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Abstract. Initially introduced in the late 1960s and early 1970s, dynamic programming al-
gorithms have become increasingly popular in automatic speech recognition. There are two
reasons why this has occurred: First, the dynamic programming strategy can be combined with
a very e�cient and practical pruning strategy so that very large search spaces can be handled.
Second, the dynamic programming strategy has turned out to be extremely exible in adapting
to new requirements. Examples of such requirements are the lexical tree organization of the
pronunciation lexicon and the generation of a word graph instead of the single best sentence.
In this paper, we attempt to systematically review the use of dynamic programming search
strategies for small{vocabulary and large{vocabulary continuous speech recognition. The fol-
lowing methods are described in detail: search using a linear lexicon, search using a lexical tree,
language-model look-ahead and word graph generation.

1 Introduction

Search strategies based on dynamic programming (DP) are currently being used successfully
for a large number of speech recognition tasks, ranging from digit string recognition through
medium-size vocabulary recognition using heavily constrained grammars to large vocabulary
continuous speech recognition (LVCSR) with virtually unconstrained speech input.
Several variants of DP search were already known in the early days of automatic speech recog-
nition [24, 37, 65, 66, 75, 76, 77]. Over the past three decades, these and related DP strategies
have turned out to be surprisingly successful in handling vocabularies of 20k or more words.
Nevertheless, until recently, among the experts, it was a highly controversial issue whether
high-perplexity LVCSR could be handled by DP.
The skepticism seems to have been concerned mainly with the following issues, which we will
address especially in this paper:

� The extension from a 10-digit vocabulary to a 20k-word vocabulary would blow up the
search space dramatically. Could this huge search space be handled by DP in an e�cient
way?

� In particular, each variant of DP search in speech recognition is more or less 'notorious'
for its operations at the 10-ms frame level. How could this low-level acoustic search
interact e�ciently with the high-level knowledge sources in the recognition system such as
the pronunciation lexicon and the language model (LM)? In addition, in order to narrow
down the search, an early integration of these knowledge sources might be mandatory.

� DP typically computes only the single best sentence. But in many recognition systems, it
is desirable for various reasons to produce alternative sentences or a word graph. Could
the conventional DP strategy be extended to generate a word graph rather than only the
single best sentence?

Where do we stand in speech recognition in comparison with 20 years ago? At that time,
widely held opinions were quite di�erent, with respect to both acoustic-phonetic modeling and
to search. A number of experts predicted that considerable progress could be made by getting
rid of \primitive techniques" like statistical pattern recognition and beam search. However, the
experience gained over the last two decades has shown that the judgement passed by Klatt on
the principles of the DRAGON and HARPY systems developed in 1976 is now more true than
ever before [26, pp. 261]:

\...the application of simple structured models to speech recognition. It might seem to
someone versed in the intricacies of phonology and the acoustic-phonetic characteristics
of speech that a search of a graph of expected acoustic segments is a na��ve and foolish
technique to use to decode a sentence. In fact such a graph and search strategy (and
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probably a number of other simple models) can be constructed and made to work very
well indeed if the proper acoustic-phonetic details are embodied in the structure".

By extending Klatt's statement to include the language model, we obtain the topic of this
paper. Table 1 summarizes the de�nitions of some frequently used terms in the context of the
search process in speech recognition. In this paper, we will attempt to give a unifying view of
the dynamic programming approach to the search problem. For a discussion of other search
strategies and related topics, see a companion paper appearing in this issue [16].
The organization of the paper is as follows. In Section 2, we will review the search problem from
the statistical point-of-view and show how the search space results from the acoustic model and
language model required by the statistical approach. In Section 3, we will present the one{pass
algorithm using a linear lexicon. This baseline algorithm will then be extended to handle a
pre�x tree organization of the pronunciation lexicon in Section 4. In Section 5, we will discuss
the practical implementation of the search strategy and related issues such as the details of
the pruning operations and the language model look-head. In Section 6, we will extend the
one{pass strategy from the single best sentence to a word graph in order to generate sentence
alternatives. Finally, we will present experimental results for the search algorithms on a 64k-
word speech recognition task.
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Table 1: De�nitions and explanations of frequently used terms.

Decoder: In analogy with the terminology of �nite-state methods for decoding [20] in
information theory, the search algorithm in speech recognition is often referred to as
decoding algorithm.

Integrated search: We call a search strategy integrated if all available knowledge
sources, e.g. acoustic-phonetic models, the constraints of the pronunciation lexi-
con and the language model, are exploited in the search process at the same time;
typically this concept is implemented in a one{pass strategy.

Time{synchronous: A search strategy is called time-synchronous if the search hypothe-
ses are formed in a time-synchronous fashion over the sequence of acoustic vectors.
Typically, the time-synchronous concept goes hand in hand with the one{pass search
strategy. A� search or stack decoding is an example of a search strategy that is not
necessarily time-synchronous.

One{pass vs. multi{pass: We call a search a one{pass strategy if there is one single
pass over the input sentence as opposed to a multi{pass or multi-level concept. The
one{pass search strategy is virtually always based on dynamic programming.

Word-conditioned vs. time-conditioned: These terms refer to the way in which the
search space, especially in the context of dynamic programming, is structured. In
a word-conditioned search, each search hypothesis is conditioned on the predecessor
word. This implies that the optimization over the unknown end time of the predeces-
sor word, i.e. the word boundary between the predecessor word and the word under
consideration, is already carried out in an early phase of the search. Therefore, this
method is di�erent from a time-conditioned search, where for each search hypothesis
the dependence on the end time of the predecessor word is explicitly retained and
the optimization over the unknown word boundaries is performed as a �nal step of
the search.

Single best vs. word graph: The attribute 'single best' is used to denote a search con-
cept which determines the single most likely word sequence. The alternatives are,
among others, n-best concepts and word graph methods. The idea of a word graph
here is to organize the high-ranking sentence hypotheses in the form of a graph whose
edges represent the hypothesized single words. Sometimes, the term `word lattice'
is used synonymously. However, in this paper, by the term `word graph', we imply
that gaps or overlaps between word hypotheses are not allowed.

Linear vs. tree lexicon: For a small-vocabulary task, it is su�cient to have a sepa-
rate representation of each vocabulary word in terms of phonemes or HMM states
(HMM = Hidden Markov model). In nearly all cases, this is just a linear sequence
of phonemes or HMM states. Therefore, this approach is referred to as linear lex-
icon. For a large vocabulary, however, it is typically very useful to organize the
pronunciation lexicon as a tree, whose arcs are the phonemes.
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2 System Architecture

2.1 Why is CSR hard?

The ultimate long-term goal of automatic speech recognition is to build a system or machine
which is able to \hear" in the sense that for a spoken utterance it converts the acoustic signal
into the sequence of written words. The major problems for unrestricted, continuous speech
recognition can be summarized as follows:

- In the acoustic signal, there is no clear indication or no indication at all of the boundaries
between words or phonemes. Thus, not only the spoken words, but also the phoneme
boundaries and the word boundaries are unknown.

- There is a large variation in the speaking rates in continuous speech.

- The words and especially the word endings are pronounced less carefully in uent speech
than in an isolated speaking mode.

- There is a great deal of inter- as well as intra-speaker variability, caused by a number of
factors such as sex, physiological and psychological conditions.

- The quality of the speech signal may be a�ected by environmental noise or the transfer
function of the transmission system, e.g. microphone and telephone.

- For unrestricted natural-language speech input, the task-inherent syntactic-semantic con-
straints of the language should be exploited by the recognition system, in a way similar to
human-to-human communication.

