M. Crocker, et al., Intelligent Electronic Systems
Page 1 of 36

A Survey of Reliable Transport Protocols.

M. Crocker, Y. Chen, W. Hu, and W. Zhu
Mississippi State University
A. Introduction

The Internet is an unreliable network that cannot guarantee all data sent by a host will be delivered correctly to the destination. As a result, reliable end-to-end data delivery is delegated to transport layer protocols such as the transmission control protocol (TCP), ad-hoc transport protocol (ATP), Stream Control Transmission Protocol (SCTP), and others. These protocols are also responsible for congestion avoidance in order to prevent congestion collapse in the carrier network.

 TCP is by far the most widely used and established implementation of the reliable protocols but many different versions of TCP have been developed as the algorithms and techniques for increasing efficiency and performance have been refined. In this survey, we examine the various versions of TCP and other significant transport protocols and characterize the attributes of these protocols which contribute to their improved performance.

B. Transmission Control Protocol
The first version of TCP was introduced over 25 years ago as part of the IP suite by DARPA [18]. This protocol was little more than a best effort, transmit-and-acknowledgement scheme for reliably transmitting streams of data between two hosts. This protocol lacked any type of congestion mechanisms until 1988 when Jacobson proposed the basic congestion mechanisms after a series of congestion collapses of the DARPA Internet [17]. These mechanisms, slow-start, congestion avoidance, and fast retransmit, have become a fundamental part of all TCP versions. While these mechanisms have been very successful at avoiding and preventing congestion, efficiency and performance have not yet been perfected [16].
There have been numerous improvements to TCP by refining the old mechanisms or by introducing new ones but there is no consensus on what improvements are the best and just how many different TCP versions have been developed. The following sections of this paper take a look at the most prominent and successful TCP versions and attempt to distinguish the most important features of these versions.
B.1. TCP Reno

Reno is the code name for the 4.3 BSD TCP version containing the fast recovery mechanism. Most modern TCP versions have their foundations built on the Reno version of TCP. This version contains all of the reliable transport mechanisms defined in RFC 793 with the addition of the congestion avoidance mechanisms provided by Tahoe [17]. Reno also introduces a new mechanism called fast recovery. With these mechanisms, TCP Reno forms the basis for all TCP versions to follow. The table below summarizes the features of early TCP versions.
	Features
	RFC 793 and RFC 1122
	TCP Tahoe (1988)
	TCP Reno (1990)

	RTT Variance Estimation
	√
	√
	√

	Exponential RTO Backoff
	√
	√
	√

	Slow Start
	√
	√
	√

	Karn’s Algorithm
	√
	√
	√

	Congestion Avoidance
	√
	√
	√

	Fast Retransmit
	
	√
	√

	Fast Recovery
	
	
	√

Table 1 - Comparison of features in early TCP Versions
TCP Reno consists of three main mechanisms [26]: slow-start, congestion avoidance and fast retransmission/fast recovery. A source starts cautiously with a small window size of one packet and increments its window by one every time it receives an acknowledgment. This doubles the window every roundtrip time and is called slow-start. When the window reaches a threshold, the source enters the congestion avoidance phase, where it increases its window more slowly by the reciprocal of the current window size every time it receives an acknowledgment. This increases the window by one packet in each round-trip time. On detecting a loss through duplicate acknowledgments, the source retransmits the lost packet, halves its window, and re-enters congestion avoidance. This is referred to as fast retransmit/fast recovery, to contrast it with the source detecting the loss through a timeout, in which case it re-enters slow-start instead of congestion avoidance.

[image: image66.png]Slow

VS Stare
No—
v

Rate Control

¥

Yis

YES:

Congestion

Avoldance

%

[image: image1.emf]

Time

cwnd

Timeout

Slow Start

Congesti on Avoidance

The fast recovery mechanism introduced by TCP Reno was implemented in order to better adapt to network congestion. Before fast recovery, packets that were lost due to congestion were quickly resent by the fast retransmit mechanism but this forced TCP to enter into slow start mode. The fast recovery mechanism alters this behavior so that the congestion window is reduced by half and the congestion avoidance phase is entered. Figure 1 shows the behavior of the congestion window without fast recovery. Every time a timeout or congestion is encountered, the congestion window is reduced to 1 and slow start begins. With fast recovery, the congestion window is reduced to half the current value and congestion avoidance is entered as shown in Figure 2.
[image: image67.png]BEGIN
Slow
Start
Fast
Recovery
A 4
T Congestion | YES
Avoidance
Expieit
Retransmit
RTO
Rate Control
N

)
m‘

The fast recovery mechanism is intended to keep a steady flow of data to the receiver rather than abruptly halting the transmission when congestion or lost packets are encountered. For large windows sizes this should help to improve throughput since the congestion window can retain most of its size rather than being reduced back to 1. For small window sizes, fast recovery could prove to be very inefficient since slow start allows the window to grow at a much more rapid pace compared to congestion avoidance. Some experiments even show TCP Tahoe to outperform Reno in certain situations. Performance comparisons can be found near the end of this document containing the results from these experiments.
B.2. TCP Vegas

TCP Vegas has the same procedure as TCP Reno above but improves upon each of the three mechanisms of TCP Reno, not by an aggressive retransmission strategy that effectively steals bandwidth away from TCP connections but by a more efficient use of available bandwidth [25] [28]. The first enhancement, a new retransmission mechanism, is a more prudent way to grow the window size during the initial use of slow-start and leads to fewer losses. The second enhancement, a new congestion avoidance mechanism, is an improved retransmission mechanism where timeout is checked on receiving the first duplicate acknowledgment, rather than waiting for the third duplicate acknowledgment (as Reno would), and leads to a more timely detection of loss. The third enhancement is a new congestion avoidance mechanism that corrects the oscillatory behavior of Reno [26].
Vegas extends the Reno retransmission mechanism as follows. First, the RTT is calculated by reading and recording the system clock each time a segment is sent. When an ACK arrives, Vegas reads the clock again and does the RTT calculation using this time and the timestamp recorded for the relevant segment [25, 28]. Second, when a duplicate ACK is received, Vegas checks to see if the difference between the current time and the timestamp recorded for the relevant segment is greater than the timeout value. If it is, then Vegas retransmits the segment without having to wait for three duplicate ACKs. In many cases, losses are either so great or the window so small that the sender will never receive three duplicate ACKs, and therefore, Reno would have to rely on the coarse-grained timeout mentioned above. When a non-duplicate ACK is received, if it is the first or second one after a retransmission, Vegas again checks to see if the time interval since the segment was sent is larger than the timeout value. If it is, then Vegas retransmits the segment. This will catch any other segment that may have been lost previous to the retransmission without having to wait for a duplicate ACK. In other words, Vegas treats the receipt of certain ACKs as a trigger to check if a timeout should happen. It still contains Reno’s coarse-grained timeout code in case these mechanisms fail to recognize a lost segment.

For congestion avoidance mechanism, first, define a given connection’s BaseRTT to be the RTT of a segment when the connection is not congested. In practice, Vegas sets BaseRTT to the minimum of all measured round trip times; it is commonly the RTT of the first segment sent by the connection, before the router queues increase due to traffic generated by this connection. If we assume that we are not overflowing the connection, then the expected throughput is given by:

Expected = WindowSize / BaseRTT

where WindowSize is the size of the current congestion window, which we assume for the purpose of this discussion, to be equal to the number of bytes in transit.

Second, Vegas calculates the current Actual throughput. This is done by recording the sending time for a distinguished segment, recording how many bytes are transmitted between the time that segment is sent and its acknowledgement is received, computing the RTT for the distinguished segment when its acknowledgement arrives, and dividing the number of bytes transmitted by the sample RTT. This calculation is done once per round-trip time.

