1
ECE 8990 Advanced Computer Network Systems

Comparison of TCP SACK and TCP Peach

Sriram Rajan, Vijaykumar Rajaram, Mississippi State University

Abstract—This paper examines the performance of TCP SACK and TCP Peach. To understand the performance of the protocols in a network scenario, an implementation of TCP SACK and TCP Peach was performed using ML Designer. Later the results obtained were used to compare the performance of TCP SACK and TCP Peach.

Index Terms— ML Designer, TCP Peach, TCP SACK, throughput.

I. INTRODUCTION
With the fast expansion of the Internet, there is a need for a good quality of service (QoS). Today’s Internet has become a medium for transfer of data packets and the traffic has increased drastically over the past few years and will keep on increasing. Because of the increase in the traffic, network congestion occurs that leads to loss of transmitted packets or delay in the receiving of the transmitted packets. This affects the QoS of the Internet. Hence measures have been taken to control congestion.

Congestion is the state of sustained network overload where the demand for network resources is close to or exceeds capacity [1]. In order to deal with congestion, the Internet used end-to-end window-based flow control in its Transmission Control Protocol (TCP) [1], primarily for controlling demand on the receiver’s bottleneck resources (memory and processing). Since 1987 TCP congestion control has been augmented with the Slow Start and Congestion Avoidance algorithms developed by Jacobson and Karels [2]; these algorithms became mandatory requirements for all Internet hosts [3]. The receiver-driven TCP flow control mechanisms have been the only congestion control methods available.
TCP was designed for providing reliable communication in an unreliable network [4]. Several TCP protocols have been implemented and compared. The main objective of the various TCP congestion control algorithms is to have increased throughput and good QoS. In this paper the performance of selected TCP protocols over lossy links is examined.

 To improve the performance of TCP, several variations were suggested. Some of these variations were based on particular scenario such as TCP Peach for wireless links. Other variations such as TCP SACK serve to improve the throughput performance of the TCP protocol.

Research in [5] performs an analysis and comparison of TCP Peach with TCP Reno. However, if it is evident from [6] that the performance of TCP protocol can be improved with the use of SACK options. This prompted us to perform a study and comparative simulation of TCP Peach and TCP Sack. A study of their working mechanisms was performed and algorithms developed for the implementation of the respective protocols. With the results obtained, a comparison of the protocols was made.

In this paper, the implementations of the TCP protocols were done using ML Designer as the simulation tool [7]. The rest of the paper is organized as follows. Section II briefly discusses the working mechanism of TCP SACK and also some of the key parameters in its operation. Section III highlights the working of TCP Peach. Section IV discusses the implementation of the TCP protocols using ML Designer in detail and section V discusses the network simulation scenario using ML Designer. and the relative performance of the two protocols. Section VI concludes the paper.

II. Working Mechanism of TCP SACK

TCP SACK (selective ACK) was initially proposed in RFC 2018 [8]. This protocol was an improvement over TCP Reno. The SACK option was added to TCP Reno with a selective repeat retransmission policy. It is a strategy in which the receiver can inform the sender about all segments that have arrived successfully, so the sender need to retransmit only the segments that have been actually lost [9}.

The main advantage is that the sender knows about the unacknowledged data segments at the receiver and hence was not required to wait for a long period of re-transmission timeout. Instead, the sender could determine when the packets could be sent based on the information obtained from the SACK fields.

	
	Kind=5
	Length (n)

	Left edge of 1st block (32 bits)

	Right edge of 1st block (32 bits)

	…

	Left edge of nth block (32 bits)

	Right edge of nth block (32 bits)

Fig 1. TCP SACK options field.

The TCP SACK options field is shown in figure 1. To support the TCP SACK implementation both the sender and receiver must implement the SACK-Permitted option. This is achieved by setting Kind to 4, and Length to 2 in Option 4. Further options are used to communicate the SACK information to the sender and are of variable length. The left and right edges of the blocks are stored and transmitted with every acknowledgement.

When a receiver receives a segment out-of-order or loses a segment in transmission, a SACK segment is created comprising of the left and right edges of the unacknowledged segment. The first SACK block always represents the segment that caused the block or the newest segment.

