

From:

$$
h(a X)=h(X)+\log |a|
$$

Which is Theorem 8.6.4. in the Wiley book, we can state a rotation matrix for a:

$$
a=\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]
$$

So that the first equation looks like:

$$
h(a X)=h(X)+\log |a|=h(X)+\log \left|\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]\right|
$$

In this case, the determinant of the rotation matrix is:

$$
\operatorname{det}(a)=\cos ^{2} \theta+\sin ^{2} \theta=1
$$

This is evident from simple trigonometric identities. Therefore, the equation 1 simplifies to:

$$
h(a X)=h(X)+\log 1=h(X)+0=h(X)
$$