Third, Vegas compares Actual to Expected, and adjusts the window accordingly. Let Diff = Expected -Actual. Note that Diff is positive or zero by definition, since Actual _ Expected implies that we need to change BaseRTT to the latest sampled RTT. Also define two thresholds α < β, roughly corresponding to having too little and too much extra data in the network, respectively. When Diff < α __, Vegas increases the congestion window linearly during the next RTT, and when Diff > β, Vegas decreases the congestion window linearly during the next RTT. Vegas leaves the congestion window unchanged when α < Diff < β. Intuitively, the farther away the actual throughput gets from the expected throughput, the more congestion there is in the network, which implies that the sending rate should be reduced. The β threshold triggers this decrease. On the other hand, when the actual throughput rate gets too close too the expected throughput, the connection is in danger of not utilizing the available bandwidth.
The threshold α triggers this increase. The overall goal is to keep between α and β extra bytes in the network. Because the algorithm, as just presented, compares the difference between the actual and expected throughput rates to the α and β thresholds, these two thresholds are defined in terms of KB/s. However, it is perhaps more accurate to think in terms of how many extra buffers the connection is occupying in the network. For example, on a connection with a BaseRTT of 100ms and a segment size of 1KB, if α = 30 KB/s and β = 60 KB/s, then we can think of α as saying that the connection needs to be occupying at least three extra buffers in the network, and β saying it should occupy no more than six extra buffers in the network. In practice, we express and in terms of buffers rather than extra bytes in transit, and we determine a suitable value experimentally. During linear increase/decrease mode—as opposed to the slow-start mode described below—we set to α two and β to four. This can be interpreted as an attempt to use at least two, but no more than four extra buffers in the connection.
[image: image2.emf]
Figure 3 - Congestion Control and Avoidance in Vegas
Once again, we use a detailed graph (Figure 3) keyed to the following explanation: The small circles below the send segment marks on top of the graph are indications that Vegas’ spike suppression mechanism prevented segments from being sent. The small vertical line—once per RTT—shows the times when Vegas does congestion control decision; i.e., computes Actual and adjusts the window accordingly. The gray line shows the Expected throughput. This is the throughput we should get if all the bytes in transit are able to get through the connection in one BaseRTT. The solid line shows the actual sending rate Actual. We calculate it from the number of bytes we sent in the last RTT. The dashed lines are the thresholds used to control the size of the congestion window. The top line corresponds to the α threshold, and the bottom line corresponds to the β threshold.

To be able to detect and avoid congestion during slow-start, Vegas allows exponential growth only every other RTT. In between, the congestion window stays fixed so a valid comparison of the expected and actual rates can be made. When the actual rate falls below the expected rate by a certain amount we call this the γ threshold—Vegas changes from slow-start mode to linear increase/decrease mode. As with the α and β thresholds, γ was determined experimentally.

Adding congestion detection to slow-start is important, and will become more important as network bandwidth increases. Vegas offers a beginning, but there is a problem that still needs to be addressed. During slow-start, Vegas sends segments at twice the rate supported by the connection; i.e., two segments are sent for every ACK received. If there aren’t enough buffers in the bottleneck router, Vegas’ slow-start with congestion detection may lose segments before getting any feedback that tells it to slow down. Second, Vegas’ congestion detection algorithm depends on an accurate value for BaseRTT. If our estimate for the BaseRTT is too small, then the protocol’s throughput will stay below the available bandwidth; if it is too large, then it will overrun the connection. Third, the question of whether or not Vegas’ linear increase/decrease mechanism is fair must still be answered.
B.3. TCP New Reno

TCP New Reno [11] modifies the fast retransmit and fast recovery mechanisms [13], improves resetting of the retransmit timer, and avoids multiple fast retransmits in order to improve transmission efficiency. These modifications are intended to improve the behavior of these mechanisms in TCP Reno and are wholly implemented in the sender side.
New Reno is the same as Reno but with more intelligence during fast recovery. It utilizes the idea of partial ACKs: when there are multiple packet drops, the ACKs for the retransmitted packet will acknowledge some, but not all the packets sent before the Fast Retransmit. In TCP Reno [12], the first partial ACK will bring the sender out of the fast recovery phase. This will result in the requirement of timeouts when there are multiple losses in a window, and thus stalling the TCP connection.
In New Reno, a partial ACK is taken as an indication of another lost packet and as such the sender retransmits the first unacknowledged packet. Unlike Reno, partial ACKs don't take New Reno out of Fast Recovery. This way, it retransmits one packet per RTT until all the lost packets are retransmitted and avoids requiring multiple fast retransmits from a single window of data.

Through all these modification, TCP New-Reno has better capability to recover from multiple packet losses in a window than TCP Reno. The difference in throughput between New-Reno and Reno is not significant when there is little packet loss in a channel, but New Reno out performs Reno dramatically with the increase of packets loss [14] [15]. Figure 4 shows the improvement that New Reno achieves when the dropped packets increases. Figure 5 shows the throughput difference between New Reno & Reno.
[image: image3.png]Reno TCP

New-Reno TCP

£

o

o

G
(09 pon) saunyioxed

o

oot

quny wpRd

o

Figure 4 a – Comparison between Reno and New Reno with one dropped packet
[image: image4.png]Reno TCP

New-Reno TCP

o

o

G
(00 PoW) JequnN ¥

o

Figure 4b - Comparison between Reno and New Reno with two dropped packets.

[image: image5.png]Reno TCP

New-Reno TCP

o

o

G
(09 pon) saunyioxed

C3

CANC
(ogpon) maun e

Figure 4c - Comparison between Reno and New Reno with there dropped packets.

[image: image6.png]Throughput [kbytes/s}

Tanoe Analysls ——
Reno Analysis -

New Reno Analysis -~
Tahos Simulation =
Reno Simulation
New Fleno Simulation «

0 —_—
0.0001 0.001 0.01 0.1
Segment Loss Probability

Figure 5 - TCP throughput (W=16, RTT=100ms).
However TCP New-Reno’s ability to recover from packet losses is limited by its inherent weaknesses, including [16].
In TCP New-Reno, the number of new data packets sent out per round-trip time (RTT) decreases exponentially due to its policy “one new data packet is sent out upon receipt of 2 duplicate ACKs” during the entire congestion-recovery period. Since TCP New-Reno can only recover from one dropped packet per RTT, this rapid decrease will eventually stop the flow of returning ACKs (hence, loss of self-clocking), and a coarse timeout will follow.
During congestion recovery, TCP New-Reno only passively recovers from the dropped packets. The exponentially decreased amount of data transmitted during each RTT lowers link utilization even if it does not cause the loss of self-clocking. TCP New-Reno cannot detect further data losses that might occur to the new data packets sent out during congestion recovery. It has to resort to another trigger of fast retransmit or a retransmission timeout to detect such packet losses. The New Reno can remain in Fast Recovery for a long time when multiple packets have been dropped from a window of data. However, there is a limitation to the potential performance in this case in the absence of the SACK option [13].

B.4. TCP SACK
TCP New Reno is at present the default TCP protocol in most systems. TCP Selective Acknowledgement (SACK) makes only one major change to TCP Reno protocol: it allows the acknowledgment packets to carry information about which packet they are acknowledging. When multiple packets get lost within a window, selective acknowledgement used by TCP SACK becomes valuable.

Defined in RFC 2018, and later extended in RFC 2883, TCP selective acknowledgement mechanism, combined with a selective repeat retransmission policy, lets the receiver inform the sender about all the segments it has received successively, which allows the sender to only retransmit the segments that have been lost. This mechanism can save the efficiency caused by the limitation of TCP Reno, which may retransmit the packet being received successively. SACK also helps fast recovery by providing additional information about congestion state.

