Affordable Supercomputing Using Open Source Software1,2
D. Trejo, I. Obeid and J. Picone
The Neural Engineering Data Consortium
Temple University
devin.trejo@temple.edu, iobeid@temple.edu, joseph.picone@gmail.com
Big data and machine learning require powerful centralized computing systems. Small research groups cannot afford to support large, expensive computing infrastructure. Cloud computing options, such as renting cycles from Amazon AWS, can often end up costing more than hosting hardware locally, and pose challenges when attempting to move big data resources across the network (or staging them remotely on the server). Open source projects are enabling the development of low cost scalable clusters and are significantly lowering the barrier for administrating and maintaining these clusters. In this poster, we explore the tradeoffs a small research group faces in constructing a cost-effective cluster. We present an affordable approach to cluster computing that uses commodity processors and open source software. Though the overall system is not novel, we believe the lessons learned in this project can be a valuable guide for small research groups interested in building such clusters.
Large-scale shared supercomputing facilities are often problematic due to long wait times for jobs to initiate. Since hundreds of jobs must be run to produce one solid experimental result, wait times ranging from 30 minutes to hours can often be a serious impediment to productivity since more time is spent waiting for a job to run than it takes for the job to run. These machines are often configured for fine-grain parallel processing, which is not optimal for the needs of typical machine learning research (aside from perhaps deep learning technology). Coarse-grain parallelism is fine in most cases since our jobs can often be easily split into multiple similar tasks. Large-scale systems often represent millions of dollars of investment and have lifecycles of less than three years, and are invariably shared across research groups with competing interests. For a relatively small investment, researchers can gain exclusive access to large numbers of processors, thereby accelerating research progress.
We began our development by evaluating a number of alternative technologies including Hadoop, popularized by Google, MapReduce (YARN), Cloudera CDH, Hortonworks, Spark, and OpenStack. Our goal was a cluster that is scalable, supports heterogeneous processors, and has minimal overhead (e.g., Hadoop has significant overhead for small clusters). The main components of the final system configuration included Warewulf, Torque, Maui, Ganglia, Nagios, and NFS. The first prototype system we describe is a small cluster with 4 compute nodes that includes: 128 cores, 21TB NFS, 1TB RAM, and a central NFS server. The main node uses 2x Intel Xeon (4C) @ 3.0 GHz. The compute nodes use 2x AMD Opteron (16C) @ 2.4GHz. For compute nodes we went with a high core count since our jobs are batch processing based. The main node resides in a 24-Bay 4U chassis and supports 10Gb/sec networked communications. The density of the compute nodes, defined as “performance/(cost*volume)” is quite impressive since it only occupies a single 2U in a standard rack and has plenty of room for expansion. The total system cost was $25K. The system delivers 1.3 TFLOPS, which translates to a very competitive 50 MFLOPS/$.
Equally important, the system consists of 128 cores spread across 4 nodes. Each core can be addressed as an independent computing node, providing a large number of available slots for user processes. OpenMPI is supported for message passing. Ganglia and Nagios are used for cluster host monitoring. Real-time alerts and host monitoring are available through web interfaces. NFS is used to share data across nodes, and each node has a 0.5TB solid-state disk to speed up local computations.
[bookmark: _GoBack]Accommodating heterogeneous hardware is crucial to our long-term strategy of supporting low-cost upgrades and minimizing the cost of cycles. New compute nodes can be easily added to the system. Queues can be configured to use subsets of nodes or prioritize nodes with specific unique compute capabilities (e.g., GPUs). Avoiding I/O bottlenecks was crucial to achieving our goal of 100% utilization of each core, so data can be staged on local solid-state disks if necessary.
The system is being used to develop AutoEEGTM on a large corpus of over 28,000 EEGs as part of a commercialization effort. We will discuss some of our experimental results generated with the system.1. Research reported in this publication was supported by the National Human Genome Research Institute of the National Institutes of Health under Award Number U01HG008468.
2. This research was also supported in part by the National Science Foundation through Major Research Instrumentation Grant No. CNS-09-58854.

[image: /Users/picone/Desktop/page_02.pdf]
image1.png
NEURAL ENGINEERING
DATA CONSORTIUM

wwwisip.piconepress.com

AFFORDABLE SUPERCOMPUTING USING OPEN SOURCE SOFTWARE

Devin Trejo, Dr. lyad Obeid and Dr. Joseph

one

The Neural Engineering Data Consortium, Temple University

College of Engineering
Temple University

Abstract

+ Big data and machine learning require poworful
centralized computing systems.

+ Small research groups cannot afford to support
large, expensive computing infrastructure.

+ Open source projects are enabling the development
of low cost scalable clusters.

+ The main components of these systems nclude:
Warewulf, Torque, Maui, Ganglia, Nagios, and NFS.

* Inthis project, we created apower small duster wify
4 compute nodes that includes: 128 cores, 2178
NFS, 1TB RAM, and a central NFS server. The total
system costs was §28K.

+ Each core can be addressed as an independent
computing node, providing a large number of
available slots for user processes.

+ The systemis being used to develop AUtoEEG™ on
a large corpus of over28,000 EEGsas partof a
commercialization effort supported by Temple's
Office of Research.

Background

+ OwisNestis a shared supercomputing facility
available to Temple researchers.

* Waitlines for OwlsNest Compute cluster canrange
from 20 mins — 4+ hours.

+ The configuration of the machine is not optimal for
the coarse-grain parallel processing needs of
machine learning research.

+ The lifetime of computer hardware for such clisters
is less than three years.

+ Cloud computing options include renting cycles
from Amazon AWS.

