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Introduction: Traumatic brain injury (TBI) is the leading cause of death and disability in 40 million individuals worldwide. Depending on the severity of the injury, TBI can have a lasting impact on the quality of life for survivors of all ages. As TBI awareness increases, there have been continuous efforts to understand the mechanism of injury. Numerous publications revealed that deformations, even in the case where the deformations are as small as a few tens of micrometer, have direct neuropsychiatric and neurodegenerative consequences. More recently, we have developed a wireless sensing scheme to measure real-time microscale brain deformation during blast wave and needle insertion. An externally located magnetic field sensors detect a change in the overall magnetic field induced by a soft magnet’s movement, which is proportional to brain deformation. This data can be used to train a machine learning system that can be used to generate a brain deformation map. 
In this paper, we demonstrate machine learning enabled brain deformation sensing. An advanced machine learning model is integrated with our novel sensing scheme [1]. The sensor consists of an implantable soft magnet and magnetic field sensor, which is based on magnetic tunnel junction (MTJ) effect. The sensor has nano-tesla sensitivity and an improved sensing range. Although the sensor measures intracranial brain deformation wirelessly, it could only provide regional brain deformation. To understand the extent of a brain injury, it is important to map brain deformations across the brain. We use machine learning to convert MTJ sensors’ scalar outputs (i.e., resistance) to a three-dimensional cartesian coordinate, a brain deformation map (Figure 1).

Materials and Methods: The brain deformation data obtained from the first-generation sensor was utilized to examine the feasibility of the machine learning enabled brain biomechanical model. First, the calibration data was created by scanning 20 cm3 in volume space above the sensor. While the MTJ sensor array was placed on the surface, a soft magnet was mounted on a manipulator and scanned. The data consisted of three sensor outputs (R1, R2, and R3) and its associated coordinates in 3D space (x, y, z). Figure 2a depicts the process of constructing a biomechanical model using a nonlinear function trained using machine learning approaches. We used 80% of the calibration data to train the machine learning model, and the remaining 20% was used to validate the model. We also conducted an open loop test by using all the calibration data for training and the brain deformation measurement dataset as previously unseen evaluation data. 
Results and Discussion: The trained machine learning model was evaluated in terms of error values, root mean square (RMS) error, and R2 value. A machine learning model based on random forests [2] delivered an R2 value of 0.90. An R2 value greater than 0.85 is generally considered excellent for this type of functional modeling. Figure 2b shows the raw calibration, filtered calibration, and processed calibration data that were used to train the model. We validated this model using in vivo dead animal and live animal data. The R2 value converged to 0.90. We typically use random forests as a baseline algorithm because this model has proven to be very robust across a wide range of machine learning applications [3] and it trains very quickly. The random forest model is not susceptible to all of the convergence issues that more powerful deep learning systems exhibit.
Conclusions:  We were able to create a brain deformation model of the entire brain by integrating machine learning with a novel sensing scheme. Future efforts are focused on collecting more brain deformation data and assessing the clinical impact of the model.
References: [1]
A. K. Majumdar et al., in 2018 Biomedical Engineering Society Annual Meeting, BMES 2018, Atlanta, Georgia, 2018. [2] L. Breiman, “Random Forests, Vol. 45,” Mach Learn, vol. 1, 2001. [3] A. Sahu et al., IEEE Sens. J., vol. 14, no. 10, 2014.
Machine Learning Enabled Real-Time Direct Brain Deformation Sensing During Concussion


S. Islam1, S. H. Song2, J. Picone1, and A. Kim1


1Temple University, Philadelphia, PA, USA, 2Sookmyung Women’s University, South Korea





Figure 1: Schematic view of a machine learning enabled real-time brain deformation sensing





Figure 2: (a) Machine learning process, (b) calibration data processed for machine learning implementation.