2.2 Bayes Decision Rule

Every approach to automatic speech recognition is faced with the problem of making decisions in
the presence of ambiguity and context and of modeling the interdependence of these decisions at
various levels. If it were possible to recognize phonemes or words with a very high reliability, it
would not be necessary to rely heavily on delayed decision techniques, error correcting techniques
and statistical methods. Considering the experience gained over the last 30 years, we do not
expect that this problem of reliable and virtually error free phoneme or word recognition without
using high{level knowledge will be possible, especially for large{vocabulary continuous{speech
recognition. As a consequence, the recognition system has to deal with a large number of
hypotheses about phonemes, words and sentences, and ideally has to take into account the
\high{level constraints" as given by syntax, semantics and pragmatics. Given this state of
a�airs, statistical decision theory tells us how to minimize the probability of recognition errors
[7]:

Maximize the posterior probability Pr(w1:::wN jx1:::xT ), i.e. determine the sequence of
words w1:::wn:::wN of unknown length N which has most probably caused the observed
sequence of acoustic vectors x1:::xt:::xT over time t = 1:::T , which are derived from the
speech signal in the preprocessing step of acoustic analysis.

By applying Bayes theorem on conditional probabilities, the problem can be written in the
following form: Determine the sequence of words w1:::wn:::wN which maximizes

Pr(w1:::wn:::wN ) � Pr(x1:::xt:::xT jw1:::wn:::wN ) :

This so{called Bayes decision rule is illustrated in Fig. 1. It requires two types of probability
distributions which we refer to as stochastic knowledge sources along with a search strategy:
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Figure 1: Bayes decision rule for speech recognition.

� The language model, i.e. Pr(w1:::wN ), is independent of the acoustic observations and
is meant to incorporate (probabilistic) restrictions on how to concatenate words of the
vocabulary to form whole sentences. These restrictions result from the syntactic, semantic
and pragmatic constraints of the recognition task and may be modeled by probabilistic or
nonprobabilistic ('yes/no') methods. In large vocabulary recognition tasks, the language
model probabilities are typically approximated by bigram or trigram models:

Pr(wnjw1:::wn�1) = p(wnjwn�1)

Pr(wnjw1:::wn�1) = p(wnjwn�2; wn�1) :

� The acoustic{phonetic model, i.e. Pr(x1:::xT jw1:::wN ), is the conditional probability of
observing the acoustic vectors x1:::xT when the speaker utters the words w1:::wN . Like the
language model probabilities, these probabilities are estimated during the training phase
of the recognition system. For a large{vocabulary system, there is typically a set of basic
recognition units that are smaller than whole words. Examples of these so{called subword
units are phonemes, demisyllables or syllables. The word models are then obtained by
concatenating the subword models according to the phonetic transcription of the words in
a pronunciation lexicon or dictionary. In most systems, these subword units are modeled
by Hidden Markov Models (HMM). Hidden Markov Models are stochastic �nite{state
automata (or stochastic regular grammars) which consist of a Markov chain of acoustic
states, modeling the temporal structure of speech, and a probabilistic function for each
of the states, modeling the emission and observation of acoustic vectors [7, 9, 25, 35, 62].
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Figure 2: Structure of a phoneme model and search space.

In the experiments reported in this paper, the phoneme models have a structure that is
depicted in Fig. 2 along with the resulting search space. The phoneme X consists of three
parts (X1;X2;X3), resulting in a linear arrangement of six states. Words are obtained by
concatenating the HMM phoneme units according to the baseline phonetic transcription
as it can be found in a pronunciation dictionary. Usually, for a given state s0 in a word
model w, we have a transition probability p(sjs0; w) for going to state s and an emission
probability (density) p(xtjs

0; w) for observing vector xt. For the following, it is su�cient
to consider only the product of the emission and transition probabilities:

p(xt; sjs
0;w) = p(sjs0;w) � p(xtjs;w) ;

which is the conditional probability that, given state s0 in word w, the acoustic vector xt
is observed and the state s is reached.

2.3 Speci�cation of the Search Problem

The decision on the spoken words must be taken by an optimization procedure which combines
information of several knowledge sources: the language model, the acoustic{phonetic models of
single phonemes, and the pronunciation lexicon. The optimization procedure is usually referred
to as search in a state space de�ned by the knowledge sources.
For a hypothesized word sequence wN1 = w1:::wN , we imagine a super HMM that is obtained
by concatenating the corresponding phoneme HMMs using a pronunciation lexicon (see Fig. 2).
Note that by this process, we end up with a large number of copies for each phoneme and that
these copies must be kept separate during the search process to satisfy the constraints of the
pronunciation lexicon. At phoneme and word boundaries, we have to allow for transitions that
link the terminal states of any predecessor HMM to the initial states of any successor HMM.
In such a way, we can compute the joint probability of observing the sequence xT1 = x1:::xT of
acoustic input vectors and the state sequence sT1 = s1:::sT through this super HMM:

Pr
�
xT1 ; s

T
1

���wN1 � =
TY
t=1

p(xt; stjst�1; w
N
1 ) ;

=
TY
t=1

h
p(stjst�1; w

N
1 ) � p(xtjst)

i
;
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where p(xt; stjst�1; w
N
1 ) denotes the product of the transition and emission probabilities for the

super HMM wN1 . The decomposition has been formulated in such a way that we can distinguish
between two components of the approach:

� the reference models with the emission probability distributions p(xtjs) for the acoustic
state s, e.g. after tying the emission distributions using decision trees [80] or some other
method. Note that, for the emission probability p(xtjs), we stretch notation a little bit
and do not necessarily distinguish between the state in a phoneme or word model and its
associated generic emission probability distribution.

� the transition probabilities p(stjst�1; w
N
1 ) depending on a word sequence hypothesis wN1 :

this implies a huge �nite network of states (super HMM) that has to be considered for
each word sequence hypothesis wN1 .

Denoting the language model (LM) probability by Pr(wN1 ), the Bayes decision rule results in
the following optimization problem:

ŵN1 = argmax
wN
1

8><
>:Pr(wN1 ) �

X
sT
1

Pr
�
xT1 ; s

T
1

���wN1 �
9>=
>;

= argmax
wN
1

(
Pr(wN1 ) �max

sT
1

Pr
�
xT1 ; s

T
1

���wN1 �
)
:

Here, we have made use of the so-called maximum approximation which is also referred to
as Viterbi approximation [25]. Instead of summing over all paths, we consider only the most
probable path. Note that for the maximum approximation to work, we need only the assumption
that the resulting optimal word sequences are the same, not necessarily that the maximum
provides a good approximation to the sum.
In this maximum approximation, the search space can be described as a huge network through
which the best time alignment path has to be found. The search has to be performed at two
levels: at the state level (sT1 ) and at the word level (wN1 ). As we will see, as a result of the
maximum approximation, it will be possible to recombine hypotheses e�ciently at both levels by
DP. Thus the combinatorial explosion of the number of search hypotheses can be limited, which
is one of the most important characteristics of DP. At the same time, the search hypotheses are
constructed and evaluated in a strictly left-to-right time-synchronous fashion. This characteristic
property allows an e�cient pruning strategy to eliminate unlikely search hypotheses, which is
usually referred to as beam search.
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Figure 3: Illustration of the search problem for a three-word vocabulary (A;B;C).