TCP SACK is effective in avoiding time-outs. At the beginning of a busy state, the sender starts in slow-start stage and sends one packet out. Each returning ACK triggers the injection of two packets into the network. TCP window size is doubled once every RTT. Window size grows exponentially when it reaches current slow-start threshold. Then, SACK enters congestion control stage. In this mode, window size increases one by each RTT. The increase of window size continues when the maximum window size is reached or a packet loss occurs. If the congestion window size is sufficiently large with not too many packet losses, TCP SACK will perform fast recovery/fast retransmit, in which it resends the lost packet and halves the congestion window size, and then goes into congestion avoidance stage. If too many packet losses are observed, SACK will timeout and wait for a period of time and start over with slow-start stage.

TCP SACK requires 63 bits to represent upper and lower bound sequence numbers of every block it selectively acknowledged. Due to the limits on maximum length of option field in TCP protocol to be 40 bytes, an acknowledgement packet can only carry a maximum of 3 block’s information. The small maximum number of SACK block information can lead to efficiency problems in performance.

TCP SACK performs poorly over wireless links because it cannot distinguish between the packet loss due to bit corruptions over wireless link and the packet loss due to congestion. TCP SACK performs poorly over satellite links due to the confusion of packet loss because of link error with packet loss because of congestion. Also, satellite links have long round trip time (RTT) (i.e. 500m in average). Because time spent in slow start stage is proportional to RTT for a satellite link, TCP stays in slow start mode for a long time. Thus, throughput for a short duration of TCP connection is greatly decreased. Moreover due to the long RTT, when packet loss occurs TCP enters congestion control phase and remain in this mode for a long time, thus reducing the throughput of both short and long duration TCP.

SACK is proposed to perform better in presence of multiple packet loss in same window. However, SACK is unable to provide an adequate protection against timeouts for current implementation in [2]. With independent losses, SACK performs better than TCP Tahoe and Reno. However, when packet loss becomes correlated, Tahoe can outperform SACK and Reno.

B.5. HSTCP
The HighSpeed TCP for Large Congestion Windows was introduced in [20] as a modification of TCP’s congestion control mechanism to improve performance of TCP connections with large congestion windows. HighSpeed TCP is designed to have a different response in environments of very low congestion event rate, and to have the TCP Reno response in environments with packet loss rates of at most 10−3. Since, it leaves TCP’s behavior unchanged in environments with mild to heavy congestion, it does not increase the risk of congestion collapse. In environments with very low packet loss rates (typically lower than 10−3), HighSpeed TCP presents a more aggressive response function.

Similar to TCP Reno, HSTCP increases its congestion window when an ACK packet is received, and decreases it when the packet is lost, but its amount of increase or decrease is calculated based on the current congestion window w at the sender according to the network conditions. Its congestion control is described with the response functions below [20].

[image: image7.wmf]w

w

a

w

w

)

(

+

=

 (ACK packets received)

(1)

[image: image8.wmf]w

w

b

w

))

(

1

(

-

=

 (packets lost)

(2)

where

[image: image9.wmf])

(

2

)

(

*

)

(

*

2

)

(

2

w

b

w

p

w

b

w

w

a

-

=

(3)

[image: image10.wmf]5

.

0

)

ln(

)

ln(

)

5

.

0

)}(

ln(

)

{ln(

)

(

+

-

-

-

=

low

high

high

low

W

W

b

W

w

w

b

(4)

The functions a(w) and b(w) calculate the increase and the decrease amount of the congestion window every RTT respectively. p(w) is the packet drop rate for congestion window w. Wlow, Whigh and bhigh are parameters which HSTCP senders hold. Wlow is the lower bound of the high-speed transfer, or the sender uses the same response functions as the standard TCP when its congestion window is smaller than this value. Whigh is the upper bound of the high-speed transfer. The sender keeps its congestion window stable around this value. bhigh is the value of b(Whigh), which shows the amount of decrease at the largest congestion window. These parameters are set according to the network conditions. For example, in [2], Wlow = 38, Whigh = 83000, and bhigh = 0.1 are given for the network whose bandwidth is approximately 10 Gbps, RTT 100 msec, and packet size 1500 byte. In this way, it is possible for HSTCP to use wide bandwidth links efficiently.

Figure 6a [21] shows the average congestion window size of HSTCP and TCP as a function of the packet loss rate p (the axis are in logarithmic scale). This curve uses the data provided in [20]. For high packet loss rate, up to 10-3, HSTCP and TCP Reno are similar. The HSTCP response function could be expressed by w = 0.12/p0.835 [20]. Therefore, in congestion avoidance phase, w is not increased by 1 packet every RTT, but by a dynamic value that depends on the current value of w. In case of packet losses, the multiplicative decrease factor is also dynamic (but is lower than 1/2). Figure 11b plots the increasing a(w) and the decreasing b(w) parameters of HSTCP with logarithmic scale on the x-axis for w >= 38, using the data provided in [20]. In other words, HSTCP uses a faster window increase and slower window decrease scheme as the window size increases. Thus, in HSTCP, the congestion window is increased much faster than in TCP Reno, resulting in more efficiency even at high RTT. Note that for w= 38, a(w)=1 and b(w)=1/2 which are the standard TCP factors.

HSTCP has much higher throughput than TCP Reno [22]. This is because HSTCP increases its window size more aggressively and decreases it more conservatively.

[image: image11.png]2
£
]
Fl
4
El
3
&
Z
2
]

100000

10000

le+08

T T
TCP ———
HSTCP

le+07

le+06

1000

100

10
le-10 le-09 le-08 1e-07 le-06 1e-050.00010.001 0.01 0.

packet loss rate p

(@)
05
x
x
Xx
%
et 0.1
Nt
st AT " 005
10 100 1000 10000 100000

congestion window w

(b)

b(w) value

Figure 6 - HSTCP behavior. a) response func­tion compared to TCP
b) a(w) and b(w) parameters
B.6. Fast TCP

TCP Reno has performed remarkably well and is generally believed to have prevented severe congestion as the Internet scaled up by six orders of magnitude size, speed, load, and connectivity. However, as the bandwidth-delay product continues to grow, TCP Reno will eventually become a performance bottleneck itself. Large windows problem and packet-loss congestion detection contribute to the poor performance of TCP Reno in networks with large bandwidth-delay product. Window increment per RTT and decrement per loss in large window size can’t be equal in equilibrium. It is additive increase multiple decrease [29]. It takes more RTTs to recover from a single packet loss. Congestion in TCP Reno is decided by packet loss signal: timeout or duplicate acknowledgement [30]. But congestion control combined with queue delay-based estimation such as TCP Vegas and FAST TCP can be more accurate for high data-rate network and have more stable dynamics and little oscillation[31] [32].

FAST TCP has four components [32]: The data control component determines which packets to transmit, window control determines how many packets to transmit, and burstiness control determines when to transmit these packets. These decisions are made based on information provided by the estimation component.

Estimation Component computes two pieces of feedback information for each data packet. When a positive acknowledgment is received, it calculates the RTT for the corresponding data packet and updates the average queuing delay and the minimum RTT. When a negative acknowledgment (signaled by three duplicate acknowledgments or timeout) is received, it generates a loss indication for this data packet to the other components. The estimation component generates both a multi-bit queuing delay sample and a one-bit loss-or-no-loss sample for each data packet.

