Sampling and Quantization

3.1 Introduction

In digital communication systems, signal processi ng tools require the input
source to be digitized before being processed through various stages of the
network. The digitization process consists of two main stages: sampling the
signal and converting the sampled amplitudes into binary (digital) code-
words. The difference between the original analogue amplitudes and the
digitized ones depend on the number of bits used in the conversion. A 16 bit
analogue to digital converter is usually used to sample and digitize the input |
malogue speech signal. Having digitized the input speech, the speech coding,
algorithms are used to compress the resultant bit rate where various quan-
tizers are used. In this chapter, after a brief review of the sampling process,
quantizers which are used in speech coders are discussed.

3.2 Sampling

As stated above, the digital conversion process can be split into sampling,
which discretizes the continuous time, and quantization, which reduces the
infinite range of the sampled amplitudes to a finite set of possibilities. The
sampled waveform can be represented by,

Sty =s,(nly o0 - e~ (3.1)

wheres:isthe a nalogue waveform, i1 is the mteger sample number and 7 is the
sampling time (the time difference between any two adjacent samples, which
Isdetermined by the bandwidth or the highest frequency in the input signal).

24 Sampling and Quantization

The sampling theorem states that if a signal s,(t) has a band-limited Fourier

transform S, (jw) given by,

o0

Saljw) = / Sa(He 1t (3.2)
-0

such that S,(jw) = 0 for || > 27 W then the analogue signal can be recon-

structed from its sampled version if T < 1/2W. W is called the Nyquist

frequency.

The effect of sampling is shown in Figure3.1. As can be seen from
Figures 3.1b and 3.1¢, the band-limited Fourier transform of the analogue
signal which is shown in Figure 3.1a is duplicated at every multiple of the
sampling frequency. 7

This is because the Fourier transform of the sampled signal is evaluated at
multiples of the sampling frequency which forms the relationship,

S(eij):% 3" Sl + 2700/ T) (3.3)

H=—00

This can also be interpreted by looking into the time domain sampling process
where the input signal is regularly (at every sampling interval) multiplied

Magnitude

Analog Signal

(a)

-w w §
Frequency

Magnitud
Over Sampled Signal e

© /\ /\
i 1 i L

Frequency

Magnitud
Under Sampled Signal apmtude

(c)

W W 2fs
Frequency

Figure 3.1 Effects of sampling: (@) original signal spectrum, (b) over sampled signal
spectrum and (¢) under sampled signal spectrum

Sampling 25

with a delta function. When converted to the frequency domain, the multi-
lication becomes convolution and the message spectrum is reproduced at
multiples of the sampling frequency.

We can clearly see that if the sampling frequency is less than twice the
Nyquist frequency, the spectra of two adjacent multiples of the sampling
frequencies will overlap. For example, if & = £ < 2W the analogue signal
image centred at 2 /T overlaps into the base band image. The distortion
caused by high frequencies overlapping low frequencies is called aliasing. In
order to avoid aliasing distortion, either the input analogue signal has to be
band-limited to a maximum of half the sampling frequency or the sampling
frequency has to be increased to at least twice the highest frequency in the
analogue signal.

Given the condition 1/T > 2W, the Fourier transform of the sampled
sequence is proportional to the Fourier transform of the analogue signal in
the base band as follows:

STy = =Saj) ol < % (3.4)

Using the above relationship, the original analogue signal can be obtained
from the sampled sequence using interpolation given by [1],

¢

, sin[n(t —nT)/T]
S.(t) = s;(nT
Sa(f) n:};% Sq(nT) 7t —nT)/T (3.5)
which can be written as,
o
s =Y sy(nT)sinc(e) (3.6)
H=—00

where ¢ = 7 (t — nT)/T.

Therefore, if the sampling frequency is at least twice the N yquist frequency,
the analogue signal can be recovered completely from its sampled version
by adding together sinc functions centred on each sampling point and scaled
by the sampled value of the analogue signal. The sinc(¢) function in the
above equation represents an ideal low pass filter. In practice, the front
end band limitation before sampling is usually achieved by a low pass
filter which is less than ideal and may cause aliasing distortion due to its
roll-off characteristics. In order to avoid aliasing distortion, the sampling
frequency is usually chosen to be higher than twice the Nyquist frequency.
In telecommunication networks the analogue speech signal is band-limited
t0 300 to 3400 Hz and sampled at 8000 Hz. This same band limitation and
sampling is used throughout this book unless otherwise specified.

26 Sampling and Quantization

3.3 Scalar Quantization

Quantization converts a continuous-amplitude signal (usually 16bit, rep-
resented by the digitization process) to a discrete-amplitude signal that is
different from the continuous-amplitude signal by the quantization error
or noise. When each of a set of discrete values is quantized separately the
process is known as scalar quantization. The input—output characteristics of
a uniform scalar quantizer are shown in Figure 3.2.

Each sampled value of the input analogue signal, which has an infinite
range (16bit digitized), is compared against a finite set of amplitude values
and the closest value from the finite set is chosen to represent the amplitude.
The distance between the finite set of amplitude levels is called the quantizer
step size and is usually represented by A. Each discrete amplitude level x;

is represented by a codeword c(n) for transmission purposes. The codeword -

c(n) indicates to the de-quantizer, which is usually at the receiver, which
discrete amplitude is to be used.

Assuming all of the discrete amplitude values in the quantizer are repre-
sented by the same number of bits B and the sampling frequency is f, the

Output
. 111
y8 |
110
yTr
101
yo
100
y5
A 2T g S ke KT
y4
Input
010 Ly3
001 -2
000
_y]

Figure 3.2 The input-output characteristics of a uniform quantizer

Scalar Quantization 27

channel transmission bit rate is given by,
T. = Bf, bits/second (3.7)

Given a fixed sampling frequency, the only way to reduce the channel bit
rate T is by reducing the length of the codeword c(n). However, a reduced
length c(1) means a smaller set of discrete amplitudes separated by larger A
and, hence, larger differences between the analogue and discrete amplitudes
after quantization, which reduces the quality of reconstructed signal. In order
to reduce the bit rate while maintaining good speech quality, various types
of scalar quantizer have been designed and used in practice. The main aim of
a specific quantizer is to match the input signal characteristics both in terms
of its dynamic range and probability density function.

3.3.1 Quantization Error

When estimating the quantization error, we cannot assume that Aj = Njypif
the quantizer is not uniform [2]. Therefore, the signal lying in the it interval,

A A
Xj— 5 <s(n) < x;j + 5 (3.8)

is represented by the quantized amplitude x; and the difference between the

input and quantized values is a function of Aj. The instantaneous squared
error, for the signal lying in the i interval is (s(n) — x/)2. The mean squared
error of the signal can then be written by including the likelihood of the signal
being in the i interval as,

5 xﬁ—% 5
E: :/ (x — x)"p(x)dx (3.9)

4
i3
where s‘(.n‘) has been replaced by x for ease of notation and p(x) represents the
probal?lhty density function of x. Assuming the step size A, is small, enabling
VeryAfme quaIAmzatlon, we can assume that p(x) is flat within the interval
YN—Ftoxi+ 5. Representing the flat region of p(x) by its value at the centre,
P(xi), the above equation can be written as,

s [T A}
E; :P(Xz')/_Al yody = 1o Pxi) (3.10)

The probability of the signal falling in the /" interval is,

d
r= [T peodx = pueoa, (3.11)
-

X

vl

28 Sampling and Quantization

The above is true only if the quantization levels are very small and, hence, -

p(x) in each interval can be assumed to be uniform. Substituting (3.11) into
(3.10) for p(x;) we get,
A?