3 One{Pass DP Search using a Linear Lexicon

3.1 De�nition of the Search Space

In this section, for a linear lexicon, we describe the one{pass algorithm which forms the baseline
for all search strategies described in this paper. Originally the one{pass algorithm had been
designed for small vocabulary recognition tasks like digit string recognition [13, 41, 42, 77].
Over the last 30 years, however, these algorithms and its extensions have turned out to be
surprisingly successful in handling vocabularies of 20 000 or more words.
The term 'linear lexicon' denotes the fact that the words are kept strictly separate in the search
process. Unlike a tree lexicon, there is no sharing between the words as far as the search
hypotheses are concerned. For a three{word vocabulary, the search space is illustrated in Fig. 3.
There are two types of transitions, namely the acoustic transitions representing the probabilities
of the acoustic word models (A;B;C in Fig. 3). and the language transitions representing
the language model probabilities. In Fig. 3, a bigram language model is assumed. For each
possible word bigram (v; w), there is a LM transition that is assigned the conditional bigram
LM probability p(wjv) and that links the end of predecessor v to the beginning of word w. For
recognition, as shown in Fig. 3, we unfold the �nite-state machine along the time axis of the
spoken utterance. For the sake of simplicity, Fig. 3 does not cover the details of the acoustic
models and shows the language model transitions at times t2 and t3, only. Both the acoustic
transitions (as shown in Fig. 2) and the language transitions must be considered every 10-ms
time frame. As a result, there is a huge number of possible state sequences, and all combinations
of state and time must be considered systematically for recognition.
In the maximum approximation, the search problem can be speci�ed as follows. We wish to
assign each acoustic vector observed at time t to a (state,word) index pair. This mapping can
be viewed as a time alignment path, which is a sequence of (state,word) index pairs (stretching
notation):

(s1; w1); :::; (st; wt); :::; (sT ; wT ) :

An example of such a time alignment path in connected word recognition is depicted in Fig. 4.
For such paths, there are obvious continuity constraints or transition rules as shown in Fig. 5.
Since the word models are obtained by concatenating phoneme models, the transition rules in the
word interior (Fig. 5 top) are those of the used HMMs as shown in Fig. 2. At word boundaries
(Fig. 5 bottom), we have to allow for transitions that link the terminal state Sv of any predecessor
word v to the beginning states s = 1 and s = 2 of any word w. The dynamic programming
search to be presented will allow us to compute the probabilities (stretching notation)

Pr(w1:::wt) � Pr(x1:::xt; s1:::stjw1:::wt)

9



in a left{to{right fashion over time t and to carry out the optimization over the unknown word
sequence at the same time. Note that the unknown word sequence and the unknown state
sequence are determined simultaneously. Within the framework of the maximum approximation
or Viterbi criterion, the dynamic programming algorithm presents a closed{form solution for
handling the interdependence of nonlinear time alignment, word boundary detection and word
identi�cation in continuous speech recognition [13, 34, 37, 40, 42, 65, 77].

3.2 DP Recursion

The key concept of the dynamic programming strategy to be presented is based on the following
two quantities:

Q(t; s;w) := score of the best path up to time t

that ends in state s of word w.

B(t; s;w) := start time of the best path up to time t

that ends in state s of word w.

Looking at the main memory sizes available today, we should add that the back pointer B(t; s;w)
is not absolutely needed for small-vocabulary tasks like digit string recognition. For vocabularies
of 20 000 or more words, however, it is essential to reduce the storage requirements as much as
possible.
As shown in Fig. 4, there are two types of transition rules for the path, namely rules in the
word interior and at word boundaries. The concept of dynamic programming is to use these
rules to decompose the path into two parts and formulate recurrence relations, which can be
solved by �lling in tables, which in this case is the table Q(t; s;w). In a more general setting
of optimization problems, this concept is often referred to as Bellman's principle of optimality

[10]. In the word interior, we have the recurrence equation:

Q(t; s;w) = max
s0

�
p(xt; sjs

0;w) �Q(t� 1; s0;w)
	

B(t; s;w) = B(t� 1; smax(t; s;w);w) ;

where smax(t; s;w) is the optimum predecessor state for the hypothesis (t; s;w). The back
pointers B(t; s;w) are propagated simply according to the DP decision as shown in Fig. 6
and report the start time for each word end hypothesis. When encountering a potential word
boundary, we have to perform the recombination over the predecessor words and therefore de�ne:

H(w; t) := max
v

f p(wjv) �Q(t; Sv; v) g ;

where p(wjv) is the conditional LM probability of word bigram (v; w). The symbol Sv denotes
the terminal state of word v. To allow for successor words to be started, we introduce a special
state s = 0 and pass on both the score and the time index:

Q(t� 1; s = 0;w) = H(w; t� 1)

B(t� 1; s = 0;w) = t� 1 :

This equation assumes that �rst the normal states s = 1; :::; Sw are evaluated for each word
w before the start-up states s = 0 are evaluated. The same time index t is used intentionally,
because the language model does not 'absorb' an acoustic vector. Note that the scores Q(t; s;w)
capture both the acoustic observation dependent probabilities resulting from the HMM and the
language model probabilities.
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The operations to be performed are summarized in Table 2. The sequence of acoustic vectors
extracted from the input speech signal is processed strictly from left to right. According to
the DP equations, two levels are distinguished in Table 2: the acoustic level at which the
word internal recombinations are performed and the word pair level at which the bigram LM
recombinations are performed. The search procedure works with a time{synchronous breadth{
�rst strategy, i.e. all hypotheses for word sequences are extended in parallel for each incoming
acoustic vector. To reduce the storage requirements, it is suitable to introduce a traceback array
in addition to the back pointers. For each time frame, the traceback array is used to record the
decision about the best word end hypothesis and its start time. Using the traceback array, the
recognized word sequence can be recovered e�ciently by a few table look-ups into the traceback
arrays at the end of the utterance as shown in Fig. 7.
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Table 2: One{pass DP algorithm using a linear lexicon.

proceed over time t from left to right

ACOUSTIC LEVEL: process (word,state)-hypotheses

{ initialization: Q(t� 1; s = 0;w) = H(w; t� 1)

B(t� 1; s = 0;w) = t� 1

{ time alignment: Q(t; s;w) using DP

{ propagate back pointers B(t; s;w)

{ prune unlikely hypotheses

{ purge bookkeeping lists

WORD PAIR LEVEL: process word end hypotheses

for each word w do

H(w; t) = max
v

f p(wjv) Q(t; Sw;w) g

v0(w; t) = argmax
v

f p(wjv) Q(t; Sw;w) g

{ store best predecessor v0 := v0(w; t)

{ store best boundary �0 := B(t; Sv0 ; v0)

Beam Search

Since, for a �xed time frame, all (word,state)-hypotheses cover the same portion of the input,
their scores can be directly compared. This enables the system to avoid an exhaustive search
and to perform a data driven search instead, i.e. to focus the search on those hypotheses which
are most likely to result in the best state sequence [37]. Every 10{ms frame, the score of the
best hypothesis is determined, then all hypotheses whose scores fall short of this optimal score
by more than a �xed factor are pruned, i.e. are removed from further consideration. The
experimental tests indicate that for this type of beam search, depending on the acoustic input
and the language model constraints, only a small fraction of the overall number of possible
(word,state)-hypotheses have to be processed for every 10 ms of the input speech while at the
same time the number of recognition errors is virtually not increased. This beam search strategy
will be considered in full detail later in the context of a tree organization of the pronunciation
lexicon. In addition, to fully exploit the computational advantages of this beam search strategy,
a dynamic construction of the active search space is suitable as we will also discuss later. This
one{pass dynamic programming algorithm in combination with beam search forms the basic
component of the search component in many successful systems for both small-vocabulary and
large-vocabulary speech recognition [1, 5, 14, 17, 21, 23, 30, 33, 34, 39, 46, 55, 72, 79].

