M. Crocker, et al., Intelligent Electronic Systems
Page 1 of 4

A Survey of Reliable Transport Protocols.

M. Crocker, Y. Chen, W. Hu, and W. Zhu
A. Introduction

The Internet is an unreliable network that cannot guarantee all data sent by a host will be delivered correctly to the destination. As a result, reliable end-to-end data delivery is delegated to transport layer protocols such as the transmission control protocol (TCP), ad-hoc transport protocol (ATP), Stream Control Transmission Protocol (SCTP), and others. These protocols are also responsible for congestion avoidance in order to prevent congestion collapse in the carrier network.

 TCP is by far the most widely used and established implementation of the reliable protocols but many different versions of TCP have been developed as the algorithms and techniques for increasing efficiency and performance have been refined. In this survey, we examine the various versions of TCP and characterize the attributes of these versions which contribute to their improved performance.

B. Transmission Control Protocol
The Transmission Control Protocol (TCP) was first proposed over 30 years ago as part of the IP suite by DARPA. This protocol was little more than a best effort, transmit-and-acknowledgement scheme for reliably transmitting streams of data between two hosts. This TCP lacked any type of congestion mechanisms until 1988 when Jacobson and Karels proposed the basic congestion mechanisms after a series of congestion collapses of the DARPA Internet. These mechanisms, slow-start, congestion avoidance, and fast retransmit, have become a fundamental part of all TCP versions. While these mechanisms have been very successful at avoiding and preventing congestion, efficiency and performance have not yet been perfected.
There have been numerous improvements to TCP by refining the old mechanisms or by introducing new ones but there is no consensus on what improvements are the best and just how many different TCP versions have been developed. The following sections of this paper take a look at the most prominent and successful TCP versions and attempt to distinguish the most important features of these versions.
B.1. TCP SACK
This
B.2. TCP New Reno
TCP New Reno [1] modifies the Fast Retransmit and Fast Recovery [3], reset of the retransmit timer, avoiding Multiple Fast Retransmits. These modifications are intended to fix the Reno problems above and are wholly implemented in the sender side.
New Reno is the same as Reno but with more intelligence during fast recovery. It utilizes the idea of partial ACKs: when there are multiple packet drops, the ACKs for the retransmitted packet will acknowledge some, but not all the packets send before the Fast Retransmit.
In TCP Reno [2], the first partial ACK will bring the sender out of the fast recovery phase. This will result in the requirement of timeouts when there are multiple losses in a window, and thus stalling the TCP connection.
In New Reno, a partial ACK is taken as an indication of another lost packet and as such the sender retransmits the first unacknowledged packet. Unlike Reno, partial ACKs don't take New Reno out of Fast Recovery. This way, it retransmits one packet per RTT until all the lost packets are retransmitted and avoids requiring multiple fast retransmits from a single window of data.
Through all these modification, TCP New-Reno has better capability to recover from multiple packet losses in a window than TCP Reno. The difference in throughput between New-Reno and Reno is no significant when there is few packets loss in a channel, but New Reno over-performs Reno dramatically with the increase of packets loss [4] [5].

However TCP New-Reno’s ability to recover from packet losses is limited by its inherent weaknesses, including [6]:
In TCP New-Reno, the number of new data packets sent out per round-trip time (RTT) decreases exponentially due to its policy “one new data packet is sent out upon receipt of 2 duplicate ACKs” during the entire congestion-recovery period. Since TCP New-Reno can only recover from one dropped packet per RTT, this rapid decrease will eventually stop the flow of returning ACKs (hence, loss of self-clocking), and a coarse timeout will follow.
During congestion recovery, TCP New-Reno only passively recovers from the dropped packets. The exponentially decreased amount of data transmitted during each RTT lowers link utilization even if it does not cause the loss of self-clocking.

TCP New-Reno cannot detect further data losses that might occur to the new data packets sent out during congestion recovery. It has to resort to another trigger of fast retransmit or a retransmission timeout to detect such packet losses.

The New Reno can remain in Fast Recovery for a long time when multiple packets have been dropped from a window of data. However, that there is a limitation to the potential performance in this case in the absence of the SACK option [3].

B.3. TCP FAST
TCP Reno has performed remarkably well and is generally believed to have prevented severe congestion as the Internet scaled up by six orders of magnitude size, speed, load, and connectivity. However, as the bandwidth-delay product continues to grow, TCP Reno will eventually become a performance bottleneck itself. Large windows problem and packet-loss congestion detection contribute to the poor performance of TCP Reno in networks with large bandwidth-delay product. Window increment per RTT and decrement per loss in large window size can’t be equal in equilibrium. It is additive increase multiple decrease [1]. It takes more RTTs to recover from a single packet loss. Congestion in TCP Reno is decided by packet loss signal: timeout or duplicate acknowledgement [2]. But congestion control combined with queue delay-based estimation can be more accurate for high data-rate network and have more stable dynamics and little oscillation[3] [4].