E? = -ﬁln (3.12)

!

The total mean squared error is therefore given by,

N
1
E? = 5 > ria? (3.13)
1=x1

where N is the total number of levels in the quantizer. In the case of a uniform ,
quantizer where each step size is the same, A, the total mean squared error

becomes,

, A2 N[‘._AZ
S REZT 1R

(3.14)

where we assume that the signal amplitude is always in the quantizer range
and, hence, Zf\il I'y=1.

3.3.2 Uniform Quantizer

The input-output characteristics of a uniform quantizer are shown in
Figure 3.2. As can be seen from its input-output characteristics, all of the
quantizer intervals (steps) are the same width. A uniform quantizer can be
defined by two parameters: the number of quantizer levels and the quantizer
step size A. The number of levels is generally chosen to be of the form 25,
to make the most efficient use of B bit binary codewords. A and B must be

chosen together to cover the range of input samples. Assuming |x| < X,4:
and that the probability density function of x is symimnetrical, then, B

2X e = A2B , (3.15)

From the above equation it is easily seen that once the number of bits to be
used, B, is known, then the step size, A, can be calculated by,

2X '
A = 2’;”" (3.17(1)
The quantization error ¢y(n) is bounded by,
A A

Scalar Quantization 29

In a uniform quantizer, the only way to reduce the quantization error is
by increasing the number of bits. When a uniform quantizer is used, it is
assumed that the input signal has a uniform probability density function
varying between +X,,,. with a constant height of le . From this, the power
of the input signal can be written as, "

Xmax X2 ‘
Py = / p(x)dx = uﬁgﬂx (3.18)

THax

Using the result of (3.14), the signal to noise ratio can be written as,

SNR = % = }2’2'2“71/23 (3.19)
Substituting (3.16) for A we get,
SNR = % = (3.20)
Taking the log,
SNR(B) = 10log,,(2%) = 20Blog,,(2) = 6.02B dB (3.21)

The above result is useful both in determining the number of bits needed in
the quantizer for certain signal to quantization noise ratio and in estimating
the performance of a uniform quantizer for a given bit rate.

3.3.3 Optimum Quantizer

When choosing the levels of a quantizer, positioning of these levels has to be
selected so that the quantization error is minimized. In order to maximize the
ratio of signal to quantization noise for a given number of bits per sample,
levels of the quantizer must be selected to match the probability density
function of the signal to be quantized. This is because speech-like signals
do not have a uniform probability density function, and the probability of
smaller amplitudes occurring is much higher than that of large amplitudes.
Consequently, to cover the signal dynamic range as accurately as possible,
the optimum quantizer should have quantization levels with nonuniform
Spacing. The input-output characteristics of a typical nonuniform quantizer
Where the step size of the quantizer intervals is increasing for higher input
signal values is shown in Figure 3.3. The noise contribution of each interval
Fiepends on the probability of the signal falling into a certain quantization
interval. The nonuniform spacing of the quantization levels is equivalent to
anonlinear compressor C(x) followed by a uniform quantizer. The nonlinear

30 Sampling and Quantization
sl 111
Output
110
yIr
101
yor
{00
y5
xl x2 x3' x4 X5 X6 x7'
011 yé
Input
010 -y3
001 "
000 Lyl

Figure 3.3 The input-output characteristics of a nonuniform quantizer

compressor, C(x), compresses the input samples depending on their statistical
properties. In other words, the less likely higher sample values are compressed
more than the more likely low amplitude samples. The compressed samples
are then quantized using a uniform quantizer. The effect of compression
is reversed at the receiver by applying the inverse C~!(x) expansion to the
de-quantized samples. The compression and expansion processes do not
introduce any signal distortions. ‘

Itis quite important to select the best compression~expansion combination
for a given input signal probability density function. Panter and Dite [3]
used analysis based on the assumption that the quantization is sufficiently

fine and that the amplitude probability density function of the input samples 7

is constant within the quantization intervals. Their results show significant
improvement in the signal to noise ratio over uniform quantization if the
input samples have a peak to root mean squared (rms) ratio greater than 4.

In designing an optimum quantizer, Max [4] discovered how to optimally
choose the output levels for nonuniform input quantizer levels. His analysis
required prior knowledge of the probability density function together with the

Scalar Quantization 31

Table 3.1 Max quantizer input and output levels for 1, 2, 3, 4, and 5bit quantizers

T Max quantizer thresholds —’
1bit 2 bit 3bit 4 bit 5bit
ip o/p i/p ofp ifp o/p i/p o/p ifp o/p
0.0000 1 0.7980 | 0.0000 | 0.4528 | 0.0000 | 0.2451| 0.0000 | 0.1284 0.0000 | 0.0659
0.9816 | 1.5100 | 0.5006 | 0.7560 | 0.2582 | 0.3881 | 0.1320 0.1981
1.0500 | 1.3440 | 0.5224 | 0.6568 | 0.2648 | 0.3314
1.7480) 2.1520 | 0.7996 | 09424 | 0.3991 | 0.4668
1.0990 1 1.2560 | 0.5359 | 0.6050
14370 | 1.6180 | 0.6761 | 0.7473
1.8440 | 2.0690 | 0.8210 | 0.8947
24010 | 2.7330 | 0.9718 | 1.0490
1.1300 | 1.2120
1.2990 | 1.3870
14820} 1.5770
1.6820 | 1.7880
1.9080 | 2.0290
21740 | 2.3190
2.5050 | 2.6920°
| 297701 3.2630

variance, o2, of the input signal but made no assumption of fine quantization.
The quantizer input-output threshold values for 1-5 bit Max quantizers are
tabulated in Table 3.1 [4]. The quantizers in Table 3.1 are for a unit variance
signal with a normal probability density function. Each quantizer has the
same threshold values in the corresponding negative side of the quantizer.

Nonuniform quantization is advantageous in speech coding, both in coarse
and fine quantization cases, for two reasons. Firstly, a nonuniform quantizer
matches the speech probability density function better and hence produces
higher signal to noise ratio than a uniform quantizer. Secondly, lower ampli-
tudes, which contribute more to the intelligibility of speech, are quantized
more accurately in a nonuniform quantizer.

