
092 1082|073 ] 0641|056 | 049 | 043 037 1032 | 027
095 | 0.88 | 0.81 | 0.74 | 0.67 | 0.61 | 0.54 048 1 043 | 0.37
0.94 | 0.85 077 |1 0.69 | 0.62 | 056 | 049 | 044 | 0.38 0.33
0.93 1 083 1 075 | 0.66 | 058 | 0.50 | 0.43 0.37 | 0.31 | 0.26
0.91 1 081 | 0.72 | 064 | 056 | 049 | 0.43 0.37 | 032 | 0.28
087 | 073 | 064 | 055 | 048 | 042 | 037 033 ] 0.29 | 025

101082 | 0.66 | 057 | 050 | 0.44 | 0.38 | 0.34 030 | 0.27 O.2iJ

~.
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5.6 LSF Quantization

Most modern speech coders make use of LPC modelling during speech
processing. Although some coders use a backward-adaptive LPC filter [8],
most speech coders extract the LPC parameters from the mput speech at
regular intervals, transform them into the LSF domain, and quantize them
for transmission to the decoder.

Low distortion LSF quantization is essential for the overall quality of
decoded speech, and the number of bits allocated to [.SFs usually takes a
significant proportion of the overall bit rate, up to over 50 % for very low
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bit-rate speech coders. Therefore the overall success of a given speech coding
scheme depends greatly on the quality of the LSF quantizer used.

Scalar schemes can be used, as they present very low complexity and
storage requirements. However they cannot make use of the high intra-frame
correlation exhibited by LSF vectors and, hence, they are very rarely used due
to their poor performance. Vector quantization (VQ) schemes can be used
to exploit intra-frame correlations. VQ exploits the redundancies in the LSF
vector well and can provide high quality quantization for a relatively limited
number of bits per frame of speech. As a result, they are widely used in
modern speech coders. The following sections investigate the use of VQ for
LSF quantization and ways of maximizing the performance of such schemes
in several coder configurations. ]

5.6.1 Distortion Measures

In order to achieve good performance quantization of LSF parameters, it is
necessary to have a way of linking the quantization error to the distortion
in perceptual quality. Due to the complex relationship that exists between a
set of LSF coefficients and the frequency response of the corresponding LPC
filter, using a Mean-Square Error (MSE) measurement may not lead to an
optimal performance of the quantizer.

A widely-used technique for computing the distortion that exists between
the original set of LSFs and their quantized version is the Log Spectral
Distortion measure. However a Weighted Mean-Square Error (WMSE) mea-
surement may also lead to good results if an appropriate weighting function

is used.

5.6.2 Spectral Distortion

The mean square log spectral distortion, which will be referred to simply as
spectral distortion (SD), is defined as:

1 T
sd = - / [10 log10S(w) — 10 long’(w)]2 (5.54)
0
where S(w) and §'(w) are the frequency responses of the LPC filter derived

from the original and quantized LSFs, respectively. 5(w) can therefore be
defined as:

Sw) =1/ | A(w) | (5.55)
which leads to,
p )
S(w)=1/]1— Zake‘ﬁ"k 2 (5.56)
k=1 -5
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wher'e a are the LPC coefficients. This can be evaluated using an N-point
Fourier Transform, giving the following expression:

N/2-1

1 , 2
SD = 375 go [10 logio | A'(k) 1> — 10 log1o | AK) ;2] (5.57)

Moreover, it is common practice to restrict the computation of the distortion to
a limited portion of the spectrum, typically the 125-3100 Hz band. The reason
is that the portions of the spectrum below 125Hz and above 3100 Hz usually
have perceptually little impact but may significantly affect the computed
spectral distortion, due to the use of the log function.

5.6.3 Average Spectral Distortion and Outliers

The spectral distortion (SD) measure gives a good indication of the perceptual
difference between two sets of LSFs. The overall distortion caused by a
quantization scheme can be computed by simply averaging the SD obtained
over a large sequence of LSF vectors. It is commonly accepted that an average
SD below 1dB is necessary for an LSF quantizer to be transparent, i.e. not
to add any audible distortion to synthesized speech. However, the average
SD (aveSD) is not sufficient to determine the performance of a quantizer. The
human ear is very sensitive to occasional large quantization errors. Therefore
it is also important that the number of times the quantizer gives a large
distortion is kept to a minimum. It is customary to use the percentage of input
vectors giving spectral distortions above 2dB and 4 dB as a quality measure.
These measures are referred to as outliers at 2dB and 4 dB, respectively.

The set of requirements usually considered necessary to achieve good
quality speech is [9]:

¢ Average spectral distortion less than 1dB
e Fewer than 2 % outliers at 2dB
s No outliers at 4 dB

These three parameters need to be considered when evaluating the perfor-
mance of an LSF quantizer. However an optimization has to be carried out
to achieve the best overall performance for a given bit rate, i.e. accepting a
larger average spectral distortion in return for fewer outliers.

5.6.4 MSE Weighting Techniques

Althf)ugh spectral distortion is a fairly accurate representation of how quan-
t.lza.hon noise in the LSF is perceived, its high computational complexity
hmlte.S its use. In order to compare two sets of LSFs, two fairly large fast
Fourier Transforms (FFT) need to be computed and a logarithm must then be
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Table 5.7 MSVQ and SVQ structures for Figure 5.11
Stages MSVQ S5VQ
bit allocation | Bit allocation | Vector split
2 12,12 12,12 5,5
3 8,88 8,88 334
4 6,6,6,6 6,6,6,6 3223
5 555,54 555,54 222,272
25604 : 18 ; 3
—— SVQcodebook | —— SVQ codebook |
...... MSVQ codebook ‘ 16+ ------ M8VQ codebook
2.0e04 : ‘
)
2
ul o
2 15004 ®
4
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Outliers at 2 dB (%)
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Number of stages

Figure 5.11 Performance comparison of various SVQ and MSVEQ codebook
structures

in Figure 5.12. Outliers at 4 dB have not been plotted, as they are zero for all
cases. The advantage of a TS over both SS and FS is evident in these graphs.
For M greater than or equal to eight, the performance of the TS is very close
to that of the F'S, at a much reduced complexity. It is also significantly better
than that of SS, for a relatively small increase in complexity. The complexity
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Figure 5.12 Performance comparison of various search techniques

in multiply-adds per input vector is given in Table 5.8. It is to be noted that,
in the test, codebooks have been trained using the SS algorithm. Therefore,
they are only optimal for an SS search. Better performance for the TS and FS
cases can be obtained by using the same search in the training as the one used
during the operation of the quantizer. This is illustrated in Figure 5.13, where
WMSE, average SD and outliers at 2dB are plotted for the original codebook
and the retrained codebooks, for SS and TS with values of M ranging from 2
to 32. Due to the very high complexity of the FS, it was not possible to fully
retrain the codebook using FS, although the results are expected to be similar
to that of TS with M = 32.

5.8.3 Perceptual Weighting Techniques

Several weighting techniques were described in Section 5.6.4. A good weight-
ing technique should give a distortion measure which is well correlated with
the spectral distortion measure, which is our reference here. For testing, we