The queuing delay is smoothed by taking a moving average with the weight
[image: image12.wmf]}

4

/

1

),

(

/

3

min{

:

)

(

t

w

t

i

=

h

 that depends on the window wi(t) at time t, as follows. The k-th RTT sample
[image: image13.wmf])

(

k

T

i

 updates the average RTT
[image: image14.wmf])

(

k

T

i

 according to:

[image: image15.wmf])

(

)

(

)

(

))

(

1

(

)

1

(

k

T

t

k

T

t

k

T

i

k

i

k

i

h

h

+

-

=

+

where
[image: image16.wmf]k

t

is the time at which the k-th RTT sample is received. Taking
[image: image17.wmf])

(

k

d

i

to be the minimum RTT observed so far, the average queuing delay is estimated as:
[image: image18.wmf])

(

)

(

)

(

k

d

k

T

k

q

i

i

i

-

=

The weight
[image: image19.wmf])

(

t

h

is usually much smaller than the weight (1/8) used in TCP Reno. The average RTT
[image: image20.wmf])

(

k

T

i

 attempts to track the average over one congestion window. During each RTT, an entire window worth of RTT samples are received if every packet is acknowledged. Otherwise, if delayed ack is used, the number of queuing delay samples is reduced so
[image: image21.wmf])

(

t

h

should be adjusted accordingly.
It is well-known that setting
[image: image22.wmf])

(

k

d

i

to be minimum RTT observed as an estimated of round-trip propagation delay can be problematic when route changes or when there is a persistent queue. This is an unresolved issue for FAST TCP.

Window Control Component determines congestion window based on congestion information-queuing delay and packet loss, provided by the estimation component. A key decision in our design that departs from traditional TCP design is that the same algorithm is used for congestion window computation independent of the state of the sender. That is FAST TCP has the same procedure of slow-start, congestion avoidance and fast retransmission/fast recovery as TCP Reno and TCP Vegas. The difference is that FAST TCP congestion control reacts to both queuing delay and packet loss. FAST TCP periodically updates the congestion window based on the average RTT and average queuing delay provided by the estimation component, according to[32][34]:

[image: image23.wmf]þ

ý

ü

î

í

ì

+

+

-

¬

))

,

(

)

((

)

1

(

,

2

min

qdelay

w

w

RTT

baseRTT

w

w

w

a

g

g

Where
[image: image24.wmf]]

1

,

0

(

Î

g

, baseRTT is the minimum RTT observed so far, and qdelay is the end-to-end (average) queuing delay.
In this current prototype, we choose the function
[image: image25.wmf])

,

(

qdelay

w

a

to be a constant at all times. This produces linear convergence when the qdelay is zero. Alternatively, we can use a constant
[image: image26.wmf]a

 only when qdelay is nonzero and an
[image: image27.wmf]a

 proportional to window,
[image: image28.wmf])

,

(

qdelay

w

a

=
[image: image29.wmf]a

w, when qdelay is zero. In this case, when qdelay is zero, FAST performs multiplicative increase and grows exponentially at rate
[image: image30.wmf]a

 to a neighborhood of qdelay > 0. Then
[image: image31.wmf])

,

(

qdelay

w

a

switches to a constant
[image: image32.wmf]a

 and, window converges exponentially to the equilibrium at a different rate that depends on qdelay. The constant
[image: image33.wmf]a

 is the number of packets each flow attempts to maintain in the network buffer(s) at equilibrium, similar to TCP Vegas. Currently when a packet loss is detected, FAST halves its window and enters loss recovery. The goal is to back off packet transmission quickly when severe congestion occurs, in order to bring the system back to a regime where reliable RTT measurements are again available for window adjustment to work effective1. A source does not react to delay until it exits loss recovery.

So suppose FAST TCP is based on IPv6, what service can IPv6 provide for FAST TCP? I think RTT and qdelay parameters can be got from routing options

B.7. SCTP
[image: image68.emf][image: image34.emf]
The Stream Control Transmission Protocol (SCTP) [23] is not a version of TCP but is an extended transport protocol intended to encapsulate the properties of UDP, an unreliable, message oriented protocol, with the reliable, stream oriented properties of TCP. SCTP also introduces many enhancements to address security, fault-tolerance, multihoming, and multistreaming. With these enhancements, SCTP fulfills the deficiencies of TCP in applications such as streaming voice, streaming video, signaling, asynchronous transactions, etc., and unifies the properties of separate reliable and unreliable protocols into one multipurpose protocol. In many ways, SCTP is an entirely new protocol but builds on the familiar, proven foundations of UDP and TCP. Figure 7 shows the location of SCTP in the protocol stack.
[image: image35.emf]
Figure 8 - Format of SCTP Headers
One major difference between SCTP and TCP is the data transportation method. SCTP sends data as framed messages whereas TCP is byte-oriented. In theory, a message oriented data stream can increase performance since hosts no longer have to track message boundaries and messages can be sent without requiring the TCP push mechanism to force a transmit. SCTP’s framed messages are supported by chunk headers contained in the payload of the SCTP packet that define the boundaries of the framed message. Figure 8 shows the format of the SCTP header and chunk message headers Ordered and unordered data delivery is another feature of SCTP that differs with TCP. TCP is strictly an ordered data stream protocol which forces out-of-order segments to wait until the previous segments are delivered. This “head-of-line” blocking can add delay to transfers such as voice and video streams or control signals while the lost packet is being resent. SCTP supports out-of-order messages so that messages are [image: image69.emf]delivered as soon as they are received.
Other major features of SCTP include connection oriented transfers, no “head-of-line” blocking, multiple delivery modes, multihoming support, TCP-friendly congestion control, selective acknowledgements, explicit congestion notification, user data fragmentation, heartbeat keep-alive mechanism, and DOS protection [25]. The congestion control in SCTP uses the same mechanisms as TCP (slow-start, congestion avoidance, and fast retransmit/fast recovery) along with the selective acknowledgements introduced by TCP SACK. The performance of SCTP then could be expected to be comparable with TCP SACK. [24] compares the performance between TCP SACK and SCTP in a MANET and concludes that TCP SACK outperforms SCTP in this topology. Other papers have introduced changes, primarily to the congestion window mechanism to improve the performance of STCP but these improved versions have not been extensively compared with versions of TCP.
Multihoming in SCTP is designed to support fault-tolerance where multiple interfaces on a host share the same IP address. If one interface fails, the next interface assumes transmission with the same IP address as the failed interface. A four-way “cookie” handshake helps prevent DOS attacks caused by SYN floods but at the cost of extra delay in initiating transfers. Table 2 contains a comparison of the features provided by SCTP, TCP, and UDP.

Table 2 - Comparison of SCTP, TCP, and UDP Features

	Services/Features
	SCTP
	TCP
	UDP

	Full-duplex data transmission
	yes
	yes
	yes

	Connection-oriented
	yes
	yes
	no

	Reliable data transfer
	yes
	yes
	no

	Partially reliable data transfer
	optional
	no
	no

	Ordered data delivery
	yes
	yes
	no

	unordered data delivery
	yes
	no
	yes

	Flow and congestion control
	yes
	yes
	no

	Explicit congestion notification support
	yes
	yes
	no

	Selective acks
	yes
	optional
	no

	Preservation of message boundaries
	yes
	no
	yes

	Path maximum transmission unit discovery
	yes
	yes
	no

	Application data fragmentation/bundling
	yes
	yes
	no

	Multistreaming
	yes
	no
	no

	Multihoming
	yes
	no
	no

	Protection against SYN flooding attack
	yes
	no
	n/a

	Half-closed connection
	no
	yes
	n/a

In conclusion, SCTP is a feature rich version of TCP and UDP but implements the same congestion mechanisms as TCP SACK. Even so, the protocol is still in its early stages of development and lacks mature technology to make it comparable in performance with TCP SACK. Later refinements may bring the performance up to that of TCP SACK but the vast majority of applications rely on TCP and so SCTP will most likely never completely replace TCP.
B.8. TCP Peach
TCP-Peach is a new flow control scheme for satellite networks. This version is an end-to-end solution whose main objective is to improve the throughput performance in satellite networks. It was first introduced in 2001 as discussed in [19]. This protocol introduced two new algorithms Sudden Start and Rapid Recovery in addition to the existing congestion avoidance and fast retransmit algorithm. The general function of the TCP Peach is shown in Figure 9.

