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Identification of clinically significant events in electroencephalograms (EEGs) is a time-consuming task 
for neurologists [1]. EEG signals contain a variety of morphologies which relate to a combination of brain 
signals and noise/artifacts. Automated classification of such events has the potential to speed up the 
interpretation process and provide valuable input to other types of EEG decision-making software. Because 
of the similarities between EEGs and speech signals, both of which contain temporal/sequential 
information, one of our long-term goals has been to apply well-developed concepts from speech recognition 
to EEG processing. We have previously approached this by applying hidden Markov Models (HMMs) 
[2][3] using a toolkit known as HTK [4]. In this poster, we discuss the application of a new high-
performance speech recognition system known as Kaldi [5] to this task. Adaptation of this technology to 
the EEG problem has not been as straightforward as previously thought. 

Kaldi is an extremely popular open source toolkit that integrates many types of relatively new deep learning 
algorithms with more traditional HMM approaches. Though it is designed to be flexible, configuring it to 
complete non-speech recognition related tasks requires substantial modifications to the way the software 
handles sequential data. In this study, we adapt Kaldi to do EEG event classification on six types of EEG 
events: periodic lateralized epileptiform discharges (PLED), generalized periodic epileptiform discharges 
(GPED), spike/sharp and wave discharges (SPSW), eye movements (EYEM), artifacts (ARTF), and 
background (BCKG). The first three events are of clinical interest [6]. The last three events are used to 
model various types of background noise. We have developed a database, known as the TUH EEG Events 
Corpus (TUEC), that can be used to model these events [7] and have reported classification results for a 
number of algorithms [3]. In this study, we have developed systems based on Kaldi and compared 
performance to our previous approaches. 

Classification is performed using a 26-dimensional feature vector consisting of Linear Frequency Cepstral 
Coefficient (LFCC) features which were captured from the EEG signals. The feature vector contains 
energy, the first seven cepstral coefficients, and the first and second derivatives of the cepstral 
coefficients [8]. The HMM topology for each event is the same – a 3-state Bakis model [2]. We use 
Gaussian Mixture Models (GMMs) for output distributions at each state in each HMM. During acoustic 
modeling, Kaldi HMMs are modeled based on pdf-ids [5]. Pdf-ids are GMM indices associated with 
individual probability density functions (PDFs). They are extracted from the context dependent decision 
trees where leaves of the tree represent the pdf-ids. We use 40 iterations of Viterbi training to estimate the 
parameters of the HMMs. A diagonal covariance matrix assumption is used at each state. Tuning 
experiments determined that a total 50 Gaussian mixture components were optimal.  

We also evaluated the application of an adaptation technique known as Maximum Likelihood Linear 
Transforms (MLLTs) which performs adaptation on top of the transformed features (on pdf-ids) via Linear 
Discriminant Analysis (LDA). MLLT, also known as Semi-Tied Covariance (STC) [9][10], is a model-
state transformation technique to estimate a global covariance matrix which allows a limited number of full 
covariance matrices to be shared over GMM distributions. This helps the system model correlations among 
features at a very low computational cost. We use 35 iterations of Viterbi training while intermittently 
updating the MLLT transformation matrix four times.  

1. Research reported in this publication was most recently supported by the National Human Genome Research Institute of the 
National Institutes of Health under award number U01HG008468. The content is solely the responsibility of the authors and 
does not necessarily represent the official views of the National Institutes of Health. 



Finally, we developed a system based on deep neural networks [11] and HMMs, referred to as DNN-HMM, 
by replacing GMMs with Multi-Layer Perceptrons (MLPs) to model the observation distribution. The deep 
network consists of three hidden layers with 256 neurons per layer with rectified linear units (ReLU) as 
activation functions. The output layer contains six neurons (for each class) with Softmax activation 
function. The system is trained using a Stochastic Gradient Descent (SGD) optimizer and an annealing 
learning rate after each epoch. 