In speech coding, Max’s quantizer [4] is widely used to normalize the
input samples to unit variance, which guarantees the input dynamic range. In
many other cases, specific nonuniform quantizers are designed by optimizing
the quantizer intervals using a large number of samples of the signal to be
quantized. Although, these specific quantizers are not generally applicable,
they give the best performance for a given signal with a given probability
density function and variance. In cases where the variance of the signal has
a large dynamic range, the variance of the signal is transmitted separately at

32 Sampling and Quantization

known time intervals enabling a unit variance nonuniform quantizer to be
used. These quantizers are called forward adaptive nonuniform quantizers.

334 | Logarithmic Quantizer

As was discussed above, an optimum quantizer is advantageous if the
dynamic range (or variance) of the input signal is fixed to a small known
range. However, the performance of such a quantizer deteriorates rapidly
as the power of the signal moves away from the value that the quantizer
is designed for. Although, this can be controlled by normalizing the input
signal to unit variance, this process requires the transmission of the signal
variance at known time intervals for correct scaling of the de-quantized signal
amplitudes.

In order to cater for the wide dynamic range of the input speech signal,
Cattermole [2] suggested two companding laws called A-Law and p-Law
Pulse Code Modulation (PCM). In both schemes, the signal to quantization
noise performance can be very close to that of a uniform quantizer, but their
performances do not change significantly with changing signal variance and
remain relatively constant over a wide range of input speech levels. When
compared with uniform quantizers, companded quantizers require fewer
bits per input sample for a specified signal dynamic range and signal to
quantization noise ratio. In a companding quantizer, quantizer levels are
closely spaced for small amplitudes which progressively increase as the
input signal range increases. This ensures that, when quantizing speech
signals where the probability density function is zero mean and maximum
at the origin, the frequently occurring small amplitudes are more accurately
quantized than the less frequent large amplitudes, achieving a significantly
better performance than a uniform quantizer.

The A-Law compression is defined by:

Ax 1
ALip() = ——= - 2
Law(X) i logm(A) for0<x < a (3.22)
1+1 A
ALguw(x) = T g0 for 1 <x=<1 (3.23)

1+ logw(A) A

where A is the compression parameter with typical values of 86 for 7 bit (North
American) PCM and 87.56 for 8 bit (European) PCM speech quantizers.
The p-Law compression on the other hand is defined by:

Vo Iog10 [1 + M&xl}

o

MLaw(X) = sign(x) Tog o1 T 7]

(3.24)

Scalar Quantization 33

where V, is given by V,, = Lo, in which L is the loading factor and o, is the
rms value of the input speech signal.

A typical value of the compression factor 4 is 255. The above expressions
show that the A-Law is a combination of a logarithmic curve for large ampli-
tudes and a linear curve for small amplitudes. The ;-Law on the other hand is
not exactly linear or logarithmic in any range but it is approximately linear for
small amplitudes and logarithmic for large amplitudes. A comparison made
in [5] between a u-Law quantizer and an optimum quantizer showed that
the optimum quantizer can be as much as 4 dB better. However, an optimum
quantizer may have more background noise when the channel is idle and
its dynamic range is limited to a smaller input signal range. For these two
reasons, logarithmic quantizers are usually preferred.

3.3.5 Adaptive Quantizer

As we have seen from the already discussed quantization schemes, the
dynamic range of the input signal plays a crucial role in determining the
performance of a quantizer. Although, the probability density function of
speech can easily be estimated and used in a quantizer design process, the
variations in its dynamic range, which can be as much as 30 dB, reduces
the performance of any quantizer. This can be overcome by controlling the
dynamic range of the input signal. As was briefly mentioned earlier, one way
of achieving this is by estimating the variance of the speech segment prior
to quantization and hence, adjusting the quantizer levels accordingly. The
adjustment of the quantizer levels is equivalent to designing the quantizer
for unit variance and normalizing the input signal before quantization. This
is called forward adaptation. A forward adaptive quantizer block diagram
is shown in Figure 3.4. Assuming the speech is stationary during K samples,

the rms is given by:
1 K
= |z Z;x(n)z (3.25)
H=

where the speech samples in the block are represented by x(n) and mean is
assumed to be zero. However, the choice of block length K is very important
because the probability density function of the normalized input signal can
be affected by K. As K increases the probability density of the normalized
speech signal changes from Gaussian (K < 128) to Laplacian (K = 512) l6].
This method requires the transmission of the speech block variances to the
de-quantizer for correct signal amplitude adjustment. In order to make the
normalization and de-normalization compatible, a quantized version of the
speech rms, oy, is used at both the quantizer and the de-quantizer.

34 Sampling and Quantization

Quantizer
A
X &,m)
Estimate Quantize
o, o, "
GX
De-quantizer
Qn(n) d (n)
———— De-quantizer x

A
0,’(

Figure 3.4 Block diagram of a forward adaptive quantizer

Another adaptation scheme which does not require transmission of the
speech variance to the de-quantizer is called backward adaptation. Here,
before quantizing each sample, the ris of the input signal is estimated from
N previously quantized samples. Thus, the normalizing factor for the n'
sample is:

ox(n) =

where ¥ represents the quantized values of the past samples and 41 is a tuning
factor [6].

It has been shown [7] that for a band-limited stationary zero-mean Gaussian
input, as the period N increases, the obtained signal to noise ratio tends to an
asymptotic maximum. However, N must be such that the power of the signal
is fairly constant during the samples of estimation. On average, the backward
adaptive quantizer has 3-5dB more signal to noise ratio compared with a
logarithmic quantizer. A block diagram of a backward adaptive quantizer is
shown in Figure 3.5.

An adaptation scheme called one word memory [8] has also been suggested.

It looks at only one previously quantized sample and either expands or

compresses the quantizer intervals as shown in Figure 3.6. Thus at the
(n + 1" sample the value of the quantizer step size A is:

Apy1 = Aan'(f?Af(n)‘) (3‘27) y

where, M; is one of i fixed coefficients corresponding to quantizer levels |
which control the expansion—compression processes.

N
”-I\i[> w200 - i) (3.26)
i=1

Scatar Quantization

35

Quantizer

x{1n)

Quantizer

Estimate
GX

S |

De-quantizer
A
Xp(n)

Ko(n)

/)E(n)

De-quantizer

Figure 3.5 Block diagram of a backward adaptive quantizer

Quantizer

x(n)

Fixed
Quantizer

Select

De-quantizer

A
X,(n)

Qn(n)

A N
x(n)

Fixed
De-quantizer

Select
M

!

Figure 3.6 Block diagram of one word memory (Jayant) quantizer

For large quantized previous samples, multiplier values are greater than
one and for small previously quantized samples multiplier values are less
than one. A typical set of step size multiplier values for 2, 3 and 4 bit quantizers

are shown in Table 3.2.