[image: image36.wmf]
Figure 9 - General function of TCP Peach

[image: image37.png]Sudden_Start()
cwnd=1;
7= RTT/rwnd;
send(Data_Segment) ;
for (i=1 to rwnd-1),
wait(r);
send (Dummy_Segment) ;
end;
end.

Figure 10 - Basic function of sudden start algorithm
[image: image38.png]Rapid_Recovery ()
cwnd=cwnd/2;
adsn=2*cwnd;
wdsn=cwnd;
infl_se;

Iz
END=0;
while (END=0)
if (ACK_ARRIVAL)
if (DATA_ACK_ARRIVAL)

else if (DUMMY_ACK_ARRIVAL)
if (wdsn=0)
cwnd=cwnd+1;
infl_seg=infl_seg+1;
else
wdsn=wdsn-1;
end;
end;
if (cwnd>nackseg)
while (cwnd>nackseg)
send (Data_Segment} ;
nackseg=nackseg+1;
end;
else if (adsn>0)
send (Dummy_Segment) ;
send (Dummy_Segment) ;
n=adsn-2 ;
end;
if (LOST_SEGMENT_ACKED)
END=1;
cwnd=cwnd-infl_seg ;
end;
end;
if (>t +RTO)
Slow_Start();
end;
end;
end.

Figure 11 - Basic function of Rapid Recovery

The key concept involved in these algorithms is the use of dummy segments that probes the network resources to determine if the receiver had sufficient window space to accommodate a packet. These segments do not carry any new information and hence they have a low priority in the network. At times of congestion, the IP packets carrying the dummy segments are discarded first.

[image: image70.emf][image: image39.png]8

38

8

-—- TCP-Reno
— TCP-Peach

cwnd (segments)
&

acked(t) (segments)
g8 & §

8

)

In the sudden start algorithm, the rwnd is set as the maximum value for the congestion window size cwnd. The basic function of the sudden start is shown Figure 10. In this algorithm, at the beginning of a connection, the sender sets cwnd as 1 and sends the first data segment. After the first data segment, (rwnd-1) dummy segments are sent at the rate of RTT/rwnd. With this algorithm, the cwnd value increases rapidly and this helps the sender to estimate the RTT. The Comparison of TCP-Peach and TCP-Reno in the beginning of a new connection is shown in Figure 12.

The next important algorithm is the Rapid recovery algorithm. At the time of congestion or loss of a data segment, the sender enters the Fast Retransmit phase, Where the value of cwnd is halved and then enters the Rapid Recovery phase. Figure 11 shows the basic function of the Rapid Recovery algorithm.

In the Rapid Recovery phase, the allowable dummy segment number adsn is set to twice the value of the cwnd. When an ACK is received by the sender during this phase, the sender checks whether it is an ACK for the data segment or for dummy segment and then inflates the cwnd. If the value of the cwnd is greater than the number of ACK segments, then a new or lost data segment is sent, or else, two dummy segments are sent and the value of adsn is reduced by two. Once the ACK for the retransmitted data is received, the value of cwnd is brought back to its original value. In case of a retransmission timeout (RTO), it means that the network is very much congested and the sender enters the usual slow start phase.

The Rapid Recovery algorithm distinguishes whether the cause for the loss of packets is due to error links in the wireless network or due to network congestion. The two algorithms used in TCP Peach allowed rapid increase in throughput on wireless links with high link errors [19].

In TCP Peach, there is a need for priority mechanism in all the routers in the network. Also the dummy packets could amount to some of the traffic load. In comparison to TCP Peach, the performance of this protocol was more significant in links with high link error rates as discussed in [19].

B.9. TCP Westwood

TCP Westwood is a sender-side modification version of TCP Reno in wired and wireless networks [39]. It relies on end-to-end bandwidth estimation (BWE) to differentiate two kinds of packet loss so that the performance can be significantly improved.
A fast recovery mechanism [40] is introduced to avoid overly reduction of congestion window (cwin) and slow start threshold (ssthresh). The sender monitors the acknowledgement rate, and then the estimation is used to compute packet rate for current connection. After three duplicate acknowledgements (ACKs) are received or a timeout occurs, the sender uses the estimation to set a proper congestion window and the slow start threshold. Compared with TCP Reno, the congestion window is “blindly” halved after receiving three duplicate ACKs, which will lead to unnecessary window reduction for the packet loss caused by wireless lossy links.

In [39], TCP Westwood does not need any support from lower layers. Therefore, TCP Westwood follows a layer separation and modularity principles strictly. Some other TCP variants (i.e. Bandwidth-Aware TCP), which use bandwidth estimation to set congestion window, require intervention of network layer.

When n DUPACKs are received in congestion n avoidance phase, slow start threshold is set equal to the available pipe size (BWE*RTTmin) when the bottleneck is empty, and then the congestion window is set to ssthresh and congestion avoidance phase is to start again.

[image: image40.png]5

the burst eror stat (% packets)

Figure 13 – Throughput vs. error rate
After a timeout, cwin and ssthresh are set to 1 and BWE respectively. On the other hand, a speedy recovery is granted by ssthresh, which is equal to the bandwidth estimation at the time of timeout expiration.

However, there are still some issues needed to solve for TCP Westwood. On of them is that there are some “unfriendly” trends in TCP Westwood due to its “aggressiveness”. Also, the bottleneck is not “fairly” shared among Data Packets and ACKs in some cases the bottleneck link is from receiver to sender.

As shown in Figure 13, TCP Westwood outperforms TCP Reno and TCP SACK over lossy links to get better throughput. TCP Westwood can also achieve fair share and friendliness with TCP Reno.

B.10. TCP Jersey
TCP was originally designed for wired networks. In the wireless and wired-wireless hybrid network, the performance of TCP is degraded due to its lack of the ability to differentiate the packet losses caused by network congestions from the losses caused by wireless link errors. TCP Westwood is proposed to deal with this drawback of TCP. And the newly appeared TCP Jersey performs better in bandwidth estimation than TCP Westwood, which leads to an improvement of TCP performance.
In [41], TCP Jersey adopts the marking algorithm to alert the sender of incipient congestion, and proposes a simpler congestion notification scheme, congestion warning (CW). The marking of packets by CW configured routers helps the sender of TCP connection to effectively differentiate the packet losses. Then, we use explicit retransmission to recover the packet losses. Rate control takes the task to adjust the congestion window size.

[image: image41]

 SHAPE * MERGEFORMAT
[image: image42]
TCP-Jersey adopts slow start, congestion avoidance, and fast recovery, but replaces fast retransmits with explicit retransmit and add the rate control procedure.

When the sender receives a DUPACK (shown in Figure 14) or ACK (shown in Figure 15), the procedure available bandwidth estimation (ABE) is invoked. If an ACK is received without CW mark, it processes as Reno invoking SS or CA depending on whether or not the cwnd is below the threshold. If the received ACK is marked with CW bit, it calls the rate control procedure to adjust the window size and proceeds with SS or CA. If the received DUPACK is marked with CW, it still calls the rate control procedure to adjust the window size and enters the explicit retransmit. If the received DUPACK is received without the CW mark, TCP-Jersey renders the packet is caused by a random error, and therefore it enters the explicit retransmit without adjusting the window size.
However, there is still some future work for TCP Jersey. An approach is need to differentiate various types of wireless loss (i.e. losses caused by random errors, fading, mobile handoff processes) to enhance the performance further. Also, a more accurate ABE estimation algorithm is required and keep the updated estimation information more frequently.

TCP Jersey is compared with TCP Reno, TCP Tahoe, and TCP Westwood over lossy links. TCP Jersey outperforms other variants in throughput. TCP Jersey also maintains the fair and friendly behavior to other TCP flows.