The Viterbi decoding algorithm [12] is used to calculate the probability of observing the sequences and 
output of each utterance stored in the form of a lattice [13]. Lattices contain outputs of N-best set of 
hypotheses of phone/word sequences. Each node in the Kaldi-lattice includes acoustic and language model 
scores along with time information. Since the number of events to be evaluated is only six, we kept the 
lattice-beam value low (0.7 – 1.0) during decoding. 

Table 1 shows the performance of our baseline GMM-HMM system implemented using HTK with a total 
of 12,494 HMM parameters. Similarly, Table 2 provides the performance of a comparable GMM-HMM 
baseline implemented using Kaldi that uses 8,438 parameters. The Kaldi HMM’s Viterbi training requires 
~40 minutes to train the models on 8 CPU cores whereas HTK HMMs use the Baum-Welch reestimation 
algorithm and require same amount of time using only 1 CPU core for training. Both these systems were 
scored and compared using the Epoch scoring metric [14]. Similarly, Table 3 and Table 4 compare 
performance of the LDA-MLLT and MLP-HMM systems, respectively. Kaldi’s LDA-MLLT system 
performs better than its other variants with an average detection rate of 37.42%, but still underperforms 
compared to HTK baseline system (57.31%). All of the Kaldi HMM variants perform very poorly on SPSW 
detection, since they are mainly misclassified with the GPED or BCKG events. 

This study suggests that EEGs possess similar behavior to that of speech waveforms. So, speech recognition 
tools such as Kaldi ASR and HTK, which perform temporal/sequential classification, can be directly 
adapted for EEG event classification. The Kaldi HMMs developed for the six-event classification does not 
show any improvement in performance compared to HTK baseline system. LDA-MLLT system’s overall 
performance is better than its other variants but the systems, which use LDA features, perform extremely 
poorly on SPSW events. 

Ref/Hyp BCKG EYEM ARTF PLED GPED SPSW 
BCKG 71.93 2.59 7.02 2.28 7.37 8.81 
EYEM 0.61 82.37 2.13 8.51 2.13 4.26 
ARTF 45.19 2.18 41.24 2.77 3.81 4.81 
PLED 1.85 4.70 0.70 54.80 17.62 20.32 
GPED 4.85 2.39 7.46 20.42 53.32 11.55 
SPSW 8.29 9.17 4.41 4.59 33.33 40.21 

Table 1. Performance of the baseline GMM-HMM (HTK) system 

Ref/Hyp BCKG EYEM ARTF PLED GPED SPSW 
BCKG 67.68 10.78 1.93 5.38 5.26 8.97 
EYEM 42.09 48.90 5.62 2.80 0.26 0.33 
ARTF 41.30 40.19 13.76 2.59 1.41 0.76 
PLED 3.94 7.39 1.58 46.68 18.19 22.22 
GPED 11.14 12.35 6.21 41.00 20.36 8.94 
SPSW 28.62 16.29 2.95 6.46 34.26 11.41 

Table 2. Performance of the baseline GMM-HMM (Kaldi) system 
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Adapting Kaldi to EEG Interpretation

Bakis Model:
• Traditionally used in

speech recognition.
• Enforces a dynamic time-warping of the signal.
• Each event uses the same number of states.

Abstract
• Interpretation of electroencephalogram (EEG) events 

is a tedious, time-consuming and expensive  task.
• Automatic interpretation will accelerate the review 

process and lead to better healthcare outcomes.
• In this study, we analyze EEGs in terms of six types 

events which are either of clinical interest or are 
related background noise.

• Due to the similarities between speech and EEG 
signals, machine learning (ML) algorithms developed 
for automatic speech recognition (ASR) can be used 
for identification of the six-way events.

• We adapt a very well-known state of the art 
automatic speech recognition (ASR) toolkit, Kaldi.