36 ’ Sampling and Quantization Scalar Quantization 37

Table 3.2 Step size muttiplier values for 2, Ouantiser
3, and 4 bit quantizers (9)

X(n) (n)

r(n)
Adaptation multipler values °
Previous
o/p levels 2 bit 3bit 4 bit X,(n)
L1 0.60 0.85 0.80
L2 220 1.00 0.80
L3 1.00 0.80
L4 1.50 0.80 De-quantizer
L5 1.20 Ttn) A
L7 2.00
L8) 2.40 Xpl1)

The recommended step size multiplier values [9] do not, in general, consti-
tute critical target values. As can be seen from Table 3.2 [9], the middle values

are fairly constant. What is critical, however, is that the step size increase ' Figure 3.7 Block diagram of a backward adaptive differenticl quantizer
should be more rapid than its decrease. This is very important for preventing
quantizer overload. ‘ Quantizer

x(n) e

3.3.6 Differential Quantizer

In a differential quantizer, the final quantized signal, r(n) is the difference
between the input samples x(n) and their estimates Xp (7).

Estimate
Predictor

r(n) = X(ﬂ) - Xp(ﬂ) (328) i Parameters
and
Quantize
P Predictor
Xp(fl) = Z .7AC(Tl - k)dk (329) Parameters
k=1

De-quantizer
where 4y is the weighting used for the previously quantized (n — k) sample fm S
and p is the number of previously quantized samples considered in the
estimation process. I
The reason for this preprocessing stage to form the prediction residual
(prediction error signal) before quantization is that, in speech signals, there is
a strong correlation between adjacent samples and, hence, by removing some
of the redundancies that speech signals possess, the signal variance is reduced
before quantization. This reduces the quantization noise by employing a
smaller quantizer step size A. Block diagrams of typical adaptive differential

quantizers are shown in Figures 3.7 and 3.8. : Figure 3.8 Block diagram of a forward Gdaptive differential quantizer

De-quantize
Predictor
Parameters

38 Sampling and Quantization

In order to show the advantage of a differential quantizer over a nondif-
ferential quantizer, consider the following example: Assume that K input
samples are to be quantized with a nondifferential quantizer with a total of

K.By bits. Consider also the same K samples are to be differentially quantized,

in which case K error samples ¢; are quantized to B; bits/sample accuracy.
In a differential quantizer, the weighting coefficients a; can be calculated
using backward or forward techniques as shown in Figures 3.7 and 3.8. When
backward estimation of the a; parameters is used, the quantizer does not
need to send extra information to the de-quantizer. However, in the case of
forward estimation of the a; parameters, the differential quantizer would also
require K.B3bits to transmit the a; parameters to the de-quantizer for correct
recovery of the quantized signal. As the correlation between the input speech
samples is usually high, the variance of the error signal to be quantized by
the differential quantizer is much smaller than that of the original speech
samples. Therefore, for the same accuracy of quantization, B < By and in
general B3 <« B, which means K.B; > K(By + B3). This shows that the main
advantage of a differential over a nondifferential quantizer is due to the
reduction in the speech dynamic range to be quantized.

The performance of a differential quantizer can be approximately defined
by its prediction gain (the amount of signal reduction before quantization)
and the performance of the residual error quantizer. Assuming that the

same type of quantizer is used for both the differential and nondifferential -

quantization schemes, the difference in performance will depend on the
accuracy of the predictor. For simplicity, if we assume a predictor depth of 1,
and X(n — 1) o x(n — 1) the residual error signal is obtained as,

r(n) = x(n) —ax(n — 1) (3.30)

where 1 is the weighting coefficient used on the previous sample to predict
the current sample. The squared error is then given by,

r(n) = [x(n) — ax(n — D] (3.31)

or,
() = 22(n) + ax2n — 1) — 2ax(mx(n — 1) (3.32)
Assuming, a is updated every N samples, '

N N N N
¥ (n) = sz(n) + Zazxz(n — 1) — 2a Zx(n)x(n — 1) (3.33)
n=1 =1 n=1 n=1 i

which can simply be written as,

N
of = ol +atol —2a) x(mx(n—1) (3.34)

n=1

Vector Quantization . 39

SN x(mx(n—1
: . Zn:l x2 (m
cient) in (3.34) gives,

Substituting p = ! (first order normalized autocorrelation coeffi-

(rrz = axz + azcrxz — Zaorfp (3.35)

The prediction gain G, is then found as,

o2 1
(e et e
P 0,2 1+ @~ 220 (3.36)

To maximize the prediction gain, the denominator of equation (3.36) should
be minimized with respect to 4, hence,

(1 + a% ~ 2ap)
oa

=0=(0+22-2p) (3.37)
which gives,

a=p (3.38)
Substituting a = p in (3.36)

14+p2=2pp 1-p2

(3.39)

The above result shows that if the correlation between the adjacent samples
is high, then a differential quantizer will perform significantly better than a
nondifferential quantizer. In fact, if the signal to be quantized is a nonvarying
DC signal, where p = 1, the gain of the prediction process will be infinite, i.e.
no residual error will be left and, hence, no residual information will need to
be transmitted. A typical p for speech is between 0.8 and 0.9 which may result
@ 4-7dB signal reduction before quantization, hence achieving significant
Increase in quantization performance.

3.4 Vector Quantization

When a set of discrete-time amplitude values is quantized jointly as a single
vector, the process is known as vector quantization (VQ), also known as block
quantization or pattern-matching quantization. A block diagram of a simple
vector quantizer is shown in Figure 3.9.

If we assume x = [x1,x2,... ., xy]7 is an N dimensional vector with real-
valued, continuous-amplitude (short or float representation is assumed to
be continuous amplitude) randomly varying components x;, 1 < k < N (the

40 Sampling and Quantization

)irl_, Input Vector X Vector index i
Buffer Matching >
Yi
Codebook
Y

Figure 3.9 Block diagram of a simple vector quantizer

superscript T denotes transpose in vector quantization), this vector is matched
with another real-valued, discrete-amplitude, N dimensional vector y. Hence,
x is quantized as y, and y is used to represent x. Usually, y is chosen from
a finite set of values Y = y;, 1 <i < L, wherey; = [y, ¥,, yin]". The set
Y is called the codebook or reference templates where L is the size of the
codebook, and y; are the codebook vectors. The size of the codebook may be
considered to be equivalent to the number of levels in a scalar quantizer. In
order to design such a codebook, N dimensional space is partitioned into L
regions or cells C;,1 < i < L and a vector y, is associated with each cell C;.
The quantizer then assigns the codebook vector y; if x is in C;,

gx) =y, If xeC; (3.40)

The codebook design process is also known as training or populating
the codebook. Figure 3.10 shows an example of the partitioning of a two-
dimensional space (N = 2) for the purpose of vector quantization. The filled

region enclosed by the bold lines is the cell C;. During vector quantization,

any input vector x that lies in the cell C; is quantized as y;. The other codebook
vectors corresponding to the other cells are shown by dots.

If the vector dimension, N, equals one vector quantization reduces to scalar
quantization. Scalar quantization has the special property that whilst cells
may have different sizes (step sizes) they all have the same shape. In vector
quantization, however, cells may have different shapes which gives vector
quantization an advantage over scalar quantization.

