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Analysis of time series data for classification or prediction tasks is very useful in various applications such 

as healthcare, climate studies and finance. As big data resources have recently become available in a number 

of fields such as healthcare [1], finance [3]-[5]  and climate change [6], it is now possible to apply state of 

the art deep learning models. Traditional methods such as autoregressive integrated moving average 

(ARIMA) [7], long short-term memory networks (LSTM) [8], gated recurrent units (GRUs) [9] and 

recurrent neural networks (RNN) [10] have provided robust frameworks in the analysis of time series data. 

However, these methods have limitations when applied to big data sets and when used to model long-term 

dependencies. The emergence of transformer-based architectures [11], as show in Figure 1, and 

technologies such as ChatGPT [12], has demonstrated the potential for analyzing time series data with long-

term dependencies and advancing the basic science by discovering new underlying structure. In this review, 

we provide a detailed analysis of state of the art in deep learning systems that model long-term context. 

Time series analysis techniques are evolving rapidly. Historically popular approaches such as LSTMs and 

GRUs suffer from the vanishing gradient problem when attempting to model extremely long-term 

phenomena. Systems based on an attention mechanism [11] leverage positional embedding modules and 

have been effectively employed in raw EEG data classification related to motor imagery tasks. A 

transformer-based architecture using a multi-head self-attention mechanism has been shown to provide 

promising levels of accuracy  [13]. Furthermore, a novel decoding method called Spatial-Temporal Tiny 

Transformer (S3T), has highlighted the use of attention mechanisms [14].  

Similarly, the combination of a self-supervised learning task 

and transformer models appear to be promising [15]. 

Transformer networks have been implemented to improve the 

performance and explainability of automatic seizure detection 

models, especially for continuous, long-term intracranial 

electroencephalogram (iEEG) data [16]. Impressive results, 

with high event-based sensitivity and low false positive rates, 

were demonstrated across two iEEG datasets. Consequently, 

the benefits of deep learning and transformer models are being 

recognized in commercial settings. A comparative analysis of 

commercial seizure-detection software packages like 

Besa 2.0, Encevis 1.7, and Persyst 13 revealed no significant 

difference in their per-patient detection rates [13]. However, 

this study pointed out significant variance in the false alarm 

rate, underlining the need for continued improvement in 

commercial offerings. 

The ability of large memory models to capture long-term 

dependencies in time-series data enables the detection of 

subtle, complex patterns that may be indicative of impending 

seizure activity. This capability is particularly crucial in 

detecting seizures, which may be overlooked by traditional 

 

Figure 1. The original transformer model proposed 

in [11] 
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methods. Furthermore, these models can be trained on 

large, diverse datasets, allowing them to generalize 

across a wide range of seizure types and patient 

populations. Figure 2 provides a summary of the 

various application areas where transformer-based 

architectures are used, along with the most popular 

architectures for each application. Different 

applications in signal processing that addresses time-

series related tasks such as forecasting, classification, 

and anomaly detection will be compared in the final 

review paper. The review will also compare popular 

variations of transformers including Vanila [17], 

LogTrans [18], InParformer [19], Informer [20], 

Sageformer [21], Autoformer [22], Pyraformer [23], 

W-Transformers [24], Quatformer [25], 

FEDformer [26], and Crossformer [27]. 

The success of the attention mechanism in natural language processing has motivated researchers to apply 

this technique to many fields involving time series analysis. Even though the attention mechanism has 

demonstrated the ability to capture temporal patterns over long periods of time, research in this area is 

relatively nascent and evolving rapidly. Systems based on these architectures are extremely complex and 

difficult to implement. As the data resources available for training are growing exponentially, the 

optimization of these architectures for specific applications will continue to pose challenges. The goal of 

this review is to make this new generation of technology more accessible to the community. Updates to this 

review will be available on GitHub at https://github.com/sanect/timeSeries_transformers. 
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Abstract

• Long-term dependencies play a crucial role in the 

analysis of the time series data in applications such 

as healthcare, climate change, finance etc.

• The emergence of transformer-based technologies 

such as ChatGPT have demonstrated the potential 

for analyzing time series data in which modeling of 

long-term dependencies is crucial.

• In this abstract, we provide a review of various 

transformer-based models that are used to model 

long-term context in time series data.

• The combination of self-supervised learning and 

transformer models is a promising approach to 

improve the performance and explainability of 

automatic seizure detection models, especially for 

continuous EEG data.

Introduction

• Traditional methods such as autoregressive 

integrated moving average (ARIMA), long short-

term memory networks (LSTM), gated recurrent 

units (GRUs) and recurrent neural networks (RNN) 

have provided robust frameworks in the analysis of 

time series data

• These methods have limitations when applied to big 

data sets and when used to model long-term 

dependencies.