• We developed a Multi-pass Kaldi system that 
integrates a hidden Markov model (HMM) based 
system for segmentation, a maximum likelihood 
linear transformation (MLLT) system for adaptation 
and a multilayer perceptron (MLP) deep learning 
system for classification.

• Unfortunately, Kaldi delivers lower performance 
(37.5% sensitivity) than our previous best HMM 
system implemented using HTK (57.3%).
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Decoding
• Lattices are used during

decoding to track
temporal information.

• Each node of a lattice includes acoustic as well as 
language model scores.

• The Viterbi algorithm is used during decoding with 
the lattice beam value within the range (0.7 – 1.0).

• Decoding was performed using 1-best, pushed 
lattices and event-level posteriors. Event-level 
posteriors gives the most balanced results.

• Event-level posteriors are collected for each frame 
and mapped back to its time-stamp/phone boundary 
in the output hypothesis files.

Parameter Count and Complexity
• Kaldi’s baseline GMM-HMM monophone model uses 

8,438 parameters. A similar model based on HTK 
uses 12,494 parameters.

• Kaldi’s Viterbi training requires ~40 minutes to train 
the model across 8 CPU cores. HTK required same 
amount of time for Baum-Welch training on only 1 
CPU core.

Summary
• EEGs show similar behavior to speech waveforms 

but certain morphologies such as spike / sharp and 
wave discharges are difficult to detect. 

• Kaldi’s multi-pass HMMs developed for the six-way 
classification do not show any improvement over our 
HTK baseline system.

• LDA-MLLT system’s perform better than Kaldi’s other 
variants. However, systems which use LDA features 
perform extremely poorly on SPSW events.

Future Work
• Focus on the development of Kaldi’s complex DNN 

variants on this data. i.e. T-DNN and Kaldi’s nnet2, 
nnet3 recipes.

• Investigate Kaldi’s approaches to speech activity 
detection and integrate more temporal information 
about the waveshapes.

• Implement neural network postprocessors to learn 
the spatial context of the signals along with its 
temporal properties.
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TUH EEG Events Corpus (TUEV–v1.0.1)
Contains annotations for three types of clinically-
relevant EEG events:
• Periodic Lateralized Epileptiform Discharge (PLED)
• Generalized Periodic Epileptiform Discharges (GPED)
• Spike or Sharp and Wave discharges (SPSW)
and three types of events used to model background:
• Artifacts (ARTF)
• Eye Movements (EYEM)
• Background (BCKG)

Note: By design there is one session per patient.
• The release includes signal data stored in an EDF 

format, per-channel annotations of the six events 
(.lab format) , HTK formatted features, and an 
associated EEG report for the session.

• The proportion of the partially annotated EEG events 
is fairly balanced between the train and eval sets.

Performance on Six-Way Classification (TUEV)

Background:
• HTK is a portable toolkit for building and manipulating 

Hidden Markov Models (HMMs).
• Kaldi is a similar toolkit that has gained widespread 

adoption due to its state of the art performance on 
large vocabulary speech recognition tasks.

• Kaldi is based on finite state transducer technology 
and integrates powerful deep learning technology.

System Overview:
• Feature Extraction: Features (26) consist of energy 

terms (2), linear frequency cepstral coefficients (7), 
deltas (9) and delta-deltas (8).

• Acoustic Model: A simple 3-state left-to-right Bakis 
model topology with Gaussian Mixture Models (GMMs) 
for output distributions (8).

• Language Model: Since EEG events do not appear in a 
specific order, no LM penalties were applied. However, 
postprocessing is typically used in a later stage.

• Training: The Viterbi algorithm is used to estimate the 
parameters of the HMMs (40 iterations).

Models:
• GMM-HMM Monophone System: This is a 

flat-start model and was trained using 
Viterbi algorithm for 40 iterations with a 
total of 50 gaussian components. 

• LDA-MLLT Triphone System: Used MLLT to 
estimate a global covariance matrix to be 
shared over GMM distributions. Used 
Linear Discriminant Analysis (LDA) to 
reduce the dimensionality of the classes.