When x is quantized as vy, a quantization error results and, to measure
the performance of a specific codebook, an overall distortion measure D is
defined as,

D:izyyﬂ (3.41)

Vector Quantization 41

Figure 3.10 Partitioning of a two-dimensional space into 18 cells
where dj[x, y] is the distortion due to the i vector in the database given by,

N
1
dilx, yl = 5 3 " dlxie, yuu] (3.42)
k=1
wheie M is the number of vectors in the database and Y 1S the quantized
version of x;. For transmission purposes, each vector y; is encoded using

a.codeword of binary digits of length B; bits. The transmission rate T is
given by,

T = BF. bits/second (3.43)
where,
1M
B:MZ&bWMW (3.44)

=1

is the average codeword length (usually B = B;), B; is the number of bits
used to encode vector y; and F is the number of codewords transmitted per

40 Sampling and Quantization

)irl_, Input Vector X Vector index i
Buffer Matching >
Yi
Codebook
Y

Figure 3.9 Block diagram of a simple vector quantizer

superscript T denotes transpose in vector quantization), this vector is matched
with another real-valued, discrete-amplitude, N dimensional vector y. Hence,
x is quantized as y, and y is used to represent x. Usually, y is chosen from
a finite set of values Y = y;, 1 <i < L, wherey; = [y, ¥,, yin]". The set
Y is called the codebook or reference templates where L is the size of the
codebook, and y; are the codebook vectors. The size of the codebook may be
considered to be equivalent to the number of levels in a scalar quantizer. In
order to design such a codebook, N dimensional space is partitioned into L
regions or cells C;,1 < i < L and a vector y, is associated with each cell C;.
The quantizer then assigns the codebook vector y; if x is in C;,

gx) =y, If xeC; (3.40)

The codebook design process is also known as training or populating
the codebook. Figure 3.10 shows an example of the partitioning of a two-
dimensional space (N = 2) for the purpose of vector quantization. The filled

region enclosed by the bold lines is the cell C;. During vector quantization,

any input vector x that lies in the cell C; is quantized as y;. The other codebook
vectors corresponding to the other cells are shown by dots.

If the vector dimension, N, equals one vector quantization reduces to scalar
quantization. Scalar quantization has the special property that whilst cells
may have different sizes (step sizes) they all have the same shape. In vector
quantization, however, cells may have different shapes which gives vector
quantization an advantage over scalar quantization.

When x is quantized as vy, a quantization error results and, to measure
the performance of a specific codebook, an overall distortion measure D is
defined as,

D:izyyﬂ (3.41)

Vector Quantization 41

Figure 3.10 Partitioning of a two-dimensional space into 18 cells
where dj[x, y] is the distortion due to the i vector in the database given by,

N
1
dilx, yl = 5 3 " dlxie, yuu] (3.42)
k=1
wheie M is the number of vectors in the database and Y 1S the quantized
version of x;. For transmission purposes, each vector y; is encoded using

a.codeword of binary digits of length B; bits. The transmission rate T is
given by,

T = BF. bits/second (3.43)
where,
1M
B:MZ&bWMW (3.44)

=1

is the average codeword length (usually B = B;), B; is the number of bits
used to encode vector y; and F is the number of codewords transmitted per

42 Sampling and Quantization

second. The average number of bits per vector dimension (sample) is,
B .
R = N bits/sample (3.45)

When designing a compression system, one tries to design a quantizer
in which the distortion between the original and the quantized vectors is
minimized for a given digital transmission rate. Therefore, during the design
of a quantizer it is important to decide which type of distortion measure is
likely to minimize the subjective distortion.

3.4.1 Distortion Meaqsures

A distortion measure should be subjectively relevant, so that the differences in
distortion values can be used to indicate similar differences in speech quality.
However, a few dB decrease in the distortion may be quite perceptible by the

ear in one case but not in another. Whilst objective distortion measures are

necessary and useful tools in the design of speech coding systems, decisions
on the direction for improving coder performance should be made using

subjective quality testing.

Mean Squared Error

The most common distortion measure is the mean squared error (MSE)
defined as,

N
1 1
mxﬂ:ﬁu~wu—wfzﬁggm~wﬁ (3.46)
The popularity of the MSE is due to its simplicity.

Weighted Mean Squared Error

In the mean squared error method, it is assumed that the distortion con-
tributed by each element of the vector x is weighted equally. In general,
unequal weights can be introduced to render contributions of certain elements
to the distortion more important than others. Hence, a general weighted mean
squared error is defined by,

duwlx, y] = x = y)Wix —y)T (3.47)

where W is a positive weighting matrix.

Perceptually Determined Distortion Measures

For high bit rates and hence small distortions, reasonable distortion measures,
including the two mentioned above, perform well with similar performances.

Vector Quantization 43

Furthermore, they correlate well with subjectivejudgements of speech quality.
However, as the bit rate decreases and distortion increases, simple distortion
measures may not be related to the subjective quality of speech. Since the
main application of vector quantization is expected to be at low bit-rates,
it is very important to develop and use distortion measures that are better
correlated with human auditory behaviour. A number of perceptually based
distortion measures have been developed [10, 11, 12]. Since the main aim is to
produce the highest speech quality possible at a given bit rate, it is essential
to use a distortion measure that correlates well with human perception.

3.4.2 Codebook Design

When designing an L level codebook, N dimensional space is partitioned into
LceellsC;, 1 <i <L, and each cell C; is assigned a vector y;- The quantizer
chooses the codebook vector y; if x is in C;. To optimize Eli quantizer, the
distortion in equation (3.41) is minimized over all L levels. There are two
necessary conditions for optimality. The first condition is that the optimum
quantiger finds a matching vector for every input vector by minimizing the
distortion criterion. That is, the quantizer chooses the codebook vector that
results in the minimum distortion with respect to x [13].

10 =y, fdlxy]=dlxyl j#i 1<j<lL. (3.48)

The secgnq necessary condition for optimality is that each codebook vector
y; 1s optimized to give the minimum average distortion in cell C;.

l%=awwmnman=f

Xe

C dlx, yilp(x)dx (3.49)

where p(x) is the probability density function of vectors that result in the
quantized vector y; in cell (cluster) C;.

Vector y; is called the centroid of the cell Ci. Optimization of the centroid
Of a particular cell depends on the definition of the distortion measure. For
glther the mean squared error or the weighted mean squared error, distortion
n each cell is minimized by,

M.
1 1
Yin = M kE_] Xin x€Cj (3.50)

Wherg Yin{n=1,2,...,N}isthe n” element of the centroid y; of the cluster C;.
fI'hat 15, y; is simply the sample mean of all the training vectors M; contained
n cell C;. One of the most popular methods for codebook design is an iterative
clustering algorithm known as the K-means algorithm [13] (also known as

44 Sampling and Quantization

Lloyd’s algorithm [14]). The algorithm divides the set of training vectors into
L clusters C; in such a way that the two necessary conditions for optimality
are satisfied.

K-means Algorithm

Given that m is the iteration index and C;,, is the i' cluster at iteration m with
yi,, its centroid:

1. Initialization: Set m = 0 and choose a set of initial codebook vectors Vigr
1 <i<L. :

2. Classification: Partition the set of training vectors x,;, 1 < #n < M, into the
clusters C; by the nearest neighbour rule,

xeCi, if dlxy; 1<dx yjm] forall j+#i.

