\relax \citation{csa} \citation{skv} \citation{pftk} \citation{kt} \citation{kg} \citation{csa} \citation{pftk} \citation{hot} \citation{sk} \citation{to} \citation{jt} \citation{vrc} \citation{bgh} \citation{pftk} \citation{ps} \citation{hot} \citation{jm} \citation{skv} \citation{csa} \citation{pftk} \citation{pftk} \citation{cbm} \citation{tmsl} \@writefile{toc}{\contentsline {section}{\numberline {I}Introduction}{1}} \citation{pftk} \citation{stevens} \citation{pftk} \citation{csa} \@writefile{toc}{\contentsline {section}{\numberline {II}Steady-state Model Incorporating the Slow-start Phase}{2}} \newlabel{sec:model}{{II}{2}} \@writefile{toc}{\contentsline {subsection}{\numberline {II-A}Assumptions}{2}} \@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces The extended steady state model - evolution of congestion window size when loss indications are triple-duplicate ACK's and time-outs.}}{2}} \newlabel{equmodel}{{1}{2}} \@writefile{toc}{\contentsline {subsection}{\numberline {II-B}Model Development}{2}} \newlabel{eq:mi}{{1}{2}} \newlabel{eq:si}{{2}{2}} \citation{jacob} \citation{stevens} \citation{csa} \citation{csa} \citation{csa} \newlabel{eq:bth}{{3}{3}} \newlabel{sec:sl}{{II-B.1}{3}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {II-B.1}The Slow-Start Phase}{3}} \newlabel{eq:discrete_cwnd}{{4}{3}} \newlabel{eq:sim_discrete_cwnd}{{5}{3}} \newlabel{eq:t_discrete_cwnd}{{7}{3}} \newlabel{eq:c_cwnd}{{8}{3}} \newlabel{eq:a_datan}{{11}{3}} \citation{pftk} \citation{pftk} \citation{pftk} \citation{pftk} \citation{pftk} \newlabel{eq:nequation}{{12}{4}} \newlabel{eq:c_d_r}{{13}{4}} \newlabel{eq:twss}{{14}{4}} \newlabel{eq:fwssy}{{16}{4}} \newlabel{eq:fwss}{{18}{4}} \@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Packets sent during a TDP. Adopted from \cite {pftk}.}}{4}} \newlabel{fig:dong}{{2}{4}} \newlabel{eq:fyss}{{19}{4}} \newlabel{eq:fzss}{{20}{4}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {II-B.2}The Congestion-Avoidance Phase}{4}} \newlabel{eq:yi}{{21}{4}} \newlabel{eq:ai}{{22}{4}} \newlabel{eq:wi}{{23}{4}} \newlabel{eq:fin}{{24}{4}} \citation{pftk} \citation{pftk} \citation{pftk} \citation{pftk} \newlabel{eq:al}{{25}{5}} \newlabel{eq:eyi}{{26}{5}} \newlabel{eq:ewi}{{27}{5}} \newlabel{eq:efin}{{28}{5}} \newlabel{eq:final}{{29}{5}} \newlabel{eq:awk}{{30}{5}} \newlabel{eq:smfb}{{31}{5}} \newlabel{eq:eow}{{32}{5}} \newlabel{eq:fea}{{34}{5}} \newlabel{eq:inequality}{{35}{5}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {II-B.3}The Time-out Phases}{5}} \newlabel{eq:pfqtd}{{37}{5}} \citation{pftk} \citation{pftk} \citation{pftk} \newlabel{eq:lastw}{{38}{6}} \newlabel{eq:rvw}{{39}{6}} \newlabel{eq:cwe}{{40}{6}} \newlabel{eq:fqtd}{{41}{6}} \newlabel{eq:fn}{{42}{6}} \newlabel{eq:fr}{{43}{6}} \newlabel{eq:fzto}{{44}{6}} \newlabel{eq:fp}{{45}{6}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {II-B.4}The Steady State Send Rate and Throughput}{6}} \newlabel{eq:fsr}{{46}{6}} \newlabel{eq:fssr}{{47}{6}} \newlabel{eq:trou}{{49}{6}} \newlabel{eq:troud}{{50}{6}} \citation{pftk} \citation{pftk} \citation{pftk} \citation{pftk} \citation{csa} \citation{csa} \citation{csa} \@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Our proposed model is compared with the one developed in \cite {pftk} in terms of the predicted throughput difference versus the loss rate ($p$) for the case of: $RTT = 200ms$, $MSS = 536bytes$, $w_1 =1segment$, $T_0=1sec$, $W_m = 20segments$, $b =2$. }}{7}} \newlabel{fig:diff}{{3}{7}} \@writefile{toc}{\contentsline {section}{\numberline {III}Stochastic Model for Short-lived Flows}{7}} \newlabel{sec:st}{{III}{7}} \@writefile{toc}{\contentsline {subsection}{\numberline {III-A}The Connection Start-up Phase}{7}} \newlabel{eq:three}{{51}{7}} \@writefile{toc}{\contentsline {subsection}{\numberline {III-B}The Initial Slow-start Phase}{7}} \newlabel{eq:finit}{{52}{7}} \newlabel{eq:d1}{{54}{7}} \citation{skv} \@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces An illustration of a triple-duplicate (TD) event.}}{8}} \newlabel{fig:qss}{{4}{8}} \newlabel{eq:senequation}{{57}{8}} \@writefile{toc}{\contentsline {subsection}{\numberline {III-C}The First Loss}{8}} \newlabel{eq:qsswssslf}{{59}{8}} \newlabel{eq:mqss}{{60}{8}} \newlabel{eq:msqss}{{61}{8}} \citation{ns} \citation{csa} \newlabel{eq:nt}{{63}{9}} \newlabel{eq:winit}{{65}{9}} \@writefile{toc}{\contentsline {subsection}{\numberline {III-D}Sending the Rest of the Packets}{9}} \newlabel{eq:trest}{{66}{9}} \@writefile{toc}{\contentsline {subsection}{\numberline {III-E}Total Latency}{9}} \newlabel{eq:latency_z}{{67}{9}} \@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces The model for short-lived TCP connections is compared with the steady-state model in terms of throughput versus loss rate for different file sizes. Model parameter values: $RTT = 200ms$, $MSS = 536bytes$, $w_1 =1segment$, $T_0=1sec$, $W_m = 20segments$, $b =2$.}}{9}} \newlabel{fig:l_all}{{5}{9}} \@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces The \textit {ns}-2 model that was used to validate our analytical TCP models.}}{9}} \newlabel{fig:sim_t}{{6}{9}} \@writefile{toc}{\contentsline {section}{\numberline {IV}Model Validation through Simulation}{9}} \newlabel{sec:sim}{{IV}{9}} \citation{pftk} \citation{pftk} \citation{pftk} \citation{pftk} \citation{pftk} \citation{pftk} \citation{pftk} \citation{pftk} \citation{csa} \citation{skv} \citation{csa} \citation{skv} \citation{csa} \citation{skv} \@writefile{toc}{\contentsline {subsection}{\numberline {IV-A}The Steady-state Model}{10}} \@writefile{lof}{\contentsline {figure}{\numberline {7}{\ignorespaces Predicted throughput obtained by our proposed steady-state model and the one developed in \cite {pftk} are compared against simulation results for the case of $0.005 < p < 0.1$ $RTT = 200ms$, $MSS = 536bytes$, $w_1 =1segment$, $T_0=1sec$, $W_m = 20segments$.}}{10}} \newlabel{fig:stst_s}{{7}{10}} \@writefile{toc}{\contentsline {subsection}{\numberline {IV-B}Short-lived Flows Model: Latency versus Transferred File Size}{10}} \citation{csa} \citation{skv} \citation{csa} \citation{skv} \citation{csa} \citation{csa} \citation{csa} \citation{csa} \citation{csa} \citation{csa} \citation{csa} \citation{csa} \citation{csa} \citation{csa} \citation{csa} \citation{skv} \citation{pftk} \@writefile{lof}{\contentsline {figure}{\numberline {8}{\ignorespaces Our proposed steady-state model is compared with the one developed in \cite {pftk} in terms of the \textit {average error} for the case of $0.005 < p < 0.1$ $RTT = 200ms$, $MSS = 536bytes$, $w_1 =1segment$, $T_0=1sec$, $W_m = 20segments$.