4 One{Pass DP Search using a Tree Lexicon

4.1 De�nition of the Search Space

When applying the algorithm presented to large-vocabulary recognition, say a 20 000-word task,
it seems natural and very desirable for e�ciency reasons to organize the pronunciation lexicon
in the form of a pre�x tree, in which each arc represents a phoneme model, be it context
dependent or independent [22, 46, 55]. A part of such a lexical pronunciation tree is shown
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Figure 8: Tree-organized pronunciation lexicon.

in Fig. 8. This idea of using a tree representation was already suggested in the seventies in
the CASPERS system [28] and in the LAFS system (LAFS = lexical access from spectra) [27].
However, when using such a lexical tree in the framework of a language model, e.g. a bigram
model, and dynamic programming, there are DP-speci�c technical details that have to be taken
into account and require a suitable structuring of the search space [22, 46]. Next we will present
the search algorithm for such a context in full detail.
When using a bigram LM in connection with such a tree representation of the pronunciation
lexicon, we face the problem that the identity of the hypothesized word w is known only when a
leaf of the tree has been reached. Therefore the language model probabilities can only be fully
incorporated after reaching the terminal state of the second word of the bigram. As a result, we
can apply the language model probability only at the end of a tree. To make the application
of the dynamic programming principles possible, we structure the search space as follows. For
each predecessor word v, we introduce a separate copy of the lexical tree so that during the
search process we will always know the predecessor word v when a word end hypothesis w is
hypothesized. Fig. 9 illustrates this concept for a three-word vocabulary (A;B;C), where the
lexical tree is depicted in a simpli�ed schematic form. To avoid any potential misconceptions,
we would like to stress that Fig. 9 shows the conceptual search space, which is too big to be
constructed as a whole. Instead, as we will show later, we will construct the active portions
of this search space dynamically in combination with beam search. In the set-up of Fig. 9, we
apply the bigram LM probability p(wjv) when the �nal state of word w with predecessor v has
been reached, and use the resulting overall score to start up the corresponding lexical tree, i.e.
the tree that has word w as predecessor.
In the recognition process, in addition to the spoken words, we have to account for possible pauses
between the spoken words. To handle these so-called intraphrase pauses, we have a special HMM
silence model and add a separate copy of this model (Sil) to each tree. Furthermore, for the
possible pause at the sentence beginning, we have a separate copy of the lexical tree for the
�rst word in the sentence; this tree copy is given silence as its predecessor word. As a result of
this approach, the silence model copies do not require a special treatment, but can be processed
like regular words of the vocabulary. However, there is one exception: at word boundaries,
there is no language model probability for the silence models. As shown in Fig. 9, there are
two types of path extensions and recombinations, namely in the interior of the words or lexical
trees and at word boundaries. In the word interior, we have the bold lines representing the
transitions in the Hidden Markov models. At word boundaries, we have the thin and the dashed
lines, which represent the bigram LM recombinations. Like the acoustic recombinations, they,
too, are performed every 10-ms time frame. The dashed lines are related to recombinations for
intraphrase silence copies. To start up a new word hypothesis, we have to incorporate the bigram
probability into the score and to determine the best predecessor word. This best score is then
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propagated into the root of the associated lexical tree, which is represented by the symbol 2.
The symbol � denotes a word end.
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Figure 9: Bigram LM recombination and intraphrase silence (Sil) handling for a tree lexicon
(three-word vocabulary: A,B,C);

symbols: �: word end hypotheses A;B;C;
2: root of a tree copy for history A;B;C;
bold line: acoustic model recombination within a tree copy;
thin line: bigram language model recombination;
dashed line: word boundary recombination for silence hypotheses.

4.2 DP Recursion

For a quantitative speci�cation of the search procedure, we assume that each arc of the lexical
tree is represented by a Hidden Markov model. We will use the state index s directly and assume
that the lexical structure is captured by the transition probabilities of the Hidden Markov model.
To formulate the dynamic programming approach, we introduce the following two quantities [45]:

16



Qv(t; s) := score of the best partial path that ends at time t

state s of the lexical tree for predecessor v.

Bv(t; s) := start time of the best partial path that ends at time t

in state s of the lexical tree for predecessor v.

In other words Bv(t; s) is the back pointer which points back to the start time of the lexical
tree copy for predecessor word v. This back pointer is needed because the de�nition of the
score Qv(t; s) implies that the optimization over the unknown start time of the lexical tree copy
for predecessor word v has been carried out. Both quantities are evaluated using the dynamic
programming recursion for Qv(t; s):

Qv(t; s) = max
s0

�
p(xt; sjs

0) �Qv(t� 1; s0)
	

Bv(t; s) = Bv(t� 1; smaxv (t; s)) ;

where smaxv (t; s) is the optimum predecessor state for the hypothesis (t; s) and predecessor word
v. As before, the back pointers Bv(t; s) are propagated according to the dynamic programming
decision. Unlike the predecessor word v, the index w for the word under consideration is only
needed and known when a path hypothesis reaches an end node of the lexical tree: each end
node of the lexical tree is labeled with the corresponding word of the vocabulary.
Using a suitable initialization for s = 0, this equation includes the optimization over the unknown
word boundaries. At word boundaries, we have to �nd the best predecessor word v for each
word w. As in the case of a linear lexicon, we de�ne:

H(w; t) := max
v

f p(wjv) �Qv(t; Sw) g ;

where the state Sw denotes the terminal state of word w in the lexical tree. To propagate the
path hypothesis into the lexical tree hypotheses or to start them up in case they do not exist
yet, we have to pass on the score and the time index before processing the hypotheses for time
frame t:

Qv(t� 1; s = 0) = H(v; t� 1)

Bv(t� 1; s = 0) = t� 1 :

The details of the algorithm are summarized in Table 3.

Extension to Trigram Language Models

So far, we have considered the one{pass search approach only in the context of a bigram language
model. To extend the tree search method from a bigram to a trigram LM, we have to take into
account that for a trigram the language model probabilities are conditioned on the previous two
words rather than on one predecessor word in the case of a bigram LM [45, 50, 57]. Therefore,
the incorporation of a trigram LM into the tree search method requires a restructuring of the
search space organization. Fig. 10 illustrates the search space using a trigram model. For each
two-word history (u; v), we introduce a separate copy of the lexical tree; in Fig. 10, the root of
each tree copy is labeled with its two-word history. As in the case of a bigram LM, the structure
of the search space is de�ned in such a way that in the search network the probabilities or costs
of each edge depend only on the edge itself (along with its start and end vertex) and nothing
else. This property of the search network allows us to directly apply the principle of dynamic
programming. Note that in comparison with a bigram LM organized search space, the size of the
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Table 3: One{pass DP algorithm using a tree lexicon.

proceed over time t from left to right

ACOUSTIC LEVEL: process (tree,state){hypotheses

{ initialization: Qv(t� 1; s = 0) = H(v; t� 1)

Bv(t� 1; s = 0) = t� 1

{ time alignment: Qv(t; s) using DP

{ propagate back pointers Bv(t; s)

{ prune unlikely hypotheses

{ purge bookkeeping lists

WORD PAIR LEVEL: process word end hypotheses

for each word w do

H(w; t) = max
v

f p(wjv) Qv(t; Sw) g

v0(w; t) = argmax
v

f p(wjv) Qv(t; Sw) g

{ store best predecessor v0 := v0(w; t)

{ store best boundary �0 := Bv0
(t; Sw)

potential search space is increased drastically by an additional factor, which is the vocabulary
size. Hence, in order to keep the search e�ort manageable, an e�cient pruning strategy as
described before is even more crucial for the case of a trigram language model.
For simplicity, we have omitted the silence copies in Fig. 10. To allow for intraphrase silence, we
use the same concept as for the bigram language model [22, 46]. For the trigram language model
recombination, we need the identity of the two non-silence predecessor words, and therefore a
separate copy of the silence model is required for each pair of non-silence predecessor words.
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Figure 10: Trigram LM recombination for a tree lexicon (three-word vocabulary: A,B,C)

symbols: �: word end hyptheses A;B;C;
2: root of tree copy of history AA;BA;CA;AB; :::;
bold line: acoustic model recombination within a tree copy;
thin line: trigram language model recombination.
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5 Re�nements and Implementation Issues

To obtain an estimate of the overall number of state hypotheses, we consider a typical task such
as the 20k-word NAB task [29]:

� 20 000-word vocabulary with a 65 000-arc tree for the pronunciation lexicon,

� bigram language model,

� 6 states per HMM arc.