3. Codebook updating: m — m + 1. Update the codebook vector of every
cluster by computing the centroid of training vectors in each cluster.

4. Termination test: If the decrease in the overall distortion at iteration m
relative to m — 1 is below a certain threshold, stop; otherwise go to step 2.

Any other reasonable termination test may be used for step 4.

The above algorithm converges to a local optimum [14, 15]. Furthermore,
any such solution is in general not unique [16]. Global optimality may
be achieved approximately by initializing the codebook vectors to different
values and repeating the above algorithm for several sets of initializations and
then choosing the codebook that results in the minimum overall distortion.

3.4.3 Codebook Types

Vector quantization can offer substantial performance over scalar quantiza-
tion at very low bit-rates. However, these advantages are obtained at con-
siderable computational and storage costs. In order to compromise between
the computation and storage costs, and quantizer performance, a number
of codebook types have been developed. Some codebooks are precomputed
and do not change while being used; others may be updated during quanti-
zation. Here, we will briefly explain some of the widely-used codebooks in

speech coding.

Full Search Codebook

A tull search codebook is one where during the quantization process each
input vector is compared against all of the candidate vectors in the codebook.
This process is called full search or exhaustive search. The computation and

Vector Quantization T

storage requirements of a typical full search codebook can be calculated as
follows. If gach vector in a full search codebook is represented by B = RN bits
for transmission, then the number of vectors in the codebook is given by,

L=2% =2/ (3.51)

where N is the vector dimension in the codebook. In many applications
computing the absolute value of the quantization error may not be necessary,
as the main concern is to select the best performing vector. So a relative
performance rather than the absolute error is required. It is therefore possible
to compute the similarity rather than the difference between the input vector
and the codebook vectors. Therefore, assuming that the cross-correlation of
the input vector with each of the codebook candidates is computed and
the one resulting in the highest cross-correlation value is selected as the
quantized value of the input vector, the computation cost (assuming that
all the vectors are normalized, as differences in the energy levels will give
misleading cross-correlation values) is given by,

Comy, = N2RN multiply — add per input vector (3.52)

From this, we can also calculate the storage required for the codebook -

vectors as,
Mg = NL = N28 = N2RN [ocations (3.53)

It can be seen from the above expressions that the computation and storage
requirements of a full search codebook are exponentially related to the
number of bits in the codewords.

For a 16-bit fixed point processor the storage My, in bytes is given by 2 x M
and for a 32-bit floating point implementation, storage is 4 x Mg. In generajlrs
the storage is defined by the required number of words each corrésponding t(;
a lo.cation. For example if N = 10 and R = 1 the number of codebook vectors
L M}f;}l\/l be 2NR = 1024. The number of multiply~add operations needed will be
N2 =10 x 1024 = 10240 per input vector. Assuming a sampling frequency
of 8kHz, the number of vectors per second will be 8000/10 = 800. Therefore,
the computation cost will be 800 x 10240 = 8.192 x 10° multiply-add per
second. The storage requirement will be N2RN — 10 x 210 _ 10240 words
(locations).

U.Sing the K-means algorithm, a full search codebook can be optimized
(trained) in two possible ways.

* Method 1: The process starts with two initial vectors which may be
chosen r'a1.1dom1y or calculated as centroids of the two halves of the
large training database. The K-means algorithm is used to optimize the

46 Sampling and Quantization

initial vectors. After the optimization of each of the two initial vectors

vi = [v11, 012,013, ..., o1n] and vy = [vp1, U2, V23, . .. , von] with dimensions

N, each is split into two further vectors as, :

V3=Vi—¢&1, V4=Vite, Vs=vye—£, Ve=V)+Ey,

where &1 = [811, €12,€13, ... ,elN] and &y = [621,622,623, e ,€2N]. In most
cases &1 = £&3.

The vectors from the second stage are again optimized using the K-
means algorithm and split into further vectors and so on until the number
of optimized vectors is equal to the desired number. The optimization
process can also be terminated by comparing the overall quantization
noise performance of the codebook against a threshold.

During the optimization of a full search codebook using the above method,
it is important to check that all of the optimized vectors are in the densely-
populated areas and do not diverge into outer areas where their use will
be wasted. In such cases the perturbation vector ¢ is modified to change
the direction of the resultant vector.

e Method 2: The second method of optimization starts with randomly-
selected vectors from the training database. The number of initial vectors is
larger than the final desired number of vectors in the codebook. Using the K-
means algorithm these vectors are optimized. After the first optimization
process, the least used vectors are discarded from the codebook. The
remaining vectors are then optimized and the least used vectors are again
discarded from the optimized codebook. This process continues until the
final size of the codebook is reached. Here, the number of vectors discarded
at each stage and the number of optimization iterations may vary with the
application but the initial size of the codebook should at least be 1.5 times
the final size and the number of discarding stages should not be fewer
than five or six. The number of vectors discarded in each stage should be
reduced to increase the accuracy of optimization.

Binary Search Codebook

Binary search [17], known in the pattern recognition literature as hierarchical
clustering [14], is a method for partitioning space in such a way that the search
for the minimum distortion code-vector is proportional to log, L rather than
L. In speech coding literature, binary search codebooks are also called tree
codebooks or tree search codebooks.

In a binary search codebook, N dimensional space is first divided into two
regions (using the K-means algorithm with two initial vectors), then each of
the two regions is further divided into two subregions, and so on, until the
space is divided into L regions or cells. Here, L is restricted to be a power

Vector Quantization
47

Figure 3.11 Binary splitting into eight celis

of. 2, L =28 where B is an integer number of bits. Each region is associated
wIth'a centroid. Figure 3.11 shows the division of space into L = 8 cells. At
the first binary division vi and v; are calculated as the centroids of the éwo
halves} of the total space to be covered. At the second binary division four
ceptrm.ds are calculated as v, to ve. The centroids of the regions after the
third bmary division are the actual codebook vectors y;. An input vector x is
quantized, searching the tree along a path that gives the minimum distortion

ateach node in the path Again assumin i
: . & N multiply—adds for each distorti
computation, the computation cost will be, ' e

Comps = 2N log, L = 2NB multiply — add per input vector (3.54)

At each stage, the input vector is compared against only two candidates.

C

The total storage cost, on the other hand, has gone up significantly

Mps = 2N(L — 1) locations (3.55)

or,

B
My, =N Z 2" locations , (3.56)

i=1

A tree search codebook need not be a binary search codebook. In other
Z;iords the number of splitting stages may be less than the number of bits, B, in
€ codeword. In this case, each vector from the previous stage may point to
More than two vectors in the current stage. This can be seen as a comgromise

48 Sampling and Quantization

between the extreme cases of low computation cost with high storage (binary
codebook) and high computation cost with low storage requirement (full
search codebook).

