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Theorem 8.3.1

If the density f(x) of the random variable X is Riemann integrable, then

H(X∆) + log ∆→ h(f) = h(X) as ∆→ 0

Thus, the entropy of an n-bit quantization of a continuous random vari-
able X is approximately h(X) + n.

Question

Suppose Z = X + Y. What is the equivalent of Theorem 8.3.1?

Answer

FZ(z) =
∞∫
−∞

z−x∫
−∞

f(x, y)dydx

The pdf of Z is found using Leibniz integration:

fZ(z) =
dFZ(z)

dz

=

∞∫
−∞

fX,Y (z − y, y)dy
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(if X and Y were guaranteed independent, we could save ourselves some
breath here by by just using convolution)

Z∆ is a quantized random variable as described in the text.

The probability that Z∆ = zi is

pi =

(i+1)∆∫
i∆

fX,Y (z − y, y)dy

= fX,Y (z − y, y)i∆ (I not sure of the best notation for this)

The entropy of the quantized version is

H(Z∆) =
∞∑
−∞

pi log
1

pi

=

∞∑
−∞

fX,Y (z − y, y)∆ log
1

fX,Y (z − y, y)∆

=
∑

fX,Y (z − y, y)∆ log
1

fX,Y (z − y, y)
+
∑

fX,Y (z − y, y)∆ log
1

∆

=
∑

fX,Y (z − y, y)∆ log
1

fX,Y (z − y, y)
+ log

1

∆

We can do this final step because
∑

fX,Y (z − y, y)∆ =
∫
fZ(z) = 1

Similarly to the text’s single dimensional example, if fX,Y (z−y, y)∆ log 1
fX,Y (z−y,y)

is Riemann integrable, then the first term approaches the integral definition
of the pdf of Z.

H(Z∆) + log ∆→ h(f) = h(Z) as ∆→ 0

H(X) + H(X|Y ) + log ∆→ h(f) = h(Z) as ∆→ 0

Finally, we can break this up via the chain rule. The chain rule holds in
the continuous case (Theorem 8.6.2 in text).
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I had a bunch of stuff in here regarding a two-dimensional mean value
theorem, but I realized I was adding unnecessary complexity, so I removed it.
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