C. Performance Comparisons

With all of the many different versions of TCP and other transport protocols, it’s impossible to identify which features will produce the best performance and efficiency. In this section we take the results from a number of references and collect them in order to distinguish which versions produce the best results. Since there is no reference that compares all of the different versions at one time, we must present several different comparisons and infer results about versions that are not directly compared.
C.1. SCTP vs. TCP

In [24], the author compares the performance of SCTP with that of TCP SACK in mobile adhoc networks [image: image71.emf](MANETs). TCP has been shown to perform poorly in MANETs so SCTP performance in a MANET was compared to that of TCP SACK. Since SCTP implements the same flow control algorithms as SACK, their performances are very close but SACK outperforms SCTP by a small margin. In Figure 17 the goodput of SACK is a few thousand bytes/sec greater than SCTP and the number of retransmissions is a few hundred less that than of SACK as seen in Figure 16. The reduced performance by SCTP is attributed to several causes. First is the additional bandwidth consumed by the SACK chunk which is used for the selective acknowledgements. This chunk contains additional fields that use more bandwidth. The other factors are features such as heartbeats and chunk bundling that use more bandwidth.
While SCTP does offer many more features over TCP, it is not well suited for high error/loss networks with limited bandwidth. The additional features it provides consume more bandwidth which directly reduces its performance. Since SCTP uses SACK congestion mechanisms, it should perform equivalent or very close to that of SACK in more reliable networks with more bandwidth.

[image: image43.emf][image: image44.emf]
C.2. SACK vs. Tahoe Vs. Reno

In [42], three versions of TCP in terms of latency and steady-state throughput are compared. In Figure 18(a) and (b), Reno performs the worse than Tahoe and SACK for both transfer times and the steady-state throughput. This is because Reno uses timeout when multiple packets get lost. It can also be observed that Tahoe outperforms SACK in the presence of correlated losses due to the reason that the probability for a loss event leading to the loss of more than half of packets in that round is around 0.5 in the correlated loss scenario. SACK enters timeout frequently, which causes degrading performance. For comparison, Tahoe uses a very conservative retransmission policy assuming all the packets following the lost packet are also lost. In (c), all packet losses are considered to be independent and there is no correlation between the losses in the same round. In this scenario, SACK outperforms the other two, and Reno performs better than Tahoe. SACK performs better because the probability for a loss event leading to the loss of more than half of packets in that round is decreased enormously.

[image: image45.png]K-, 0 20 -

(@)

rsmt———

(by

[C]

Figure 18 – Transfer times and steady-state throughput for Tahoe, Reno, and SACK for (a), (b) correlated and (c) independent losses
C.3. TCP Westwood vs. Reno vs. SACK

[image: image46.png]

Figure 19 - Throughput vs. error rate of the wireless link.
As shown in Figure 19, TCP Westwood outperforms TCP Reno and TCP SACK over lossy links to get better throughput [39]. The throughput for these TCP versions is compared under independent errors ranging from 0 to 5% packet loss probability. TCPW gains up to 394% over Reno or SACK at the 1% packet loss probability. TCP Westwood can also achieve fair share and friendliness with TCP Reno.
C.4. TCP Jersey vs. Tahoe vs. Reno vs. Westwood

[image: image47.png]oot oo o 0 n
Wit Link Eeror Rt (% packet o)

Figure 20-Comparison between TCP – Tahoe, - Reno, - Westwood, and – Jersey with presence of congestion
In Figure 21 with no congestion, all TCP versions perform similarly for the link error less than 0.01%. Beyond that point, TCP Jersey outperforms the other three. Jersey outperforms Westwood especially at a high error rate side.
[image: image48.png]Throughput [kbytes/s}

Tanoe Analysls ——
Reno Analysis -

New Reno Analysis -~
Tahos Simulation =
Reno Simulation
New Fleno Simulation «

0 —_—
0.0001 0.001 0.01 0.1
Segment Loss Probability

Figure 21 - Comparison between TCP – Tahoe, - Reno, - Westwood, and – Jersey without presence of congestion
TCP Jersey outperforms other TCP variants at different error rates with presence of congestion as shown in Figure 20. However, all TCP variants experience a degrading performance compared with Figure 21, in which there is no congestion.

The simulation in [41] shows that both Jersey and Westwood behave more aggressively than other non-wireless oriented TCP schemes when the random error rate for wireless links is larger than 0.1%. Also, Jersey is friendly with TCP Reno and as a result, these two can coexist well. At the same time, TCP Reno, TCP Westwood, and TCP Jersey can achieve fairness.
C.5. Vegas vs Reno

TCP Vegas is more accurate estimation to congestion than TCP Reno. In Figure 22, Reno’s mechanism to detect available bandwidth is to continually increase its window size, using up buffers along the connection’s path, until it congests the network and segments are lost. It then detects these losses and decreases its window size. Consequently, Reno is continually congesting the network and creating its own losses. But in Figure 23, we depict congestion avoidance mechanism (CAM) used by Vegas, we can see the curve is much flatter than Reno.

[image: image49]

[image: image50]
TCP Vegas’ enhancements to TCP Reno produce significant improvements on both the throughput (37% higher) and the number of losses (less than half) under real conditions (Figure 25), and the number of kilobytes retransmitted by Vegas decreases almost linearly with respect to the transfer size (Figure 24). This indicates that Vegas eliminates early all losses during slow-start due to its modified slow-start with congestion avoidance

[image: image51]
[image: image52]
C.6. FAST TCP vs TCPs

The equilibrium problem is a source increments its window too slowly and decrements it too drastically. For instance, when the peak window is 80,000-packet (corresponding to an “average” window of 60,000 packets), which is necessary to sustain 7.2Gbps using 1,500-byte packets with a RTT of 100ms. It takes 40,000 RTT, or almost 70 minutes, to recover from a single packet loss. This is illustrated in Figure 26. Where the size of window increment per RTT and decrement per loss, 1 and 0.5 wi respectively, are plotted as functions of wi The increment function for Reno (and for HSTCP) is almost indistinguishable from the x-axis. Moreover, the gap between the increment and decrement functions grows rapidly as increases. Since the average increment and decrement must be equal in equilibrium, the required loss probability can be exceedingly small at large wi (Figure 27).
[image: image53.emf]
Figure 27 - FAST TCP window adjustment
[image: image54.emf]
Figure 26 - window adjustment
In [32] computed the values of each evaluation criterion (throughput, intra-protocol fairness, stability) and plot the CDF figure. From Figure 28-30 , FAST has the best performance among all protocols under each evaluation criterion. More importantly, the variation in each of the distributions is smaller under FAST than under the other protocols, suggesting that FAST had fairly consistent performance in our test scenarios. We also observe that both HSTCP and STCP achieved higher throughput and improved responsiveness compared with TCP Reno. STCP had worse intra-protocol fairness compared with TCP Reno, while HSTCP achieved comparable intra-protocol fairness Reno (see Figure 29). Both HSTCP and STCP showed increased oscillations compared with Reno (Figure 30), and the oscillations became worse as the number of sources increased.