For this task, we obtain the following size of the potential search space:

20k trees � 65k arcs/tree � 6 HMM states/arc = 7.8 � 109 HMM states .

Therefore, in full DP search, there are this number of HMM states for which the DP recursions
have to be evaluated every 10-ms time frame of the input signal. In contrast with this astronomic
number, the experiments will show that, without loss in recognition accuracy, it is su�cient to
evaluate only 10 000 and less state hypotheses on average per 10-ms time frame.

5.1 Pruning Re�nements

Evidently, full search is prohibitive. Therefore, we use the time synchronous beam search strat-
egy, where, for every time frame, only the most promising hypotheses are retained. The pruning
approach consists of three steps that are performed every 10-ms time frame [73]:

� Acoustic pruning

is used to retain only hypotheses with a score close to the best state hypothesis for further
consideration. Denoting the best scoring state hypothesis by

QAC(t) := max
(v;s)

f Qv(t; s) g ;

we prune a state hypothesis (t; s; v) if:

Qv(t; s) < fAC �QAC(t) :

The so-called beam width, i.e. the number of surviving state hypotheses, is controlled by
the so-called acoustic pruning threshold fAC .

� Language model pruning (or word end pruning)

is only applied to tree start-up hypotheses as follows. For word end hypotheses, the bigram
LM probability is incorporated into the accumulated score, and the best score for each
predecessor word is used to start up the corresponding tree hypothesis or is propagated
into this tree hypothesis if it already exists. The scores of these tree start-up hypotheses
are subjected to an additional pruning step:

QLM (t) := max
v

f Qv(t; s = 0) g ;

where s = 0 is the �ctitious state of the tree root used for initialization. Thus a tree
start-up hypothesis (t; s = 0; v) is removed if:

Qv(t; s = 0) < fLM �QLM (t) ;

where fLM is the so-called language model pruning threshold.

� Histogram pruning

limits the number of surviving state hypotheses to a maximum number (MSta). If the
number of active states is larger than MSta, only the best MSta hypotheses are retained
while the other hypotheses are removed. This pruning method is called histogram pruning
because we use a histogram of the scores of the active states [73].
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Figure 11: Anticipated LM probabilities for LM look-ahead.

5.2 Language Model Look-Ahead

The basic idea of the language model look-ahead is to incorporate the language model proba-
bilities as early as possible into the search process and thus into the associated pruning process.
This is achieved by anticipating the LM probabilities as a function of the nodes of the lexical
tree so that each node corresponds to the maximum LM probability over all words that can
be reached via this speci�c node. Using the bigram LM conditional probability p(wjv), the
anticipated LM probability �v(s) for state s and predecessor word v is de�ned as:

�v(s) := max
w2W(s)

p(wjv) ;

where W(s) is the set of words that can be reached from tree state s. Strictly speaking, we
should use the tree nodes (or arcs) rather than the states of the Hidden Markov models that are
associated with each arc. However, each initial state of a phoneme arc can be identi�ed with
its associated tree node. The concept of anticipating the LM probabilities for each node of the
lexical tree is illustrated in Fig. 11.
To incorporate the anticipated LM probabilities into the three pruning operations of the search,
we combine the anticipated LM probabilities with the score of the hypothesis (t; s; v) and de�ne
a modi�ed score ~Qv(t; s):

~Qv(t; s) := �v(s) �Qv(t; s) :

For the acoustic pruning, we compute the modi�ed score of the best state hypothesis:

~QAC(t) := max
(v;s)

n
~Qv(t; s)

o
:

and prune a hypothesis (t; s; v) if

~Qv(t; s) < fAC � ~QAC(t) :

The same modi�ed score is used for the histogram pruning. The language model pruning is not
a�ected since, at tree start hypotheses, there is no di�erence between score Qv(t; s) and modi�ed
score ~Qv(t; s). As the recognition experiments will show, the number of state hypotheses can be
signi�cantly reduced by this look-ahead.
When computing all entries of the table �v(s) beforehand, we have to keep a huge table in main
memory. In the task under consideration, about 20 000 � 65 000 anticipated LM probabilities
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would have to be stored. Since the size of this table is prohibitive, we compute the anticipated
LM probabilities for the tree copies on demand and cache these anticipated probabilities in
a look-up table for a maximum of, say, 300 LM look-ahead trees. So before computing the
anticipated LM probabilities, it is �rst checked whether or not the probabilities of the required
tree copy already exist in the look-up table. In addition, it is often su�cient to compute the
anticipated LM probabilities only for the �rst, say four, arc generations of the lexical tree [57].
This LM look-ahead or similar variants are now used in many systems for large-vocabulary
speech recognition [2, 3, 5, 6, 49, 50, 54, 63, 73].

5.3 Implementation

Although a full description of the implementation is out of the scope of this paper, we will
present some concepts and details.

Dynamic Search Space Construction

In this paragraph, a dynamic construction of the search is derived from the time synchronous DP
beam search by introducing a set representation of the active hypotheses. The basic di�culty
with the search implementation is to perform the recombination of path hypotheses e�ciently
without explicitly constructing the overall search space. The naive implementation of the DP
equations would require that each state hypothesis be processed or at least checked whether it is
still active. Thus there would be a computational overhead that is proportional to the number
of state hypotheses in the overall search space.
For search using a linear lexicon, the dynamic construction of the search space was described
in detail in [47]. To arrive at an e�cient implementation for tree search, we use the following
concepts:

� Set representation of active hypotheses:.
For each time frame t, we maintain sets of active hypotheses. For e�ciency reasons, these
active hypotheses are stored in static arrays whose maximum sizes are speci�ed beforehand.
These hypotheses are organized in a three-level hierarchy:

{ At the highest level, we have the set of active trees or predecessor words v.

{ For each tree, there is the set of active phoneme arcs. Due to our notational scheme,
the arc dependence is not explicitly captured in the DP equations.

{ For each tree v and for each arc, we have the set of active HMM states. Each state
hypothesis consists of three parts, namely state index s, score Qv(t; s) and back
pointer Bv(t; s).

� Forward DP recombination:

DP recombination occurs at three levels: word boundaries, phoneme boundaries and HMM
states. To con�ne the computational e�ort to the active search space, we convert the
DP recursions from the usual backward direction (as expressed by the equations) into
a forward direction: using the active hypotheses, we construct dynamically the set of
successor hypotheses. To keep the computational cost down in this forward recombination
scheme, it is important to have direct access to each new successor hypotheses.
This is achieved by an array-based representation of sets in combination with a stack or
indirected pointers [38, pp. 289-290], [47], [78, pp. 121-123]. In such a way, there is no
need to search through lists to �nd a hypothesis. This forward recombination is of varying
importance at the three levels. For the HMM state level, there is no real problem because
within a phoneme arc of the tree, there is a maximum number of 6 states. At the arc level,
i.e. for recombination across phoneme boundaries, this is much more important because,
for a �xed tree, there might be up to 65 000 active arc hypotheses.
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Table 4: Typical memory requirements for the DP tree search (20 000-word task, bigram lan-
guage model, single best sentence) without storage for acoustic and language model.

Type of array K entries entry structure K bytes

Tree hypotheses 20 3 � 4 Byte 240
Arc hypotheses 200 2 � 4 Byte 1 600
State hypotheses 600 3 � 4 Byte 7 200

Auxiliary arc hypotheses 65 4 � 4 Byte 1 040
Traceback array 200 5 � 4 Byte 4 000

Total amount 1 085 - 13 820

There is one condition for which we cannot use the direct access approach, namely the LM
recombination for a trigram LM. The problem is that there might be up to W 2 predecessor
histories for a vocabulary of W words. Therefore, we replace the direct access method by a
hashing approach [59]. The index for the hash table is computed by hashing a bijective function
of the word pair index (u; v), e.g. f(u; v) =W � u+ v.