During the training of a binary codebook, at each stage of splitting using
the K-means algorithm and method 1, the resultant optimum codebooks are
stored. The database is also split into sections represented by each of the
resultant vectors. When the vectors are further split, each new pair of vectors
is optimized using the section of the database represented by their mother
vector. This process continues until the final size codebook is reached and

optimized.

Cascaded Codebooks

The major advantage of a binary search codebook is the substantial decrease
in its computational cost, relative to a full search codebook, with a relatively
small decrease in performance. However, the storage required for a binary
search codebook relative to a full search codebook is nearly doubled. Cascaded
vector quantization is a method intended to reduce storage as well as
computational costs [18, 13]. A two-stage cascaded vector quantization is
shown in Figure 3.12. Cascaded vector quantization consists of a sequence of
vector quantization stages, each operating on the error signal of the previous
stage. The input vector x is first quantized using a By bit L; level vector

Vector Quantizer

Codebook 1 Codebook 2
Yi

xw Vector * Vem Vector € Vector
Buffer Matching Buffer Matching
i l—————)

index i index k

Vector De-quantizer

index i
—————=> (Codebook 1

A
% x(n)
index k
Codebook 2

Figure 3.12 A two-stage cascaded vector quantizer

ctor Quantizatio
Ve n 49

quantizer and the resulting error signal is then used in the input to a B, bit L,
level second_ vector quantizer. The sum of the two quantized vectors results
in the quantized value of the input vector x.

The computation and storage costs for a k -stage cascaded vector quantiza-

tion are respectively,
Comiee = N(Ly + Ly + ... + L) multiply — add per input vector (3.57)
Mee =N(Ly + Ly + ... + Ly) locations (3.58)
. Assuming Ly =251 [, = 282 54 L = 2% and the total number of bits per
input vector B = By + B, ... + By, we can see that the number of candidate

vectors searched in a cascaded codebook for each i .)
input vector is 1
a full search codebook, p s less than in

k k

By, :
> 2B 9B B:}fB,l and k > 1 (3.59)
n=1

n=1

We can also see that the storage of a cascaded codebook is less than that

required by a binary codebook,

k B "
B, i ’
N le <N<ZZ) for k> 1 (3.60)
H= 1:1

Given the conditiqn that the total number of bits used at various stages of a
ca§cade§1 codebook is B, both computation and storage requirements reduce
with an increase in the number of stages. :

Split Codebooks

In all of the above codebook types an N dimensional input vector is direct]

matched with N dimensional codebook entries. In a split vector quantizatioz
scheme, an N dimensional input vector is first split into P parts where P = 1

For each part of the split vector a separate codebook is used and each part ma :
be vector quantized independently of the other parts using B, bits. Assuminy
avector is split into P equal parts and vector quantized using By, bits for eacﬁ
part, the computation and storage requirements can be CalculatZrd as follows:

N
Comgs = E(M +Lo+...+Lp) multiply — add per imput vector (3.61)
where L, = 2% for p=12..., P Similarly, the storage is given by:

N
M = ~I-J—(L1 +Ly+ ...+ Lp) locations (3.62)

50 Sampling and Quantization

The usefulness of a split vector quantization is in its flexibility in choosing
the dimension of each split part and in the allocation of the overall bits per
input vector to these parts according to the perceptual importance of the
vector elements contained in each split part.

Gain Shape Codebooks

In the earlier discussion of scalar quantization, it was mentioned that the
variance of the input speech signal affected the performance of the quantizer.
This is also true in the case of a vector quantizer. For example, if the mput
signal variance is fixed at a certain value, all of the codebook entries will
have the same variance and differ only in the shape of vector elements.
In addition, if we assume that the same number of shape combinations is
repeated with another variance level at the input, the number of codebook
entries would have to be doubled to cover the vector shapes at two different
energy levels. Therefore, if the input vectors have a large dynamic range,
the required codebook size may be too large for practical implementation in
both computation and storage. This problem can be overcome by using the
same idea that is used in scalar quantization: each input vector is normalized
to a certain variance level (usually unity), and then its unit variance shape
is vector quantized using a shape codebook containing candidate vectors
with unity variance. The original variance of the input vector is separately
quantized and transmitted to the de-quantizer for correct scaling. This process
is called gain-shape vector quantization. A block diagram of a gain-shape
vector quantizer is shown in Figure 3.13. The gain of the input vector is
usually calculated and quantized using a scalar quantizer either before or
during the search of the shape codebook. '

If the gain of the input vector is to be calculated and quantized before
finding its shape then the quantized gain is calculated as: :

oy =Q (3.63)
i(_li_, Input Vector X Match index i
Buffer X and ©, y; o,

Y;

Codebook

Figure 3.13 Gain-shape vector quantizer

Vector Quantization 5]

where
QL]

denotes quantization operation. The shape codebook is then searched and
the codebook vector which minimizes the expression,

N
De=Y (xi—éa)* k=1,2,... L (3.64)

i=1
is chosen for transmission. This search scheme, called open loop, is not
optimum. Better performance can be achieved with a closed loop scheme
where the shape is first found and then the corresponding gain is quantized
before computing the final error. Here, we assume an optimum gain oy, to be
used for each of the L shape codebook entries and compute the corresponding
distortion Dy as:

N
D; = Z(xi — Okyki)z k=1,2,...,L (3.65)
=1
We wish to find a vector y, from the shape codebook with a gain value of oy
such that the corresponding distortion Dy is minimized. However, we have
two unknowns, namely, y; and oy. To find oy in terms of y, we differentiate
(3.65) with respect to oy and set it to zero for minimum error gain. This gives
the following o} for the codebook vector yx in relation to an input vector x,

N

Z (XiYgi)

i=1
N
D Vi
i=1

1f we substitute (3.66) into (3.65) we can write the distortion Dy independently

of o as,
N
N (> xi}/ki)

Dp=Y () — = k=12, L (3.67)

= Z Vi
i=1

The first term of Dy in equation (3.67) does not change with k, and
hence it is not computed during the search of the shape. The shape is
found by maximizing only the second term in (3.67). During the codebook
search process, the most likely shape values are found by maximizing the

(3.66)

O =

2

52 Sampling and Quantization

second term in equation (3.67). Then, corresponding gain values given by |

(3.66) are computed and quantized. Finally, each shape vector scaled by its
quantized gain is compared with the input vector. This whole process can be
simplified with only a small increase in the quantization error by computing
the second part of equation (3.67) for all k to select the best shape vector
without quantizing its gain (assuming that gain quantization noise will not,
in general, render other vectors more favourable). In this case only one shape
vector is considered which does not require further comparisons after the
gain quantization process.

Adaptive Codebooks

The above discussed codebooks do not vary with time. Therefore, it is
extremely important to train these codebooks for optimal performance with
varying time and hence varying input vector characteristics. One way of
making a codebook track the input vector characteristics with time is to
make the codebook adaptive. As in the case of an adaptive scalar quantizer,
the adaptation of a codebook can be achieved using either forward or
backward schemes.

