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Abstract—The recently established Neural Engineering Data 
Consortium (NEDC) is in the process of developing its first large-
scale corpus. This corpus, known as the Temple University 
Hospital EEG Corpus, upon completion, will total over 20,000 
EEG studies, and include patient information, medical histories 
and physician assessments, making it the largest and most 
comprehensive publicly released EEG corpus. For the first time, 
there will be sufficient data to support the application of state of 
the art machine learning algorithms. In this paper, we present 
pilot results of experiments in which we attempted to predict 
some basic attributes of an EEG from the raw EEG data using a 
pilot database of 100 EEGs. Standard machine learning 
approaches are shown to be capable of predicting commonly 
occurring events from simple features with high accuracy on 
closed-loop testing, and can deliver error rates slightly below 
50% on a 12-way open set classification problem. 

I. INTRODUCTION 
Data-driven approaches have made enormous advances in 

recent years [1]-[3] in terms of their ability to predict events 
through supervised training on big data resources. Equally 
important, however, is the fact that many of these techniques 
have the ability to discover underlying structure of the data 
using latent variables and unsupervised training techniques. 
These types of algorithms can provide enormous insight into 
the data. The only impediment to applying these techniques has 
been the lack of a suitable amount of data to support 
comprehensive experimentation. The Neural Engineering Data 
Consortium (NEDC) is being established at Temple University 
to address this issue.  

The past two decades have seen an explosion in Brain 
Computer Interface (BCI) research. However, despite 
significant progress, overall progress in the field does not 
appear to have been commensurate with the scope of 
investment (over $200M in the last decade from NIH and NSF 
alone). In particular, efforts to commercialize research findings 
have been tepid, hampered by a general lack of robustness 
when translating technologies to uncontrolled environments 
beyond the research laboratory. NEDC [4] is being launched to 
focus the attention of the research community on a progression 
of neural engineering research questions and to generate and 
curate massive data sets to be used in addressing those 
questions. A community-wide assessment, funded by a 
planning grant from the National Science Foundation, is being 
conducted to better define and prioritize the required resources 
needed by researchers to fuel innovation. These activities will 
be discussed extensively at GlobalSIP 2013. 

The existence of massive corpora has proven to substantially 
accelerate research progress by eliminating unsubstantiated 
research claims [5]. NEDC will broaden participation by 
making data available to research groups who have significant 
signal processing expertise but who lack capacity for data 
generation. This effort is modeled in part after similar 
successful endeavors, particularly in the human language 
technology field where a data consortium has led to systematic 
research and technology advances over a 20-year span [6]. 

In this paper, we present some preliminary results on NEDC’s 
first corpus – clinical electroencephalogram (EEG) recordings, 
as shown in Figure 1, conducted at Temple University 
Hospital (TUH) from 2002 to 2013 (and beyond). This corpus 
will support the development of technology to automatically 
interpret EEGs in addition to advancing the basic science of 
what aspects of a patient’s medical record correlate with 
various pathologies that can be diagnosed from EEG studies. 

Automatic interpretation of EEG data using machine learning 
approaches has evolved in recent years. Several specific 
applications have been studied extensively, including seizure 
detection [7], movement [8] and brain activity [9]. What most 
of these studies have in common, however, is that the data sets 
are small, typically involving 100 or less EEG studies. Such 
small studies simply do not produce statistically significant 
outcomes, and do not represent enough data to support 
complex statistical models such as k-nearest 
neighbors (kNN) [10], neural networks (NN) [2] or random 
forests (RF) [3]. Generalization of the findings presented in 

 

Figure 1. The source data, which consists of 24-channel 
recordings plus annotations, is displayed using Natus 
Medical Incorporated’s NicoletTM NicVue v5.71.4.2530). 



such small studies is not possible. Further, when correlates 
such as drug treatments, patient medical histories, or patient 
gender or age are factored in, studies consisting of 100 subjects 
are not sufficient to draw conclusions about best practices. It is 
the goal of this project to fundamentally change this. 