FAST TCP has four components [4]: The data control component determines which packets to transmit, window control determines how many packets to transmit, and burstiness control determines when to transmit these packets. These decisions are made based on information provided by the estimation component. Estimation component computes two pieces of feedback information for each data packet. When a positive acknowledgment is received, it calculates the RTT for the corresponding data packet and updates the average queuing delay and the minimum RTT. When a negative acknowledgment (signaled by three duplicate acknowledgments or timeout) is received, it generates a loss indication for this data packet to the other components. The estimation component generates both a multi-bit queuing delay sample and a one-bit loss-or-no-loss sample for each data packet. The window control component determines congestion window based on congestion information-queuing delay and packet loss, provided by the estimation component. A key decision in our design that departs from traditional TCP design is that the same algorithm is used for congestion window computation independent of the state of the sender. For example, in TCP Reno (without rate halving), congestion window is increased by one packet every RTT when there is no loss, and increased by one for each duplicate ACK during loss recovery. In FAST TCP, we would like to use the same algorithm for window computation regardless of the sender. FAST TCP congestion control reacts to both queuing delay and packet loss. FAST TCP periodically updates the congestion window based on the average RTT and average queuing delay provided by the estimation component, according to[4][6]:

[image: image1.wmf]þ

ý

ü

î

í

ì

+

+

-

¬

))

,

(

)

((

)

1

(

,

2

min

qdelay

w

w

RTT

baseRTT

w

w

w

a

g

g

Where
[image: image2.wmf]]

1

,

0

(

Î

g

, baseRTT is the minimum RTT observed so far, and qdelay is the end-to-end (average) queuing delay.
FAST TCP window adjustment is equation-based, under which the network moves rapidly toward equilibrium when the current state is far away and slows down when it approaches the equilibrium. It also uses queuing delay, in addition to packet loss, as a congestion signal. Queuing delay provides a finer measure of congestion and scales naturally with network capacity. Comparing its performance with TCP Reno, HSTCP, and STCP not only in static environments, but also dynamic environments where flows come and go, and not only in terms of end-to-end throughput, but also queue behavior in the network, HSTCP and STCP achieved better throughput and link utilization than Reno, but their congestion windows and network queue lengths had significant oscillations. TCP Reno produced less oscillation, but at the cost of lower link utilization when sources departed. FAST TCP, on the other hand, consistently outperforms these protocols in terms of throughput, fairness, stability, and responsiveness [4] [5].
B.4. SCTP
The Stream Control Transmission Protocol (SCTP) is not a version of TCP but is an extended transport protocol intended to encapsulate the properties of UDP, an unreliable, message oriented protocol, with the reliable, stream oriented properties of TCP. SCTP also introduces many enhancements to address security, fault-tolerance, multihoming, and multistreaming. With these enhancements, SCTP fulfills the deficiencies of TCP in applications such as streaming voice, streaming video, signaling, asynchronous transactions, etc., and unifies the properties of separate reliable and unreliable protocols into one multipurpose protocol. In many ways, SCTP is an entirely new protocol but builds on the familiar, proven foundations of UDP and TCP.
One major difference between SCTP and TCP is the data transportation method. SCTP sends data as framed messages whereas TCP is byte-oriented. In theory, a message oriented data stream can increase performance since hosts no longer have to track message boundaries and messages can be sent without requiring the TCP push mechanism to force a transmit. SCTP’s framed messages are supported by chunk headers contained in the payload of the SCTP packet that define the boundaries of the framed message. Ordered and unordered data delivery is another feature of SCTP that differs with TCP. TCP is strictly an ordered data stream protocol which forces out-of-order segments to wait until the previous segments are delivered. This “head-of-line” blocking can add delay to transfers such as voice and video streams or control signals while the lost packet is being resent. SCTP supports out-of-order messages so that messages are delivered as soon as they are received.
Other major features of SCTP include connection oriented transfers, no “head-of-line” blocking, multiple delivery modes, multihoming support, TCP-friendly congestion control, selective acknowledgements, explicit congestion notification, user data fragmentation, heartbeat keep-alive mechanism, and DOS protection []. The congestion control in SCTP uses the same mechanisms as TCP (slow-start, congestion avoidance, and fast retransmit) along with the selective acknowledgements introduced by TCP SACK. The performance of SCTP then could be expected to be comparable with TCP SACK. [] compares the performance between TCP SACK and SCTP in a MANET and concludes that TCP SACK outperforms SCTP in this topology. Other papers have introduced changes, primarily to the congestion window mechanism to improve the performance of STCP but these improved versions have not been extensively compared with versions of TCP.
Multihoming in SCTP is designed to support fault-tolerance where multiple interfaces on a host share the same IP address. If one interface fails, the next interface assumes transmission with the same IP address as the failed interface. A four-way “cookie” handshake helps prevent DOS attacks caused by SYN floods but at the cost of extra delay in initiating transfers.
In conclusion, SCTP is a feature rich version of TCP and UDP but implements the same congestion mechanisms as TCP SACK. Even so, the protocol is still in its early stages of development and lacks mature technology to make it comparable in performance with TCP SACK. Later refinements may bring the performance up to that of TCP SACK but the vast majority of applications rely on TCP and so SCTP will most likely never completely replace TCP.
C. Summary
D. References

1. J. Baca, F. Zheng, H. Gao and J. Picone, "Dialog Systems for Automotive Environments," European Conference on Speech Communication and Technology, pp. 1929-1932, Geneva, Switzerland, September 2003.
2. J. Baca and J. Picone, "Effects of Navigational Displayless Interfaces on User Prosodics," Speech Communication, vol. 45, no. 2, pp. 187-202, February 2005.

3. J. Baca, D. Brown and J. Picone, “Dialog Systems for E-Learning Applications,” Submitted October 2004 to International Journal of Speech Technology, currently under review.
4. E. Charniak, “A maximum-entropy-inspired parser,” Proceedings of the First Conference on North American Chapter of the Association For Computational Linguistics, Seattle, Washington, USA, pp. 132-139, April 2000.
5. A. Ganapathiraju, J. Hamaker and J. Picone, "Applications of Support Vector Machines to Speech Recognition," IEEE Transactions on Signal Processing, vol. 52, no. 8, pp. 2348-2355, August 2004.

Center for Advanced Vehicular Systems
September 30, 2005

_1189431016.unknown

_1189431985.unknown