Traceback and Garbage Collection

For large-vocabulary recognition, it is essential to keep the storage costs as low as possible. To
this purpose, in addition to back pointers, we use a special traceback array whose entries keep
track of word end hypotheses. The concept of this traceback array is based on an extension of
the traceback method presented in Fig. 7. For each word end hypothesis, we store the following
pieces of information: word index, end time of the predecessor word, score and back pointer,
i.e. a pointer into the array itself for �nding the predecessor word end hypothesis. The end
time of the predecessor word is not really needed, but useful for diagnostic purposes. During the
recognition process, many of the hypothesis entries in the traceback arrays will become obsolete
because their path extensions die out over time due to both the recombination and the pruning
of hypotheses. In order to remove these obsolete hypothesis entries from the traceback arrays,
we apply a garbage collection or purging method as follows. Each entry of the traceback array is
extended by an additional component which is the so-called time stamp as suggested by Steinbiss
[71]. Using the back pointers Bv(t; s) of the state hypotheses, we perform a traceback for each
hypothesis and mark the traceback entries reached with the current time frame as time stamp.
Hence, all traceback entries that have a time stamp di�erent from the current time frame can
be re-used to store new hypotheses. Note that this garbage collection process is controlled using
only the state hypotheses and reachable traceback entries so that the number of dead traceback
entries does not matter. In principle, this garbage collection process can be performed every
time frame, but to reduce the overhead, it is su�cient to perform it in regular time intervals,
say every 50-th time frame.

Memory Requirements

By using the above presented methods, we obtain typical memory costs as shown in Table 4. For
each of the various arrays used, we simply report the number of bytes required without going into
all technical details. The three arrays of tree, arc and state hypotheses store the corresponding
hypotheses per time frame, and thus we have a maximum of 20 000 tree hypotheses, 200 000
arc hypotheses (over all tree hypotheses) and a total of 600 000 state hypotheses (over all tree
and arc hypotheses). For the recombination at the arc level, an auxiliary array is included in
Table 4. As a result, the total storage cost for the 20 000-word task is about 14 Mbyte for the
search procedure.
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6 One{Pass DP Search for Word Graph Construction

The main idea of a word graph is to come up with word alternatives in regions of the speech
signal, where the ambiguity about the actually spoken words is high. The expected advantage
is that the acoustic recognition process is decoupled from the application of a complex language
model and that this language model can be applied in a subsequent postprocessing step. Exam-
ples of lon{span language models are cache-based language models [31], trigger-based language
models [74] and long-range trigram language models [15] that can be viewed as stochastic lexi-
calized context-free grammars. The number of word alternatives should be adapted to the level
of ambiguity in the acoustic recognition.

6.1 Word Graph Speci�cation

In this section, we will formally specify the word graph generation problem and pave the way for
the word graph algorithm. We start with the fundamental problem of word graph generation:

Hypothesizing a word w and its end time t, how can we �nd a limited number of 'most
likely' predecessor words? This task is di�cult since the start time of word w may very well
depend on the predecessor word under consideration, which results in an interdependence
of start times and predecessor words.

In view of the most successful one{pass beam search strategy, what we want to achieve concep-
tually, is to keep track of word sequence hypotheses whose scores are very close to the locally
optimal hypothesis, but that do not survive due to the recombination process.
The basic idea is to represent all these word sequences by a word graph, in which each edge
represents a word hypothesis. Each word sequence contained in the word graph should be close
(in terms of scoring) to the single best sentence produced by the one{pass algorithm. In the
one{pass algorithm for computing the single-best sentence, we have computed the hypotheses
in a time-synchronous fashion and have propagated the hypotheses from left to right over the
time axis. We will use the same principle of time synchrony for the word graph generation. To
this purpose, we introduce the following de�nitions:

h(w; �; t) := max
st
�+1

Pr(xt�+1; s
t
�+1jw)

= conditional probability that word w produces the acoustic vectors xt�+1.

G(wn1 ; t) := Pr(wn1 ) �max
st
1

Pr(xt1; s
t
1jw

n
1 )

= joint probability of observing the acoustic vectors xt1
and a word sequence wn1 with end time t.

Using these de�nitions, we can isolate the probability contributions of a particular word hy-
pothesis with respect to both the language model and the acoustic model (see Fig.12). This
decomposition can be visualized as follows:

x1; � � � ; � � � ; x�| {z }
G(wn�11 ; �)

x�+1; � � � ; xt| {z }
h(wn; �; t)

xt+1; � � � ; � � � ; xT| {z }
: : :

From this decomposition, it is clear that the score G(wn1 ; t) can be computed from the scores
G(wn�11 ; �) and h(w; �; t) by optimizing over the unknown word boundary � :

G(wn1 ; t) = max
�

n
Pr(wnjw

n�1
1 ) �G(wn�11 ; �) � h(wn; �; t)

o
= Pr(wnjw

n�1
1 ) �max

�

n
G(wn�11 ; �) � h(wn; �; t)

o
;
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Figure 12: Illustration of path decomposition.

where we have used the conditional probability Pr(wnjw
n�1
1 ) of the language model. To con-

struct a word graph, we introduce a formal de�nition of the word boundary �(wn1 ; t) between
the word hypothesis wn ending at time t and the predecessor sequence hypothesis wn�11 :

�(t;wn1 ) := argmax
�

n
G(wn�11 ; �) � h(wn; �; t)

o
;

It should be emphasized that the language model probability does not a�ect the optimal word
boundary and is therefore omitted in the de�nition of the word boundary function �(wn1 ; t). Thus
far we have considered the most general case in two aspects: First, the word boundary function
has not been constrained in any way. Second, the language model has not been constrained in
any way. We will �rst narrow down the language model to the widely used m-gram language
models and come back to the word boundary function later.
Exploiting anm-gram language model p(umju

m�1
1 ), we can recombine word sequence hypotheses

at the phrase level if they do not di�er in their �nal (m� 1) words. Therefore it is su�cient to
distinguish partial word sequence hypotheses wn1 only by their �nal words um2 := wnn�m+2. The
corresponding score is denoted by H(um2 ; t) and is de�ned as the joint probability of generating
the acoustic vectors x1:::xt and a word sequence with ending sequence um2 and ending time t:

H(um2 ; t) := max
wn
1

n
Pr(wn1 ) � Pr(x

t
1jw

n
1 ) : w

n
n�m+2 = um2

o
;

where, as expressed by the notation, the �nal portion um2 of the word sequence wn1 is not
subjected to the maximization operation. Using the above de�nition, we can write the dynamic
programming equation at the word level:

H(um2 ; t) = max
u1

Ĥ(um1 ; t)

with Ĥ(um1 ; t) := p(umju
m�1
1 ) H(um�11 ; �(t;um1 )) h(um; �(t;u

m
1 ); t) :

Here we have used the function �(t;um1 ) to denote the word boundary between um�1 and um
for the word sequence with �nal portion um1 and end time t. Note that we have included the
language model to achieve a better pruning strategy. For the word boundary itself, we have to
use the quantity H(um2 ; t) rather than G(wN1 ; t):

�(t;um1 ) := argmax
�

n
H(um�11 ; �) h(um; �; t)

o
:

25



tTIME

tTIME

m-2

u      = w

u      = v  

u        {a, b} 

m-1

m

m-2

u       = w

u       = v’  

u          {a, b} 

m-1

m

Figure 13: Illustration of the word pair approximation for two cases:

top: good example: the predecessor word um�1 := v of
word um := w is su�ciently long,

bottom: bad example: the predecessor word um�1 := v of
word um := w is too short.
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6.2 Word Pair Approximation