In a forward adaptive vector quantizer, the codebook is updated with
respect to the input vectors before the quantization process, which requires
some side information to be transmitted to the de-quantizer for compatible
adaptation necessary for correct recovery of the signal.

In the case of a backward adaptive quantizer, the codebook is updated by
the appropriately transformed most recent quantizer output vectors. In this
case, no side information is needed since the same update process can be
performed at the de-quantizer using the previously recovered vectors.

An adaptive codebook is usually used in cascade with other (generally,
fixed) codebooks, which provide the initial vectors to the adaptive codebook
as well as helping to speed up adaptation when significant signal variations
occur. An adaptive codebook in a two-stage cascaded vector quantizer is
shown in Figure 3.14. The first stage can be an adaptive codebook followed
by a fixed second stage codebook. The adaptive codebooks used in these
configurations are called predictor codebooks and the whole process is called
predictive or differential vector quantization.

3.4.4 Training, Testing and Codebook Robustness

An important part of the codebook design is the training process used to
populate the codebook. The training process simply optimizes a codebook
for given training data by calculating the centroids of the cells. Because the
K-means algorithm is not guaranteed to result in a codebook that is globally
optimunm, it is often suggested that one repeats the algorithm with a number
of different initial sets of codebook vectors [19].

tor Quantizati
vec ization 53

Fixed
Codebook

Vector Quantizer

x{(n)

Buffer

Vector
Matching

Vector De-quantizer

Index i

2

Index k

>

X ﬁ(n)

X
Adaptive

Codebook

Index i

Figure 3.14 Adaptive vector quantizer in a cascaded setup

~ After designing a codebook to match a given set of training data, it is
Important to test the performance of that codebook on data that wa,s not
used in the training. Testing only on the training data will always give better
performance than the codebook will actually give in practice.

The robustness of a codebook can be measured by measuring its perfor-
mance on data whose distribution is different from that of the training data.
In practice, one cannot usually predict all of the situations under which a
quantizer will be used and so the distribution of the actual data may be
different from that of the training data. There are two major types of variation
thaf affect the design and operational performance of a codebook: input signal
Var}ability and digital transmission channel errors. . i

Signal variability can be further classified as speaker variability and envi-
ronmental variability. Speaker variability covers the changes in the input
signal Que to a change in the speaker’s voice and may, for example, be due
to rpul.tlple speakers or the health conditions of each speaker. Envirogimental
Var1ab1l?ty, on the other hand, refers to the background noise level and type
For a given bit rate and speaker, a speaker-dependent codebook performs'

54 Sampling and Quantization

better than a speaker-independent codebook. One method of maximizing the
performance of a codebook is to design a speaker-independent codebook
initially and then, as the system is used, have it adapt to the speech of new
speakers [20]. In such a system, automatic adaptation to the background noise
environment of the speaker is also possible.

As in the case of a scalar quantizer transmission channel errors affects
the performance of a vector quantizer. Channel errors translate directly into
distortion at the output, depending on the channel error rate. In general,
vector quantization systems tend to be less robust to random channel errors
than scalar quantizers, as a single bit error can cause all of the values
represented by that vector to be in error.

3.5 Summary

Many quantization schemes have been designed and deployed in practice.
With the advancement in the DSP technology which allowed more process-
ing power as well as storage, vector quantization techniques have become
widespread. Vector quantization schemes are very effective in reducing the
bit rate of the signal that is being quantized at the expense of increased imple-
mentation complexity. It is however crucial that the codebooks are trained
to match the incoming signal. As the training processes are usually applied
off-line they can be allowed to run for a long time so that the best codebooks
are obtained. In parallel with significant advances in the DSP technology, the
implementation cost of various codebooks has been optimized by developing
intelligent search algorithms as well as different types of codebook.

Bibliography

[1] L. Rabiner and R. Schafer (1978) Digital Processing of Speech Signals.
Englewood Cliffs, NJ: Prentice-Hall

[2] K. W. Cattermole (1973) Principles of Pulse Code Modulation. London:
1lliffe ,

[3] P. F. Panter and W. Dite (1951) ‘Quantization distortion in PCM with
non-uniform spacing of levels’, in Proc. IRE, 39:44-8.

[4] J. Max (1960) ‘Quantising for minimum distortion’, in IRE Trans. on
Information Theory, 6:7-12.

[5] M. D. Paez and T. H. Glisson (1972) ‘Minimum mean-squared-error
quantization in speech PCM and DPCM systems’, in IEEE Trans. on
Communications, 20(4):225-30.

[6] P. Noll (1974) ‘Adaptive quantizing in speech coding systems’, in [FEE
Int. Zurich Seminar on Digital Comm., pp. B3.1-6, March.

Bibliography 55

[7] R. W. Stroh (1970) “‘Optimum and adaptive DPCM’, Ph.D. thesis, Poly-
technic Inst. of Brooklyn, USA.

[8] N. S. Jayant (1974) ‘Adaptive quantization with a one-bit memory’, in
Bell Sys. Technical Journal, 52. ‘

[9] N. S. Jayant (1974) 'Digital coding of speech waveforms: PCM, DPCM
and DM quantizers’, in IEEE Proc., 62(5):611-632.

[10] N. S:]ayant and P. Noll (1984) Digital Coding of Waveforms: Principles and
applications to speech and video. New Jersey: Prentice-Hall

[11] M. Schroeder and B. Atal (1979) ‘Predictive coding of speech signals
and subjective error criteria’, in [EEE Trans. on Aco st., Speech and Signal
Processing, 27:247-54. :

[12] V. Yiswanathan etal. (1983) ‘Objective speech quality evaluation of
medium band and narrow band real-time speech coders’, in Proc. of Int.
Conf. on Acoust., Speech and Signal Processing, pp. 543-6.

[13] J. Makhqul, S. Roucos, and H. Gish (1985) ‘Vector quantisation in speech
coding’, in Proc. of IEEE, 23:1551—88.

[14] M. R. Anderberg (1973) Cluster Analysis for Applications, p. 22. Academic
Press

[15] Y. Linde, A.Buzo, and R. Gray (1980) ‘An algorithm for vector quantiser
design’, in [EEE Trans. on Communications, 28(1):84-95.

[16] R. Gray and E. Karnin (1982) "Multiple local in vector quantization’, in
IEEE Trans. on Information Theory, 28:256~61.

[17] A.Buzo, AH Gray Jr., R. M. Gray, and J. D. Markel (1980) ‘Speech coding
based upon vector quantisation’, in IEEE Trans. on Acoust., Speech and
Signal Processing, 28(5):562~74.

[18] S. Roucos, R Schwartz, and J. Makhoul (1982) ‘Vector quantization for
very low bit rate coding of speech’, in Proc. of Globecom, pp. 1074-8.

[19] R. Gray (1984) ‘Vector quantization’, in IEEE ASSP Maguazine, 1:4-28.

[20] D. B. Paul (1983) ‘An 800 bps adaptive vector quantisation vocoder using

a perceptual distance measure’, in Proc. of Int. Conf. on Acoust., Speech and
Signal Processing, pp. 73~6.