}}{11}} \newlabel{fig:avr_e}{{8}{11}} \@writefile{toc}{\contentsline {subsection}{\numberline {IV-C}Short-lived Flows Model: Throughput versus Loss Rate and File Size}{11}} \@writefile{lof}{\contentsline {figure}{\numberline {9}{\ignorespaces Predicted latency versus transferred file size obtained by our short-lived TCP connection model and the ones developed in \cite {csa} and \cite {skv} are compared against simulation results for the case of $p=0$, $RTT = 100ms$, $MSS = 536bytes$, $w_1 =1segment$, $T_0=1sec$, $W_m = 20segments$.}}{11}} \newlabel{fig:slowstart_p0}{{9}{11}} \@writefile{lot}{\contentsline {table}{\numberline {I}{\ignorespaces Our short-lived TCP connection model is compared against the one proposed in \cite {csa} in terms of the average error.}}{11}} \newlabel{tb:flt_e}{{I}{11}} \@writefile{lof}{\contentsline {figure}{\numberline {10}{\ignorespaces Predicted throughput versus loss rate obtained by our short-lived TCP connection model and the one developed in \cite {csa} are compared against simulation results for the case of a 2KB-file-size and $RTT = 100ms$, $MSS = 536bytes$, $w_1 =1segment$, $T_0=1sec$,$W_m = 20segments$.}}{11}} \newlabel{fig:fin_2k}{{10}{11}} \citation{*} \bibstyle{IEEE} \bibdata{IEEEabrv,short_dong} \bibcite{csa}{1} \bibcite{skv}{2} \bibcite{pftk}{3} \bibcite{kt}{4} \bibcite{kg}{5} \bibcite{hot}{6} \bibcite{sk}{7} \bibcite{to}{8} \bibcite{jt}{9} \bibcite{vrc}{10} \bibcite{bgh}{11} \bibcite{ps}{12} \bibcite{jm}{13} \bibcite{cbm}{14} \@writefile{lof}{\contentsline {figure}{\numberline {11}{\ignorespaces Predicted throughput versus loss rate obtained by our short-lived TCP connection model and the one developed in \cite {csa} are compared against simulation results for the case of a 6KB-file-size and $RTT = 100ms$, $MSS = 536bytes$, $w_1 =1segment$, $T_0=1sec$,$W_m = 20segments$.}}{12}} \newlabel{fig:fin_6k}{{11}{12}} \@writefile{lof}{\contentsline {figure}{\numberline {12}{\ignorespaces Predicted throughput versus loss rate obtained by our short-lived TCP connection model and the one developed in \cite {csa} are compared against simulation results for the case of a 11KB-file-size and $RTT = 100ms$, $MSS = 536bytes$, $w_1 =1segment$, $T_0=1sec$,$W_m = 20segments$.}}{12}} \newlabel{fig:fin_11k}{{12}{12}} \@writefile{toc}{\contentsline {section}{\numberline {V}Conclusion}{12}} \newlabel{sec:con}{{V}{12}} \@writefile{toc}{\contentsline {section}{References}{12}} \bibcite{tmsl}{15} \bibcite{stevens}{16} \bibcite{jacob}{17} \bibcite{ns}{18} \bibcite{harv}{19} \bibcite{lakshman}{20} \bibcite{kumar}{21} \bibcite{mf}{22} \bibcite{msmo}{23} \bibcite{okm}{24} \bibcite{casetti}{25} \bibcite{bssk}{26} \bibcite{hoe}{27} \@writefile{toc}{\contentsline {section}{Appendix I: The expectation of 1/w}{13}} \newlabel{ap:ew}{{I}{13}} \newlabel{eq:taylor}{{68}{13}} \newlabel{eq:fnw}{{69}{13}} \newlabel{eq:ovx}{{70}{13}} \@writefile{toc}{\contentsline {section}{Appendix II: The variance of $W^{TD}$}{13}} \newlabel{ap: va}{{II}{13}} \newlabel{eq:val}{{72}{13}} \newlabel{eq:left}{{73}{13}} \newlabel{eq:xw}{{74}{13}} \newlabel{eq:vbeta}{{75}{14}} \newlabel{eq:right}{{76}{14}} \newlabel{eq:vfinal}{{77}{14}}