So far this has been just a notational scheme for the word boundary function �(t;um1 ). The
crucial assumption now is that the dependence of the word boundary �(t;um1 ) can be con�ned
to the �nal word pair umm�1. The justi�cation is that the other words have virtually no e�ect on
the position of the word boundary between words um�1 and um [67]. This so-called word pair
approximation is illustrated in Fig. 13. For a word hypothesis w and an end time hypothesis t,
this �gure shows the time alignment path for the word w = um itself and its predecessor words
um�1m�2 to illustrate the de�nition of the word boundary �(t;um1 ). In general, this boundary, i.e.
the start time of word w as given by time alignment, will depend on the immediate predecessor
word um�1. The question of whether this dependence reaches beyond the immediate predecessor
word is illustrated by showing a good (Fig. 13 top) and a bad (Fig. 13 bottom) example. For
simpli�cation, we have assumed that the reference models of the predecessor words um�2 = a

and um�2 = b have the same length. From this �gure, it is obvious that the assumption of the
word pair approximation is satis�ed if the predecessor word um�1 is su�ciently long: all time
alignment paths then are recombined before they reach the �nal state of the predecessor word.
In formulae, we express the word pair approximation by the equation:

�(t;um1 ) = const(um�21 ) or �(t;um1 ) = �(t;umm�1) ;

i.e. the word boundary function does not depend on um�21 . Assuming the word pair approxima-
tion, we have the following algorithm for word graph generation:

� At every time frame t, we consider all word pairs umm�1 = (v; w). Using a beam search
strategy, we will limit ourselves to the most probable word pairs.

� For each triple (t; v; w), we have to keep track of:

{ the word boundary �(t; v; w)

{ the word score h(w; �(t; v; w); t)

� At the end of the speech signal, the word graph is constructed by tracing back through
the bookkeeping lists.

As long as only a bigram language model is used, the word pair approximation is still exact
(assuming a conservatively large pruning threshold). An even further simpli�cation is the single
word approximation used in [70] to produce a list of n-best sentences.

6.3 Word Graph Generation Algorithm

The computation of the word boundary function �(t; v; w) has not been speci�ed yet. In prin-
ciple, it can be computed using either the so-called two-level algorithm [65] or the one{pass
algorithm described before, which both compute only the best single word sequence. However,
to apply beam search, it is more convenient to use the one{pass algorithm presented in the
preceding section. Using the tree organization of the pronunciation lexicon, the hypotheses have
been distinguished by the predecessor word anyway.
To extend the one{pass word algorithm from single-best sentence computation to word graph
generation, we only have to combine the two equations for calculating the word boundary func-
tion �(t; v; w) and the word score h(w; �; t). The word boundaries are obtained using the back
pointers at the word ends:

�(t; v; w) = Bv(t; Sw):
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Table 5: Extension of the one{pass DP algorithm from single best sentence to word graph
generation.

proceed over time t from left to right

ACOUSTIC LEVEL: process (tree,state){hypotheses

{ initialization: Qv(t� 1; s = 0) = H(v; t� 1)

Bv(t� 1; s = 0) = t� 1

{ time alignment: Qv(t; s) using DP

{ propagate back pointers Bv(t; s)

{ prune unlikely hypotheses

{ purge bookkeeping lists

WORD PAIR LEVEL: process word end hypotheses

'single best': for each word w do

H(w; t) = max
v

f p(wjv) Qv(t; Sw) g

v0(w; t) = argmax
v

f p(wjv) Qv(t; Sw) g

{ store best predecessor v0 := v0(w; t)

{ store best boundary �0 := Bv0
(t; Sw)

'word graph': for each word pair (v; w) store

{ word boundary �(t; v; w) := Bv(t; Sw)

{ word score h(w; �; t) := Qv(t; Sw)=H(v; �)

PHRASE LEVEL search (optional)

For each predecessor word v along with word boundary � = �(t; v; w), the word scores are
recovered using the equation:

h(w; �; t) :=
Qv(t; Sw)

H(v; �)
;

where we obtain H(w; t) as usual:

H(w; t) = max
v

f p(wjv) �Qv(t; Sw) g :

The details of the algorithm are summarized in Table 5. The operations are organized in two
levels: the acoustic level and the word pair level. At the end of the utterance, the word graph is
constructed by tracing back through the bookkeeping lists. A third level, the phrase level, has
been included for the �nal recognition. Depending on whether the phrase-level recognition is
carried out in a time-synchronous fashion or not, we can distinguish the following two strategies
in using a trigram or higher m-gram language model:

� Extended one{pass approach: The word pair approximation serves only as a simpli�cation
in the one{pass strategy in order to avoid the large number of copies of the lexical tree as
required by the language model.

� Two-pass approach: First, a word graph is constructed. Then, at the so{called phrase
level, the best sentence is computed using a more complex language model. An example of
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Figure 14: Example of a word graph (three-word vocabulary: A,B,C).

a language model that is di�cult to handle in integrated search is a cache-based language
model [31].

From the concepts developed so far, it should be obvious that there is only a gradual di�erence
between these two strategies.
What has to be added to the single-best one{pass strategy, is the bookkeeping at the word level:
rather than just the best surviving hypothesis, the algorithm has to memorize all the word
sequence hypotheses that are recombined into just one hypothesis to start up the next lexical
tree (or word models). In the single-best method, only the surviving hypothesis (v0; �0) has to
be kept track of.
An example of a word graph for a three{word vocabulary A;B;C (including silence at the
sentence beginning and end) is shown in Fig. 14. The edges stand for word hypotheses, where the
circles along with the word name denote the word end. Note the following principal properties,
which are a result of the word graph algorithm:

� There is a maximum for the number of incoming word edges in any node, namely the
vocabulary size which is the maximum number of possible predecessor words.

� There is no maximum for the number of outgoing word edges; this e�ect is due to the fact
that, even for the same predecessor word, a word can have di�erent end time hypotheses.

There are two re�nements of the word graph method which suggest themselves: 1) For short
words like articles and prepositions, the quality of the word pair approximation might be ques-
tionable, and word triples or higher wordm-tuples might be used instead in these cases. 2) Long
words with identical ending portion may waste search e�ort and could be merged when forming
word pairs in the word graph algorithm. In both cases, the obvious remedy is to make the
word copies dependent on a suitably de�ned history using the phonetic script of the predecessor
words.
Another re�nement is concerned with the way in which the word graph is pruned. What we
have used so far could be called forward only pruning as opposed to forward-backward pruning,
which is a little bit better, but does not allow strict online operation [32], [51, pp. 81], [68].
For the sake of clarity, we have not included the case of intraphrase silence in the presentation
of the algorithm. The algorithm can be extended for this case.
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7 Experimental Results

The search concepts presented in this paper are used in a large number of systems. Of course,
the technical details of the implementation may vary from case to case [1, 2, 3, 4, 6, 16, 18, 19,
21, 36, 39, 49, 50, 52, 69, 81]. The exact implementation of this paper was used in a number of
experiments [5, 48, 54, 55, 56, 57, 58, 59].
Here, we will review only some of these experiments. All recognition experiments were car-
ried out on the ARPA North American Business (NAB'94) H1 development corpus [29]. The
test set comprised 10 female and 10 male speakers resulting in 310 sentences with 7387 spo-
ken words. The recognition vocabulary used in the experiments comprised 64 000 words with
an out-of-vocabulary rate of 0.5% on the test data. The training of the emission probability
distributions was performed on WSJ 0 and WSJ 1 training corpora. In this task, 4058 context
dependent phoneme models were used sharing 4699 emission probability distributions [18]. For
these experiments, we used a total of 270 000 Laplacian mixture densities with a single pooled
vector of absolute deviations for each gender [43].