II. THE TUH EEG CORPUS 
The Temple University Hospital EEG Corpus (TUH-EEG) 

will be the world’s largest publicly available database of 
clinical EEG data. The database, upon completion, will 
comprise over 20,000 clinical EEG records made at TUH 
dating back to 2002. We expect this to be an on-going project 
with annual updates to the corpus. Although information 
disclosing a patient’s identity, such as name and corresponding 
video are being carefully redacted, other information such as 
gender, age, relevant medical history, and medications will be 
retained. In this manner, it will, for example, be possible to 
mine the data set for statistically significant changes in EEG 
activity in response to various medications. The complete 
corpus is expected to be available by the end of 2013 (to 
coincide with GlobalSIP 2013). 

The raw signal data consists of recordings containing between 
24 and 36 channels sampled at a minimum of 250 Hz using a 
16-bit A/D converter. More information on the fundamentals of 
EEG recordings can be found here [11]. TUH has been using a 
Natus Medical Incorporated’s NicoletTM EEG recording facility 
for the majority of the data collected. The raw data files are 
stored in a proprietary format. The data files are being exported 
using NicVue v5.71.4.2530 from their proprietary format to an 
EDF+ format [12]. This file format consists of a machine-
readable header containing metadata about the study, and the 
binary signal data. The EDF+ header contains 24 unique fields 
in addition to the actual signal data. Selected fields from this 
header that contain important metadata are shown below in 
Table 1. The redacting process involves modifying the patient 
ID (Field 2), date of birth (F6), patient name (F8) and the study 
number (F13) so that the patient’s identity remains anonymous. 
There are additional fields that describe signal conditions, such 
as the maximum amplitudes of the signals, which are stored for 
every channel. A complete description of the header and its 
contents can be found at the project web site [13]. 

The EDF+ file also contains time-aligned transcriptions of the 
data. An example of this is shown in Figure 3. The blue 
markers shown along the top of the waveform represent event 
annotations provided by technicians and physicians. This type 
of information will presumably be useful in localizing points of 
interest in the waveforms, and in developing hierarchical 
classification models that use the symbolic representation of 
these markers as internal states. 

In addition to the signal data, for each EEG, a physician’s EEG 
Report is available. An example of such a report is shown in 
Figure 2. This report contains a summary of the patient’s 
clinical history and medications. It also includes two fields, 
Impression and Clinical Correlation, which contain the 
physician’s findings. This report information is available in an 
Excel spreadsheet in a name/value pair format. The more 
recently collected EEGs (since 2011) are also coded in 
International Statistical Classification of Diseases codes 
(ICD-9). These codes can form the basis for the classification 
labels used in machine learning experiments. 

 

Figure 3. The EEG data contains detailed annotations 
including markers, shown in blue above, synchronized with 
the waveforms that identify critical events. 

TABLE 1. SELECTED FIELDS FROM AN EDF+ HEADER. 

Field Description Example 
1 Version Number 0 
2 Patient ID TUH123456789 
4 Gender M 
6 Date of Birth 57 
8 Firstname_Lastname TUH123456789 
11 Startdate 01-MAY-2010 
13 Study Number/ Tech. ID TUH123456789/TAS X 
14 Start Date 01.05.10 
15 Start time 11.39.35 
16 Number of Bytes in Header 6400 
17 Type of Signal EDF+C 
19 Number of Data Records 207 
20 Dur. of a Data Record (Secs) 1 
21 No. of Signals in a Record 24 
27 Signal[1] Prefiltering HP:1.000 Hz LP:70.0 Hz N:60.0 
28 Signal[1] No. Samples/Rec. 250 

 

 
Figure 2. An example of a physician’s EEG Report. 



III. PILOT EXPERIMENTS 
To better understand the nature of our data and the 

challenges processing it, we selected 140 studies and formed a 
pilot corpus. We first analyzed the metadata to understand 
something about the nature of the patients. A summary of key 
metadata fields is shown in Table 2. The corpus is fairly evenly 
divided between males and females (46% male / 54% female) 
and contains a good distribution of ages ranging from 20 years 
old to 95 years old. There is a total of over 42 hours of signal 
data, or an average of 17 minutes per study. The number of 
channels, including an annotation channel, varies from 28 to 37 
with the single largest group having been recorded using 31 
channels (48 studies). Prefiltering was turned off. The sample 
rate was 250 Hz for a majority of the studies. 