III. Working Mechanism of TCP Peach

TCP Peach was introduced in 2001 as discussed in [5]. This protocol introduced two new algorithms Sudden- start and Rapid Recovery in addition to the existing congestion avoidance and fast retransmit algorithms. The general functioning of the TCP Peach is shown in figure 2.

[image: image1.png]

Fig 2. General functioning of TCP Peach [5].

The key concept involved in these algorithms was the use of dummy segments that probed the network resources to determine if the receiver had sufficient window space to accommodate a packet. These segments do not carry any new information and hence they have a low priority in the network. At times of congestion, the IP packets carrying the dummy segments are discarded first.

In the sudden start algorithm, the rwnd is set as the maximum value for congestion window size cwnd. The basic functioning of the sudden start is shown in figure 3. In this algorithm, at the beginning of a connection, the sender sets cwnd as 1 and sends the first data segment. After the first data segment, (rwnd ​– 1) dummy segments are sent at the rate of RTT/ rwnd. With this algorithm, the cwnd value increases rapidly and this helps the sender to estimate the RTT.

The next important algorithm is the Rapid recovery algorithm. At the time of congestion or loss of a data segment, the sender enters the Fast Retransmit phase, where the value of cwnd is halved and then enters the Rapid Recovery Phase. Figure 4 shows the basic functioning of the Rapid Recovery algorithm.

[image: image2.png]Sudden.Start()
cvnd=1;
T = RTT/rwnd;
send (Data_Segment) ;
for (i=1 to rwnd-1),
vait(r);
send (Dummy_Segment) ;
end;
end.

Fig. 3. Basic functioning of sudden start algorithm in TCP Peach [5].

In the Rapid Recovery phase, the allowable dummy segment number adsn is set to twice the value of the cwnd. When an ACK is received by the sender during this phase, the sender checks whether it is an ACK for the data segment or for the dummy segment and then inflates the cwnd. If the value of cwnd is greater than the number of ACK segments, then a new or lost data segment is sent, or else, two dummy segments are sent and the value of adsn is reduced by two. Once the ACK for the retransmitted data is received, the value of cwnd is brought back to its original value. In case of a retransmission timeout (RTO), it means that the network is very much congested and the sender enters the usual slow start phase.

The Rapid Recovery algorithm distinguishes whether the cause for the loss of packets is due to error links in the wireless network or due to the network congestion. The two algorithms used in TCP Peach allowed rapid increase in throughput on wireless links with high link errors [5].

In TCP Peach, there is a need for a priority mechanism in all the routers in the network. Also the dummy packets could amount to some of the traffic load. In comparison to TCP Peach, the performance of this protocol was more significant in links with high link error rates as discussed in [5].

IV. Implementation issues of TCP Protocols

The protocols were implemented using ML Designer (MLD) simulation tool. TCP SACK was implemented by modifying the existing protocol of TCP Reno in MLD. The TCPPacket structure was modified in order to include the fields Kind and Length, which is present in the SACK options field. In order to represent the sequence of data in the TCP packets, the Left and Right IntVectors were included in the packet information.

Our implementation involved separate modules that performed the functions of the sender and receiver. For the functionality of the sender, a scoreboard array was created and maintained, in order to keep track of the corresponding information of the SACK options from the receiver. At the receiver end, an array was created in order to keep track of the received segments.

[image: image3.png]Rapid_Recovery ()

if (ACK_ARRIVAL)
if (DATA_ACK_ARRIVAL)
cwnd=cwnd+1 ;
infl_seg=infl_seg+1;
else if (DUMMY_ACK_ARRIVAL)
if (wdsn=0)
cwnd=cwnd+1;
infl_seg=infl_seg+1;
else
wdsn=wdsn-1;
end;
end;
if (cwnd>nackseg)
while (cwnd>nackseg)
send (Data_Segment) ;
nackseg=nackseg+1;
end;
else if (adsn>0)
send (Dummy_Segment) ;
send (Dummy_Segment) ;
adsn=adsn-2;
end;
if (LOST_SEGMENT_ACKED)
END=1;
cwnd=cwnd-infl_seg ;
end;
end;
if (>te+RTO)
Slow_Start();
end;
end;
end.

Fig 4. Basic functioning of Rapid Recovery algorithm [5].

For TCP Peach, the existing TCP Reno module was modified. A dummy flag was added to the TCPPacket data structure. The dummy flag was set to 1 in order to differentiate a dummy segment from a data segment. This was set by the sender. The algorithms such as sudden start and rapid recovery were added to the module.