7.1 Search Space

In the �rst series of experiments, we studied the size of the search space in the beam search
strategy. The language model was either a bigram or a trigram LM. The search e�ort was
measured in terms of the average number of tree and state hypotheses after recombination and
pruning. The acoustic pruning threshold was varied whereas both the LM pruning threshold
and the maximum number of state hypotheses were kept �xed.
The results are shown in Table 6. These tests were carried out using a unigram LM look-ahead.
Looking at the search e�ort, we can see that the results are comparable for the bigram LM
and the trigram LM. For both types of LM, there is a saturation e�ect for the word error rate:
beyond 30 000 state hypotheses, the word error rate remains virtually constant. When replacing
a trigram LM by a bigram LM, the average numbers of tree and state hypotheses are a�ected
in di�erent ways. Whereas the number of state hypotheses remains more or less unchanged,
the number of tree hypotheses goes up, but only by a factor of 2 or less. Despite the potential
maximum of W 2 = 64 0002 = 4:1 � 109 possible tree hypotheses for the trigram LM, the average
number is only 200 or less.

7.2 LM Look-Ahead

The second series of recognition experiments is concerned with the e�ect of the LM look-ahead
on the size of the search space and the word error rate. Table 7 shows the results of several
recognition tests. As before, the table shows the size of the search space in terms of the average
number of state and tree hypotheses and the word error rate. In an initial experiment, we
performed three tests without any LM look-ahead using three di�erent values of the acoustic
pruning threshold. For the recognition scores as opposed to the LM look-ahead scores, we used
a bigram LM in these tests. To achieve a word error rate of 13:9%, an average of 168 000 state
hypotheses per time frame are needed. By using the unigram LM look-ahead, we reduce the
search space by a factor of 3 without any loss in recognition accuracy. Finally, by using the
bigram LM look-ahead, the search e�ort is further reduced by a factor of 6 without loss in
recognition accuracy. Although the overhead caused by the bigram LM look-ahead is 20% and
thus not negligible, it pays o� in terms of overall speed-up of the search process. As a result,
we obtain for the �nal size of the active search space 7 900 state hypotheses on average, which
number is to be compared with the total search-space size (see Section 5):

64k trees � 300k arcs/tree � 6 HMM states/arc = 1.2 � 1011 HMM states .
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Table 6: Search space and word error rate (WER) for 64k-word NAB task (unigram LM look-
ahead).

LM type search e�ort WER
[trees] [states] [%]

bigram 15 5 600 22.1
(PP=237) 24 10 800 16.0

37 20 200 14.5
51 33 700 13.9
65 50 100 13.9
99 116 500 13.8

trigram 17 1 800 17.1
(PP=172) 29 3 900 14.0

48 8 200 12.8
73 15 800 12.1
100 27 600 11.9
125 42 800 11.9
145 59 600 11.9
208 133 600 11.9

For a 20k-word vocabulary, the LM look-ahead overhead is much smaller, namely about 3%
rather than 20%.
Having optimized the search strategy in such a way, we typically �nd that 70% or more of the
total recognition e�ort is now spent on computing the log-likelihoods of the emission probability
distributions in the HMMs [58]. To speed up these computations, several methods have been
proposed [11, 12, 58].

Table 7: E�ect of LM look-ahead on search e�ort and and word error rate (WER) for 64k-word
NAB task (bigram LM).

LM look ahead search e�ort WER

type overhead [trees] [states] [%]

no - 42 167 800 13.9
- 33 138 200 14.0
- 25 105 300 14.4

unigram (PP=1257) - 65 50 100 13.9

bigram (PP=237) 20% 28 7 900 13.9

7.3 Word Graph Method

In a third series of experiments, we compared the integrated search with the word graph method
in conjunction with LM rescoring. The goal here was to experimentally check the validity of the
word pair approximation and to show that there is virtually no loss in performance by using
a word graph search rather than integrated search. The results are shown in Table 8. For the
word graph method, a word graph was generated using a bigram LM for each test sentence.
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Using the bigram LM, the single-best sentence word error rate was 13.9%. To be on the safe
side, for each sentence, the word graph was generated using a conservatively large beam, namely
113 tree hypotheses and 39 100 state hypotheses on average. By rescoring each word graph with
a trigram LM, the word error rate went down to 12.1%.
For the integrated search strategy using the trigram LM, Table 8 shows three recognition ex-
periments that were selected from Table 6. These experiments result in search e�orts of 8 200,
15 800 and 27 000 state hypotheses and word error rates of 12.8%, 12.1% and 11.9%, respectively.
Also from Fig. 6, we know that even by increasing the beam size to 133 600 state hypotheses,
there is no improvement in word error rate over 11.9%. Comparing this best word error rate
with word error rate of 12.1% for the word graph method, we can draw the important conclusion
that the word pair approximation used for the word graph generation does not virtually dete-
riorate recognition accuracy. Again, we would like to emphasize that the experiments reported
in Table 8 do not allow a comparison in terms of search e�ort since the word graphs generated
were conservatively large.
In summary, we can say that these and more systematic experiments have shown [56] that the
word pair approximation generates high-quality word graphs. In conjunction with LM rescoring,
it is competitive with integrated search.

Table 8: Comparison: Word graph vs. integrated search for 64k-word NAB task (unigram LM
look-ahead).

method LM type search e�ort WER
[trees] [states] [%]

word graph generation bigram (PP=237) 113 39 100 13.9
+ LM rescoring trigram (PP=172) - - 12.1

integrated search trigram (PP=172) 48 8 200 12.8
73 15 800 12.1
100 27 000 11.9
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8 Extensions and Modi�cations

There are a number of issues that have not been addressed in this paper:

� The look-ahead strategy can be extended to the acoustic vectors and is then referred to
as phoneme look-ahead [22, 54].

� There is a type of recombination that has not been considered so far, namely the so-called
subtree dominance [1, 2, 53]. This concept results in a sort of minimax criterion and allows
whole subtrees of hypotheses to be pruned during search under certain conditions.

� The search method can be extended to handle across-word phoneme models [50]. This
modi�cation a�ects the LM and acoustic recombinations in the �rst arc generation of the
lexical tree.

� The search concept presented is based on what is called word-conditioned structure of the
search space. An alternative is to consider a time-conditioned structure, for which the
experiments have shown only slightly inferior results [59]. Such an approach has a larger
resemblance to the so-called stack decoding [8, 60, 61, 63].

� The tree-based search can be used in a forward-backward concept, where a simpli�ed
lexicon tree produces forward scores at a small computational e�ort. A second pass, the
so-called backward pass, then produces the detailed scores and the �nal word sequence or
word lattice [49]. By adding additional passes, we obtain the so-called multi-pass approach
[16].

� The search strategy presented has been designed for bigram and trigram language models
which as all m{gram language models are of the �nite-state type. For other types of
language models such as context free grammars, the search strategy has to be suitably
modi�ed [44].

9 Summary

In this paper, we have attempted to present a unifying view of the dynamic programming
approach to the search problem in continuous-speech recognition. Starting from the baseline
one{pass algorithm using a linear organization of the pronunciation lexicon, we have extended
the baseline algorithm towards various dimensions. To handle a large vocabulary, we have shown
how the search space can be structured in combination with a lexical pre�x tree organization
of the pronunciation lexicon. In addition, we have shown how this structure of the search
space can be combined with a time-synchronous beam search concept and how the search space
can be constructed dynamically during the recognition process. In particular, to increase the
e�ciency of the beam search concept, we have integrated the language model look-ahead into the
pruning operation. To produce sentence alternatives rather than only the single best sentence,
we have extended the search strategy to generate a word graph. Finally, we have reported
experimental results on a 64k-word task that demonstrate the e�ciency of the various search
concepts presented.
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