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Theorem 8.3.1

If the density f(x) of the random variable X is Riemann integrable, then
H(X?) +1logA = h(f) =h(X)as A =0

Thus, the entropy of an n-bit quantization of a continuous random vari-
able X is approzimately h(X) + n.

Question

Suppose Z = X + Y. What is the equivalent of Theorem 8.3.17

Answer
Fo(2) = [ ] flo)dyds

The pdf of Z is found using Leibniz integration:
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(if X and Y were guaranteed independent, we could save ourselves some
breath here by by just using convolution)

Z” is a quantized random variable as described in the text.

The probability that Z2 = z; is
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= fxy(z—y,y)iA (I not sure of the best notation for this)

The entropy of the quantized version is
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We can do this final step because >~ fxy(z —y,y)A = [ fz(z) =1

Similarly to the text’s single dimensional example, if fx y (2—y,y)Alog m

is Riemann integrable, then the first term approaches the integral definition
of the pdf of Z.

H(Z%) +1log A — h(f) =
H(X)+ H(X|Y)+1logA — h(f) =

hZ) as A — 0
h(Z)as A —0

Finally, we can break this up via the chain rule. The chain rule holds in
the continuous case (Theorem 8.6.2 in text).



I had a bunch of stuff in here regarding a two-dimensional mean value
theorem, but I realized I was adding unnecessary complexity, so I removed it.