Our implementation involved separate modules that performed the functions of the sender and receiver. At the receiver end, the flag was set when a dummy segment arrived and in the acknowledgement, the dummy flag was added and set to 1. Then the functioning of TCP Peach as shown in figure 2, was implemented.

After the implementation of these modules, the functioning was checked by looking at various variables and parameters and then was used in a network simulation scenario.

V. Comparison of TCP SACK and TCP Peach

The network model consisted of three senders and corresponding three receivers with variable delays between them. The delays were kept as high as 1 second. In order to induce packet losses, the random early drop (RED) scheme was used, where all the senders were connected to the FIFO queue of capacity 100 segment. This FIFO queue was then connected to a server that distributed the packets to the corresponding receivers through a TCP router.

The network simulation was done separately for both the TCP SACK and TCP Peach congestion control schemes. The throughput was found at the sender’s end. Figures 5 and 6 shows the throughputs of TCP SACK and TCP Peach respectively.

From the results obtained, it was found that TCP-SACK performed better than TCP-Peach.

VI. Conclusion

In this paper, the congestion control schemes such as TCP SACK and TCP Peach were implemented using the existing TCP Reno module of ML Designer. The various implementation issues of the protocols in ML Designer were observed. It was observed that the performance of TCP SACK was better than TCP Peach.

The better performance of TCP SACK was due to the SACK option that helped the sender to send only the lost packet immediately. The other issues were with implementation of TCP SACK sender from RFC 2018. The RFC 2018 did not have much details about the working of the TCP sender once the SACK option is obtained.

The performance of TCP Peach could be improved by implementing the FACK/ SACK option as described in [#}. This would give the TCP Peach, the advantages of using SACK options.

[image: image4.jpg]10

Throughput

100
085
030
085
080
075
070
085
050
055
050
045
040
035
030
025
020
015
010
005

00
005

005 0.00

005

010

015

020

025

0.0

035

040

045

050

055

060

085

070

075

080

085

030

035

1.00

Set0 o

X0

Fig 5. Throughput of senders with TCP SACK congestion control scheme.
[image: image5.jpg]Throughput
70 Set0 o

65

60

55 1

50

45

40

35

a0

25

20

15

10

005 000 005 010 015 020 025 030 035 040 045 050 055 060 065 070 075 080 085 030 035 1.00
10

Fig 6. Throughput of senders with TCP Peach congestion control scheme.

Reference

[1] Gevros, P.; Crowcroft, J.; Kirstein, P.; Bhatti, S.; “Congestion control mechanisms and the best effort service model”, Network, IEEE , Volume: 15 , Issue: 3 , May-June 2001, Pages:16 – 26

[2] V. Jacobson, “Congestion Avoidance and Control,” ACM Comp. Commun.Rev., vol. 18, no. 4, Aug. 1988, pp. 314–29.

[3] R. T. Braden, “Requirements for Internet Hosts — Communication Layers,”, RFC 1122, IETF, Oct. 1989.

[4] A Tanenbaum; “Computer Networks”, (4th ed), 2003, pp. 532-540.

[5] I.F.Akyildiz, G. Morabito and S. Palazzo; “TCP-Peach: a new congestion control scheme for satellite IP networks”, IEEE/ACM Transactions on Networking, vol. 9 , June 2001, pp. 307 - 321

[6] K. Kevin and S. Floyd; “Simulation-based comparisons of Tahoe, Reno and SACK TCP”, ACM SIGCOMM Computer Communication Review, vol. 26, pp. 5-21.

[7] G. Schorcht, I. Troxel, K. Farhangian, P. Unger, D. Zinn , C.K. Mick, A. George, and H. Salzwedel; “System-level simulation modeling with MLDesigner”, 11th IEEE/ACM International Symposium on Modeling, Analysis and Simulation of Computer Telecommunications Systems, 2003. MASCOTS, October 2003, pp.207-212

[8]
M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. Tcp selective acknowledgement options.Technical Report RFC 2018, IETF, 1996.

[9] R. Bruyeron, B. Hemon, L.Zhang; “Experimentations with TCP selective acknowledgement”, ACM SIGCOMM Computer Communication reveiewm Vol. 3, Issue 2, April 1998, pp. 54 – 77.