• Systems based on an attention mechanism 

leverage positional embedding modules and have 

been effectively employed in raw EEG data 

classification related to motor imagery tasks.

A Typical Transformer Architecture

Application Areas

• A summary of various application areas where 

transformer-based architectures have been 

successful along with the most popular 

architectures for each application:

Comparison to Time Series Models

• Transformer models have shown improvements in 

terms of accuracy, computational efficiency while 

handling long term dependencies. 

• Traditional time series models often have lower 

computational complexity but may require additional 

steps for trend and seasonality decomposition, 

which can increase the overall computation time.

• The self-attention module in standard Transformers 

has a quadratic time and memory complexity, posing 

a computational bottleneck for long sequences.

• To address this, models like LogTrans and 

Pyraformer introduce a sparsity bias in the attention 

mechanism, while models like Informer and 

FEDformer utilize the low-rank properties of the self-

attention matrix to reduce complexity​​.

• Traditional models have a limited memory 

mechanism and can remember and utilize only a 

fixed number of previous data points. This inherently 

restricts their ability to capture long-range 

dependencies effectively.

• While Transformer models offer higher accuracy and 

better handling of long-range dependencies, they 

often come with higher computational costs 

compared to traditional time series models. A 

comparison of computational efficiency for 12 

different time series data sets is shown below:

Advancements and Innovations

• Standard transformer designs excel in capturing 

global dependencies, but do not fully exploit the 

characteristics of time-series data, such as local 

structures that are better captured by conventional 

approaches such as convolutional or recurrent 

architectures.

• Interpretability remains a challenge, raising 

questions about their trustworthiness and bias.

• Recent innovations in transformer architectures, 

particularly those focusing on long-term time series 

forecasting, have introduced several significant 

advancements.

• Recent developments in attention mechanisms and 

efficiency enhancements have led to the 

introduction of more sophisticated time-series 

forecasting models. ETSFORMER, for instance, 

leverages exponential smoothing attention and 

frequency attention to improve efficiency.

• NAST, on the other hand, employs a non-

autoregressive architecture with a unique spatial-

temporal attention mechanism.

• Innovative Decomposition and Trend Analysis 

Techniques have been used in TDFormer, Differential 

Attention Fusion Model and FEDFORMER.

• Enhanced Multiscale and Long-Sequence 

Forecasting have been implemented in Scaleformer 

and Informer architectures.

Limitations and Challenges

• Computational Demands: Transformers are 

computationally intensive due to their complex 

architecture, which can be challenging for long 

sequence time-series forecasting. They often require 

high computational resources, particularly for training 

large models, which can be a limiting factor.

• Need for Large Datasets: Transformers typically 

require large datasets to train effectively due to their 

numerous trainable parameters. This need for 

extensive data can be a challenge in scenarios where 

data is scarce or expensive to acquire, such as many 

bioengineering or health sciences applications.

• Overfitting Issues: There is a risk of overfitting, 

especially when dealing with time series data that has 

complex patterns. Overfitting can lead to models that 

perform well on training data but poorly generalize to 

new, unseen data.

• Quadratic Time Complexity: The self-attention 

mechanism has a quadratic time complexity with 

respect to the sequence length, which can be 

prohibitive for very long time series. This issue limits 

the scalability of models in certain applications.

• Handling Long-Range Dependencies: While 

transformers are designed to capture long-range 

dependencies, their effectiveness can vary depending 

on the nature of the time series data. Application-

specific adaptations are required.

• Context Window Length: While models learn long-

term dependencies, they are limited by temporal 

coherence and context fragmentation.

Summary

• Compared to traditional models, a transformer 

architecture can be effective in analyzing long-term 

dependencies in time series data.

• Long-term dependencies in the data are useful in 

several applications, such as natural language 

processing, computer vision, and audio signal 

processing, as well as in various domains such as 

healthcare, climate studies, and finance.

• Innovations in transformer models are focusing on 

efficient ways to model long-term context, which 

poses a combinatorial problem, and prevents 

efficient integration of long-term and local 

constraints. 

• This latter point is particularly important in sequential 

physical signal data such as speech, cardiology or 

EEG signals.
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• A transformer architecture relies solely on 

attention mechanisms that allow the model to 

process inputs and outputs in parallel.

• The transformer follows an encoder-decoder 

structure, employing stacked self-attention and 

point-wise fully connected layers. 

• An attention function in the model

maps a query and a set of key-value 

pairs to an output, computed as

a weighted sum of the values.

• A transformer utilizes 

multi-head attention 

and incorporates 

positional encodings 

to maintain 

information about 

the order of 

sequence tokens.

• Transformers can 

handle raw input data 

without the need 

for extensive 

feature engineering. 

(minimal preprocessing 

and postprocessing).
Updates to this review will be available on GitHub at 

https://github.com/sanect/timeSeries_transformers
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