A technician annotated each EEG at the time of recording. A 
listing of some of the most common markers is shown in 
TABLE 4. Though these appear as time-aligned markers in the 
data, technicians who enter these markers do not pay close 
attention to the time alignment. Hence, their location in time is 
only approximate but still informative. 

We collapsed these into 12 categories to faciliate some simple 
machine learning pilot experiments. The categories are shown 
in TABLE 3. We selected these categories by clustering the 

specific markers into more general representations so that there 
would be an adequate amount of examples for training that 
corresponded to each marker. We removed some anomalous 
files and ended up with 103 files that had at least one instance 
of one of these 12 markers. Each study, or file, can contain one 
or more of these markers. Note that only 2 of the 103 files 
contained markers denoting Seizure during a session. Events 
such as seizures during a session are exceedingly rare. 

We constructed a simple machine learning experiment based 
on these markers. We first converted each N-channel EEG 
signal to a single feature vector by computing some popular 
aggregate features: the signal mean, variance and peak value. 
We computed these features on the first 16 channels because 
these channels were common to all EEGs in the corpus.  We 
concatenated each vector into one supervector for each file that 
had a dimension of 48 (3 features per channel x 16 channels). 
Though more sophisticated feature extraction algorithms will 
be used in future studies, for these pilot experiments we were 
mainly interested in establishing the consistency of the data – 
understanding to what extent it would support machine 
learning experiments. 

These vectors, along with the associated numeric class labels, 
were applied to three standard machine learning algorithms 
available in MATLAB. We selected these algorithms based on 
our familiary with their performance on a wide range of tasks 
[14]. The three algorithms employed were: (1) a K-nearest 
neighbor (kNN) based on knnsearch; (2) a neural network 
(NN) algorithm based on the  “newff” function that uses a 
single hidden layer; and (3) a random forest (RF) algorithm 
based on TreeBagger. The kNN algorithm required specifying 
the value of the number of nearest neighbors (K). The NN 
algorithm used tangent sigmoid transfer functions between 
each layer and resilient back propagation to train the network. 
The number of neurons (N) must be specified. The RF 
algorithm simply required providing the number of trees (T) 
used in the ensemble. 

We used a “leave-one-out” cross-validation approach to 
conducting the evalutation. Given N tokens, N-1 of these 
tokens are used for training, and then the classifier is used to 
predict the class for the Nth token. The data set is cycled so that 
all N tokens appear exactly once as the evaluation token. The 
overall error rate is then computed as the average of the N 
experiments with a single token. This is a very effective 
technique when faced with a limited amount of data. 

A summary of the results is shown in TABLE 5. The first 
column lists the algorithm; the second column shows the 
setting for the relevant design parameter; and the remaining 
columns show the error rate as a percentage. A forced choice 
scheme was used (one of 12 labels must be output). Results are 
given for both closed-set testing, where we train and evaluate 
on the same tokens, and open-set testing, where we use the 
leave-one-out method previously described. Results were also 
given for the raw features, and a post-processed version of 
these feaures in which each vector is normalized to have a 
norm of 1. Performance on closed-set testing is informative 
because the behavior is generally stable and consistent. 
Performance on open-set testing evaluates the generalization 
capability of the classifier. When performance diverges 

TABLE 2. AN ANALYSIS OF METADATA IN THE PILOT CORPUS. 
Field Description Example 

3 Gender M (46%) F (54%) 

4 Age (Derived from DOB) Min (20)   Max (94) 
Avg (53)   Stdev (19) 

13,14 Duration 42 hours (17 mins./study) 

15 Number of Channels 28 (26)   29 (12)   31 (48) 
32 (19)   35 (5)     37 (33) 

23 Prefiltering HP:0.000 Hz LP:0.0 Hz N:0.0 
24 Sample Frequency 250 Hz (100) 256 Hz (43) 

 