• DNN-HMM MLP System: Used a deep 
neural network (DNN) to model observation 
distributions instead of GMMs. Fully 
connected layers with 256 neurons are 
used with 3 hidden layers. A Rectified 
Linear Unit (ReLU) activation function and 
Stochastic Gradient Descent (SGD) 
optimizer were used.

• Baseline HTK system: A similar GMM-HMM 
model with 8 GMMs assigned to each state. 
The Baum-Welch reestimation algorithm is 
used for training. 

Performance Evaluation:
• Epoch scoring with an epoch duration of 

1 sec is used.
• The LDA-MLLT system performs the best 

among all Kaldi systems.
• Kaldi performance is lacking compared to a 

GMM-HMM model of HTK system. 
• SPSW event is consistently harder for all 

recognition systems to detect.

Events
Train Set Eval Set

Epochs Dist. (%) Epochs Dist. (%)
PLED 11,254 13.4 4,677 15.9
GPED 6,184 7.4 1,998 6.8
SPSW 645 0.8 567 2.0
ARTF 11,053 13.2 2,204 7.5
EYEM 1,170 1.4 329 1.1
BCKG 53,726 63.9 19,646 66.8
Total 84,032 100.0 29,421 100.0

Ref/Hyp PLED GPED SPSW ARTF EYEM BCKG
PLED 54.80 17.62 20.32 0.70 4.70 1.85
GPED 20.42 53.32 11.55 7.46 2.39 4.85
SPSW 4.59 33.33 40.21 4.41 9.17 8.29
ARTF 2.77 3.81 4.81 41.24 2.18 45.19
EYEM 8.51 2.13 4.26 2.13 82.37 0.61
BCKG 2.28 7.37 8.81 7.02 2.59 71.93

Ref/Hyp PLED GPED SPSW ARTF EYEM BCKG
PLED 46.83 28.38 9.58 3.96 3.52 7.70
GPED 21.20 20.87 2.93 43.78 0.39 10.80
SPSW 0.04 36.55 1.80 9.81 9.7 42.04
ARTF 0.39 2.58 6.15 24.35 27.87 38.65
EYEM 0.42 0.35 3.63 1.70 25.75 68.11
BCKG 0.35 2.18 7.63 13.31 2.71 73.79

Ref/Hyp PLED GPED SPSW ARTF EYEM BCKG
PLED 43.08 26.87 11.11 5.31 11.38 2.26
GPED 29.80 31.01 5.92 10.58 3.98 18.71
SPSW 1.34 37.12 3.33 21.69 18.64 17.88
ARTF 0.63 2.52 0.72 30.67 38.43 27.03
EYEM 0.22 1.92 0.00 8.60 54.36 34.89
BCKG 2.29 1.52 10.21 15.21 8.69 62.08

Ref/Hyp PLED GPED SPSW ARTF EYEM BCKG
PLED 46.68 18.19 22.22 1.58 7.39 3.94
GPED 41.00 20.36 8.94 6.21 12.35 11.14
SPSW 6.46 34.26 11.41 2.95 16.29 28.62
ARTF 2.59 1.41 0.76 13.76 40.19 41.30
EYEM 2.80 0.26 0.33 5.62 48.90 42.09
BCKG 5.38 5.26 8.97 1.93 10.78 67.68

Kaldi’s GMM-HMM Monophone System

Kaldi’s LDA-MLLT Triphone System

Kaldi’s DNN-HMM MLP System

HTK’s Baseline GMM-HMM System

Sequential Modeler

TUH EEG

Events 

Lattice 
Decoding 

& 
Scoring

Decision Trees:
• Ties HMM states based on 

acoustic phonetic features 
such as tone and stress.

• Allows GMM components 
to be efficiently shared.

Train Eval
Patients / Sessions1 290 / 290 80 / 80
Duration (Hrs) 100.5 48.3
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