[image: image55.emf]

Figure 29 - Fairness comparison
[image: image56.emf]

Figure 28 - Throughput comparison

[image: image57.emf]

Figure 30 - Stability comparison
C.7. TCP New Reno vs. Reno

Figure 21 given in [15] shows the throughput difference between New Reno & Reno. It can be observed that throughput of the TCP Reno and the New Reno has similar performance where the segment loss probability is about 10-3. This is because the TCP Reno and the New Reno have a fast recovery mechanism, so the performance of TCP Reno and New Reno is better than that of TCP Tahoe. The throughput of TCP Reno and Tahoe is similar when the segment loss probability is about 10-2. This is because the TCP Reno and the Tahoe cannot solve the problem that performance is degraded when multiple segments are lost in a window. So the performance of the TCP New Reno is better than those of the Reno and the Tahoe. From these results, TCP throughput is affected by fast retransmit mechanisms when the segment loss probability is about 10-3, and it is affected by timeout mechanisms when the segment loss probability is more than 10-2.
C.8. TCP Peach vs. Reno
[19] gives a simulation on TCP peach which shows that TCP-Peach improves the goodput performance and fairness in satellite networks. As shown in Figure 22 and Figure 23, TCP-Peach always gives a higher throughput than TCP-Reno.
[image: image58.png]g
&
d
2

M
:
+

1400

1200

8 g

foazymesoed) indyBnouy |

§

10

]

o

10

Figure 22 - Goodput performance comparison of TCP-Peach and TCP-Reno for different values of P loss
[image: image59.png]Thraughput [packe Vaec)

1200 T T T T T

—#— TCGP-Peach
& TGP-Rena

g

8

8

400 00 =00 1000 1200 1400 1600
c fpakelsec)

Figure 23 - Goodput performance comparison of TCP-Peach and TCP-Reno for different values link capacity C
[image: image60.wmf]

Figure 24 - Fairness evaluation in heterogeneous scenario
TCP-Peach is fair. In fact, as shown in the following figure, at any time, TCP-Peach improves fairness in satellite networks.
In Figure 24, (Peach) and (Reno) means that connections X use TCP-Peach and connections Y use TCP-Reno. We measure the fairness, Φ, as the ratio between the goodput, rX, of connections of type X, and the goodput, rY, of the connections of type Y, i.e.

Φ = rX / rY (5)

It is obvious that the fairness becomes higher as approaches 1.
C.9. HSTCP vs. Reno vs. Scalable

[image: image61.png]Throughput [Mbps]

450
400
350
300

250

200
150
100

50

standard
hstcp
scalable
sabul

50

100

150
[s]

200

250

300

Figure 25 - Throughput on a Single Flow
A simulation has been made in [43] which gave out the following table & figure. Table 3 shows several characteristics of HSTCP, TCP Reno and some other TCPs. Figure 25 shows that the difference in throughput among all kinds of TCPs. From the table and figure we can come out that HSTCP achieves the same level of throughput much faster that TCP Reno and HSTCP has a much higher peak throughput that TCP Reno.

[image: image62.png]time to achieve 100Mbps|[s]

maximum throughput[Mbps]

average throughput[Mbps]

packet loss rate[%]

Standard 120 120 92.0 0.0082

HSTCP 35 230 106 0.023
Scalable TCP 10 250 125 0.058

SABUL <<1 300 2715 0.12

Table 3 Characteristics of Various Transport Protocol Flows

In [44], two kind of simulation comparison have been made between HSTCP and TCP Reno.

[image: image63.png]AveBM

%8

0

e

o

o

0

Standard TCP poSS-pogiss

fuebin

2ev06

4evos

Gevas
Duration

evas

Tevar

Toaeve

 [image: image64.png]AveBM

%8

0

e

o

o

0

0

20

10

HSTCP poss-spogiss
hvesh

2ev06

45406 Ge+d G0 levd7 1.26+0
Duration

Figure 26 Throughput of HSTCP and TCP Reno in low latency
[image: image65.png]AveBM

e

o

o

0

0

20

10

ucL-ssiac

TeP Throughput

HighspaedTce
HighspesdTce
Standararce
Stinadratce

Wk
Hin
Hax
Hin

Tevar

2eva7

ER T r——

Duration

a7

evar

Figure 27 Throughput of HSTCP and TCP Reno in high latency
Figure 26 shows that there is no clear advantage to using HSTCP for this link at this speed (100mbit), while Figure 27 shows HighSpeedTCP gives performance boost of about 2.5 as TCP Reno at high latency.
In conclusion, HSTCP is not good for low latency, low throughput networks but much improved for high latency, high throughput networks.
D. Summary
In this document we have presented several major TCP versions with the characteristics that distinguish them from other versions and have presented the performance results from various references. There are still many more minor TCP versions and possibly even some newer major versions that we have not included in this survey but versions we consider important have been included. The performance results for the different versions all show favorable results when compared to the versions from which improvements are being made. Even so, the results are inconclusive since there has been no work comparing all of the versions at one time. Table 4 summarizes all of the features included in the various TCP versions.
Table 4 - Transport Protocol Feature Comparisons
	Features
	Reno
	Vegas
	New Reno
	SACK
	HSTCP
	FAST
	SCTP
	Peach
	Westwood
	Jersey

	Slow Start
	√
	√
	√
	√
	√
	√
	√
	
	√
	√

	Congestion Avoidance
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√

	Fast Retransmit
	√
	√
	√
	√
	√
	√
	√
	√
	√
	√

	Fast Recovery
	√
	√
	√
	√
	√
	√
	√
	
	√
	√

	Improved Retransmit
	
	
	√
	√
	
	
	√
	
	
	

	Selective Acknowledgements
	
	
	
	√
	
	
	√
	
	
	

	Queue Delay Estimate
	
	√
	
	
	√
	√
	
	
	
	

	Improved Queue Delay Estimate
	
	
	
	
	
	√
	
	
	
	

	Modified Slow Start
	
	√
	
	
	
	
	
	
	
	

	Modified Retransmit
	
	√
	
	
	
	
	
	
	
	

	Adaptive CWND Policy
	
	
	
	
	
	
	
	
	
	

	Sudden Start
	
	
	
	
	
	
	
	√
	
	

	Rapid Recovery
	
	
	
	
	
	
	
	√
	
	

	BW Estimation CWND Policy
	
	
	
	
	
	
	
	
	√
	√

	Improved BW Estimation CWND Policy
	
	
	
	
	
	
	
	
	
	√

E. References

1. B. Sikdar, S. Kalyanaraman, and K.S. Vastola, “Analytic models and comparative study of the latency and steady-state throughput of TCP Tahoe, Reno and SACK,”
IEEE Global Telecommunications Conference, Vol. 3, pp. 1781 – 1787, Nov. 2001
2. A. Wierman and T. Osogami, “A unified framework for modeling TCP-Vegas, TCP-SACK, and TCP-Reno,” IEEE Modeling, Analysis and Simulation of Computer Telecommunications Systems, pp. 269 – 278, Oct. 2003
3. M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP Selective Acknowledgment Options,” RFC 2018, IETF, Oct. 1996.

4. S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky, “An Extension to the Selective Acknowledgement (SACK) Option for TCP,” RFC 2883, IETF, July 2000.

5. M. Allman, C. Hayes, H. Kruse, S. Ostermann, “TCP Performance over Satellite Links,” 5th International Conference on Telecommunication Systems, 1997.

6. Omar Ait Hellal, Eitan Altman, “Analysis of TCP Vegas and TCP Reno”, Telecommunication Systems 2002
7. C. Jin, D. X. Wei, and S. H. Low, “FAST TCP: From Theory to Experiments”, IEEE Network Jan/Feb 2005
8. C. Jin, D. X. Wei, and S. H. Low, “TCP FAST: Motivation, Architecture, Algorithms, Performance”, Proc. IEEE INFOCOM, Mar. 2004, http://netlab.caltech.edu
9. Hadrien Bullot, R.Les Cottrell, “Evaluation of Advanced TCP Stacks on Fast Long-Distance Production Networks”
10. Jiantao Wang David X.Wei Steven H. Low, “Modelling and Stability of FAST TCP”, Proc. IEEE INFOCOM. Mar 2005
11. J. C. Hoe, “Improving the start-up behavior of a congestion control scheme for TCP,” in Proc. ACM SIGCOMM '96, pp. 270-280, August 1996.

12. W. R. Stevens, “TCP slow start, congestion avoidance, fast retransmit, and fast recovery algorithms,” RFC 2001, January 1997.