TABLE 4. THE MOST COMMON ANNOTATION MARKERS 

Marker Frequency 
Eyes Open 515 

Eyes Closed 355 
Movement 240 

Swallow 98 
Awake 61 

Drowsy / Sleeping 49 
Hyperventilation 40 

Talking 21 
 

TABLE 3. CLUSTERED MARKER CATEGORIES 

Numeric Label Name 
1 Hyperventilation 
2 Movement 
3 Sleeping 
4 Cough 
5 Drowsy 
6 Talking 
7 Chew 
8 Seizure 
9 Swallow 

10 Spike 
11 Dizzy 
12 Twitch 

 



between closed and open set testing, it is a sign that the data set 
might have problems or be too small to support these types of 
experiments. 

The overall best performance on open-set testing is achieved by 
the kNN algoithm for K=3. However, closed-set performance 
is a little unstable since we would expect performance to 
improve as a function of K. Not surprisingly, RF achieves an 
error rate of 0% on closed-set testing. The RF algorithm is very 
good at learning the nuances of a specific data set. However, its 
ability to generalize on the open-set test is not optimal, since 
this error rate increases to 60%. The performance for NN is 
very stable across a range of conditions. However, like RF, 
there is a tendency to overtrain and hence peformance on 
open-set testing is not optimal. 

IV. SUMMARY 
In this paper, we have introduced the TUH-EEG Corpus, 

which upon completion will consist of over 20,000 EEGs, 
making it the largest publicly available EEG corpus. We expect 
it will have a major impact on the development of clinical tools 
to automatically interpret EEGs. The data spans over a decade 
of clinical studies, and includes a rich library of metadata, 
patient histories and physician’s interpretations. It is ideal for 
large-scale machine learning experiments. 

Preliminary results presented on a pilot corpus of over 100 
EEGs demonstrated that it is possible to predict some 
annotations directly from the data. We showed that a kNN-
based predictor trained using a leave-one-out cross-validation 
approach achieved a closed-loop error of 0% and an open-loop 
error of 49%. An analysis of the actual errors was most 
informative. Not suprisingly, all algorithms tend to hypothesize 
the most frequently occurring classes – in this case the first two 
classes in TABLE 3. This is perhaps the greatest challenge in 
these types of bioengineering corpora. For example, consider 
the problem of predicting that a patient has a seizure disorder. 
In these 103 studies, the seizure marker only appeared twice. 
Needless to say it was incorrectly classified because in a 
Bayesian sense, the prior probabilities are so low that it makes 
sense to simply always choose a non-seizure classification. 
This is a good example of why it is so important for the TUH 
EEG Corpus to be large.  

It is also clear from our pilot experiments that features are very 
important. The coarse aggregate feaures used here are not 
designed to detect events that manifest themselves by short 

temporal bursts. Sequential decoding of the EEG using 
contemporary technology such as hidden Markov models will 
be crucial to identification and classification of such events. 
This will be the topic of future studies, and we expect to 
present prelminary results at the symposium. Self-organizing 
systems that can learn internal structure will be important. 
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TABLE 5. ERROR RATES AS A FUNCTION OF THE CLASSIFIER 

Alg. Setting Closed Open 
Raw Norm Raw Norm 

kNN K=1 0.0% 61.5% 72.1% 62.5% 
kNN 3 27.9% 61.5% 63.5% 49.0% 
kNN 5 39.4% 61.5% 64.4% 69.2% 

NN N=5 49.0% 70.2% 51.9% 75.0% 
NN 10 50.0% 71.2% 51.9% 77.9% 
NN 15 49.0% 78.9% 50.0% 76.0% 
NN 20 51.9% 76.9% 55.8% 78.9% 
RF T=1 19.2% 54.8% 62.5% 60.6% 
RF 20 0.0% 49.0% 62.5% 57.7% 
RF 50 0.0% 56.7% 61.5% 55.8% 
RF 100 0.0% 50.0% 65.4% 54.8% 

 