+ Architectures that mix conventional CPUs and GPUs
were considered.

Other Relevant Cluster Environments.

+ Hadoop: popularized by Google
 Data stored in HDFS across compute nodes to
roduce I0 bottienecks

o MapReduce (YARN)

o Bestfor processing Behavioral Data, Ad
Targeting, Search Engines (Example: Storing
FitBit data statistics) - Batch processing

 Consider using: Cloudera CDH or Hortonworks
cluster mangers

« Spark: a new project (2009) that promises
performance 100 faster than Haoop's MapReduce.
The speed increase comes from Spark running jobs
from memory rather than disk Spark requires acore
Hadoop install and is viable for many HPC clusters.
o Data fits in memory
o Standalone but best used w/ HDFS.

 Realime or batch processing

Open Source Software
+ Warewulf for provisioning (TFTP)

stribute your OS install to all compute nodes
simultancously on demand.
© Consider also: Kickstart, Cobbler, OpenStack

+ Warewulf for configuration management.

arewulf updates machines and mantains a
“golden’ VNFS image.
o Consider also: Puppet (), Ansible (§)

+ Torque & Maui for job scheduling.
& Consider also: SLURM

Overview of the Job Control Environment

o forciterr i eciony
=] b

! =

s

<Photo Credit: Huewaters.ncsa Jimis.eds>

+ OpenMPI - Message passing library for
parallelization
 Adapt your scripts to run across multiple
cores/nodes using MPI.
 Ganglia & Nagios for cluster host monitoring.

© Administrators can see reakime usage across
the entire cluster.

 Alerts for when a node goes down.

+ NFS - Network File system for sharing data across
compute nodes

o Consider also;: Lustre (PBs of fast storage),
GlusterES (Red Hat Gluster Storage)

A Makeshift HPC (Test) Cluster

NEDC Test Cluster

Pi Cluster
<Photo Credit: www. zdnet.com}

Hardware Selection

+ Our goal was low-cost cycles in a configuration that
can be easily expanded using heterogencous
processors and hardware platforms.

+ Accommodating heterogeneous hardware s crucial
to our long-term strategy of supporting low-cost.
upgrades and minimizing the cost of cycles

+ Avoiding l/0 bottlenecks was crucialto achieving
our goal of 100% utilization of each core.

+ Several test sciipts were developed to experiment
with tradeoffs between RAM, processing speed,
network speed, SSD size and l/0 performance.

Hardware Evaluation

+ Used Ganglia to monitor hardware resource.
utilization during script testing.

+ Observed disk swap space being used that slowed
down our core usage and thus job spocd.

«_Saw our seri

typically use~3.5GB of RAM.

o e

il

Hardware Comparison

INTEL XEON E5506(4C) @2133 | INTEL XEON X5660(6C) @28

'GHZ AND 6GB RAM
(NEDC Test Cluster

'GHZ AND 1265 RAM
(Owlsiost)

‘gon_feats NEDC Testich
(777 Files Successul

‘gonfeats OwisNest] b
(1000 Files Succossfu)

“exec_host:

001 nedcchistorcomo xec host: w060

Rasource List neednodes=
n001.nedcclustercom:pprt

Resource

nesdnodes=

rosourcos. used.cput=07:45:52 rosources. used. cput=05:14:17

Fesotirces used. merm= 345378046 eso urces_used. memm= 345367216

resources_used.vmem= resources_used.vmom=

ey 60128
Tesotirces_used.wallime= | resotirces_ used.wallime=
22 917

Final Hardware Purchase
+ Budget was constrained to $27.5K
+ Main Node x1:

© 2x Intel Xeon E5.2623v3(40) @ 30 GHz
I . s scs DoRe @2133 Mt (64B)
§997 © 2 480GB Kingston SSD RADY) @oct)
© 14x WDRE 3TB (RAD10) (2178 Usable)
o LSI 9361181 8 Port RAID Card
© 24.Bay 4U Supermicro Chassis w/ 10GbE
Notes: We went with a centralized main node that
will server as the login node and NFS server. To
ensure there are no bottienecks now (and i the
future) we went with two fast Intel Xeon processors.
Also the motherboard supports 10GBE in caso we.
‘add an extra ordinate number of compute nodes in
the future and need to upgrade our notwork
infrastructure. Lastly the disks are setup in RAIDIO
for redundancy and speed.

+ Compute Node x4

22 AMD Opern 6378 (1) @2.40Hz
o< ons e 25585 er o
¥ 143008 Kingston 50

Wotes: ot s i wh i Wi & oh com
P o htmchet i vy
i o o e e s e
3558 oot st o sty Socwour
et v iy w558 p o
s h modos. Losywe it 550 s oo
o Sajo o copy wer B st o
e n e e i NFS 13 eumded et

Summary

+ Leveraging open source software and architecture
designs reduces the budget neededto be allocated
towards software, which frees up resources that can
be used to purchase better hardware.

+ Open source software also allows compatibilty with
most clusters since most are based on the same
queue management software (Torque/PBS).

+ We can quickly add heterogencous compute nodes
to the configuration and easily partition these into
groups to balance the needs of our users.

- Our main node can handle 50+ compute nodes with
‘2 quick upgrade in the network infrastructure.

+ The overall system wil deliver 1228 TFLOPS for
$26.5K, or 46 MFLOPS/S, which competitive with
most supercomputers of cloud-based services.

Acknowledgements

+ Research reported in this publication was supported
by the National Human Genome Researchinstitute
of the National Institutes of Health under Award
Number U01HGO08468.

research was also supported in part by the
National Science Foundation through Major
Research Instrumentation Grant No. CNS-09-58854.