13. S. Floyd, T. Henderson, “The New Reno Modification to TCP’s Fast Recovery Algorithm”, RFC 2582, April 1999.

14. K. Fall and S. Floyd, “Simulation-based Comparison of Tahoe, Reno, and SACK TCP”, ACM Computer Communications Review, Vol. 26(3), pp. 5 – 21, July 1996.

15. C.P. Charalambos, V.S. Frost, "Performance of TCP extensions on noisy high BDP networks" Communications Letters, IEEE, Vol. 3, no. 10, pp. 294-296, Oct. 1999.

16. Haining Wang, Shin. K.G., "Robust TCP congestion recovery" presented on 2001. 21st International Conference on Distributed Computing Systems. pp. 199-206, Mesa, Arizona, April 2001.

17. V. Jacobson, “Congestion Avoidance Control” in Proc ACM SIGCOMM ’88, pp. 314-329, August 1988.

18. J. Postel, “Transmission control protocol,” September 1981, Request for Comments793, DDN Network Information Center, SRI International.

19. I.F. Akyildiz, G. Morabito, S. Palazzo, "TCP-Peach: a new congestion control scheme for satellite IP networks", IEEE/ACM Transactions on Networking, Volume 9, Issue 3, pp. 307–321,June 2001.

20. S. Floyd. “Highspeed tcp for large congestion windows”, Rfc3649, IETF, December 2003.

21. F. Hirose, M. Fukuhara, T. Hatano, H. Shigeno, and K. Okada, "A Two-Level ECN Marking for Fair Bandwidth Allocation between HSTCP and TCP Reno", in Proceedings of the 25th IEEE ICDCS Workshops (MNSA), pp.763-769, June 2005.
22. E. de Souza and D. Agaral, “A Highspeed TCP Study: Characteristics and Deployment issues”, LBL Technique report LBNL-53215.
23. R. Stewart et al., “Stream Control Transmission Protocol,” IETF RFC 2960 (standards track), Oct. 2000; www.ietf.org/rfc/rfc2960.txt.

24. Kumar, A.; Jacob, L.; Ananda, A.L., “SCTP vs TCP : performance comparison in MANETs,” Local Computer Networks, 2004. 29th Annual IEEE International Conference on, 16-18 Nov. 2004 Page(s):431 – 432
25. Lawrence S Brakmo, Sean O’Malley and Larry L Peterson. TCP Vegas: New Techniques for congestion detection and avoidance. SIGCOMM 1995

26. Steven H Low, Larry Peterson and Limin Wang. Understanding TCP Vegas: A duality model. Journal of ACM, Volume 49, March 2002

27. http://www.cs.arizona.edu/protocols/
28. Lawrence S Brakmo, Sean O’Malley and Larry L Peterson. “TCP Vegas: End to End Congestion Avoidance on a Global Internet.” IEEE 1995
29. Omar Ait Hellal, Eitan Altman, “Analysis of TCP Vegas and TCP Reno”, Telecommunication Systems 2002
30. Van Jacobson, Michael J.Karels, “Congestion Avoidance and Control”, Proceedings of SIGCOMM’88, ACM 1998
31. C. Jin, D. X. Wei, and S. H. Low, “FAST TCP: From Theory to Experiments”, IEEE Network Jan/Feb 2005
32. C. Jin, D. X. Wei, and S. H. Low, “TCP FAST: Motivation, Architecture, Algorithms, Performance”, Proc. IEEE INFOCOM, Mar. 2004, http://netlab.caltech.edu
33. Hadrien Bullot, R.Les Cottrell, “Evaluation of Advanced TCP Stacks on Fast Long-Distance Production Networks”
34. Jiantao Wang David X.Wei Steven H. Low, “Modelling and Stability of FAST TCP”, Proc. IEEE INFOCOM. Mar 2005
35. Abheek Saha, “Use of indirect TCP for TCP enhancement in modern wireless data networks”, 2004 IEEE
36. Ajay Bakre, B.R.Badrinath, “I-TCP indirect TCP for mobile hosts”,1995 IEEE
37. Hari Balakrishnan, Srinivasan Seshan, “improving tcpip performance over wireless networks”
38. Nadim Parvez, Ekram Hossain, “Improving TCP performance in wired-wireless networks by using a novel adaptive bandwidth estimation mechanism”, Globecom 2004
39. C. Casetti, M. Gerla, S. Mascolo, M. Y. Sanadidi, and R. Wang, "TCP Westwood: Bandwidth Estimation for Enhanced Transport over Wireless Links", In Proceedings of ACM Mobicom 2001, pp. 287-297, Rome, Italy, July 16-21 2001
40. M. Gerla, M. Y. Sanadidi, R. Wang, A. Zanella, C. Casetti, S. Mascolo, "TCP Westwood: Congestion Window Control Using Bandwidth Estimation", In Proceedings of IEEE Globecom 2001, Volume: 3, pp 1698-1702, San Antonio, Texas, USA, November 25-29, 2001
41. Kai Xu, Ye Tian, and Nirwan Ansari, “TCP-Jersey for Wireless IP Communications”, IEEE Journal on Selected areas in Communications, vol. 22, no.4, May 2004
42. B. Sikdar, S. Kalyanaraman, and, K.S. Vastola, “Analytic models for the latency and steady-state throughput of TCP Tahoe, Reno, and SACK”, IEEE/ACM Transactions on Networking,
vol. 11, no. 6, pp. 959 – 971, Dec. 2003

43. K. Kumazoe, Y. Hori, M. Tsuru, Y. Oie, "Transport Protocols for Fast Long-Distance Networks: Comparison of Their Performances in JGN" 2004 Symposium on Applications and the Internet-Workshops (SAINT 2004 Workshops), pp. 645-650, Oct. 2004

44. Y. Li G. Fairey, “Implementing High Speed TCP” DataTAG Presentation @ CERN, Oct. 2002, http://www.hep.ucl.ac.uk/~ytl/tcpip/highspeedtcp/hstcp/hstcp-datatag-01102002.ppt
�

Figure � SEQ Figure * ARABIC �15� - Flow chart of TCP-Jersey sender’s response to ACK

�

Figure � SEQ Figure * ARABIC �14� - Flowchart of TCP Jersey sender’s response to DUPACK

�

Figure � SEQ Figure * ARABIC �23� - Vegas with no other traffic (throughput: 196kb/s)

Figure � SEQ Figure * ARABIC �16� - Retransmissions comparison, with 95% confidence interval.

Time

Figure � SEQ Figure * ARABIC �17� - Goodput comparison, with 95% confidence interval

Congestion

Avoidance

cwnd

�

Figure � SEQ Figure * ARABIC �25� - 1Mbyte transfer

Slow Start

Figure � SEQ Figure * ARABIC �12� - Comparison of TCP-Peach and TCP-Reno in the beginning of a new connection (rwnd=64 segments)

�

Figure � SEQ Figure * ARABIC �24� - Effect of transfer size

Figure � SEQ Figure * ARABIC �2� - TCP Reno (with Fast Recovery)

Figure � SEQ Figure * ARABIC �1� - TCP Tahoe (without Fast Recovery)

�

Figure � SEQ Figure * ARABIC �22� - TCP Reno with no other traffic (throughput: 123kb/s)

Figure � SEQ Figure * ARABIC �7� - Location of SCTP in the IP stack

Center for Advanced Vehicular Systems
September 30, 2005

_1189979329.unknown

_1190029120.unknown

_1190029214.unknown

_1190029385.unknown

_1190030092.unknown

_1190030171.unknown

_1190030080.unknown

_1190029269.unknown

_1190029203.unknown

_1190029008.unknown

_1190029054.unknown

_1190028854.unknown

_1190028736.unknown

_1190028810.unknown

_1190017096.unknown

_1189978914.unknown

_1189979023.unknown

_1189978835.unknown

_1189431985.unknown

