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PREDICTING SEARCH TERM RELIABILITY 

FOR SPOKEN TERM DETECTION SYSTEMS 

Amir Hossein Harati Nejad Torbati and Joseph Picone 

Abstract— Spoken term detection is an extension of text-based searching that allows users to type 

keywords and search audio files containing recordings of spoken language. Performance is dependent on 

many external factors such as the acoustic channel, language, pronunciation variations and acoustic 

confusability of the search term. Unlike text-based searches, the likelihoods of false alarms and misses for 

specific search terms, which we refer to as reliability, play a significant role in the overall perception of 

the usability of the system. In this paper, we present a system that predicts the reliability of a search term 

based on its inherent confusability. Our approach integrates predictors of the reliability that are based on 

both acoustic and phonetic features. These predictors are trained using an analysis of recognition errors 

produced from a state of the art spoken term detection system operating on the Fisher Corpus. We show 

that a 76% correlation between the predicted error rate and the actual measured error rate can be achieved, 

and that the remaining confusability is due to other acoustic modeling issues that cannot be derived from 

a search term’s spelling. 
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I. INTRODUCTION 

The goal of a Spoken Term Detection (STD) system is “to rapidly detect the presence of a word or phrase 

in a large audio corpus of heterogeneous speech material” (Fiscus et al., 2007). As shown in Figure 1, 

STD systems typically index the audio data as a preprocessing step, allowing users to rapidly search the 

index files using common information retrieval approaches. Indexing can be done using a speech to text 

(STT) system (Miller et al., 2007), or simpler engines based on phoneme recognition (Nexidia, 2008). 

Like most detection tasks, STD can be characterized in terms of two kinds of errors: false alarms and 

missed detections (Martin et al., 1997). The overall error can be defined as a linear combination of these 

two errors. In this paper, we give equal weights to both types of errors. 

Search engines have been used extensively to retrieve information from text files. Regular 

expressions (Duford, 1993) and statistically-based information retrieval algorithms (Manning et al., 2008) 

have been the foundations of such searches for many years. Text-based search algorithms use simple 

character recognition and character matching algorithms in which the identity of a character is known 

with probability 1 (no ambiguity). Unlike searching text data, searching through audio data requires 

handling ambiguity at the acoustic level. Determining the presence of a particular phone or word is not an 

exact science and must be observed through probabilities. A similarity measure used in such searches is 

typically based on some kind of score computed from a machine learning system. For text–based search 

systems, the performance of the system is independent of the term being searched (at least for a language 

like English where words are explicitly separated using spaces). For audio-based searches, however, the 

performance of the system depends on many external factors including the acoustic channel, speech rate, 

accent, language, vocabulary size and the inherent confusability of the search terms. Here we address the 

latter problem – predicting the reliability of a search term based on its inherent confusability. 

The motivation for this work grew out of observations of typical users interacting with both 

word-based (Miller et al., 2007) and phone-based (Nexidia, 2008) voice keyword search systems over the 

past seven years. While it is well known that some aspects of search term performance, such as the 

duration of the word, correlate with search term performance (Doddington et al., 1999; Harati & Picone, 
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2013), selecting robust and accurate search terms can be as much art as science. Users can quickly 

become frustrated because the nuances of the underlying speech processing engine don’t always align 

with users’ expectations based on their experiences with text-based searches. Therefore, our goal in this 

work was to develop a technology similar to password strength checking which displays the predicted 

strength of a keyword as a user types a search term. A demonstration of the system is available at 

http://www.isip.piconepress.com/projects/ks_prediction/demo/current/. A screenshot of the user interface 

is shown in Figure 2. 

Our general approach in this work was to analyze error patterns produced by existing keyword search 

systems and to develop a predictive model of these errors. To build predictors of errors, we investigated 

both the acoustic phonetic distance between words and similarity measures of the underlying phone 

sequences. Our hypothesis for the acoustic phonetic approach was that acoustically similar words should 

have the same average error rate for a given speech recognizer. The similarity measure-based approach 

calculates an edit distance between the underlying phone sequences (Picone et al., 1990). These two 

approaches provided simple but useful baseline performance. A third approach, which is a major focus of 

this work, is based on extracting a variety of features from the spelling of a word and uses machine 

learning algorithms to estimate the error rate for that word.   

A block diagram of our general approach is demonstrated in Error! Reference source not found.. 

The input, a keyword search term that can consist of a word or phrase, is first transformed into features. 

These features result from the conversion of a word into several linguistic representations (e.g., phones, 

syllables). The preprocessor forms an augmented feature vector from an analysis of these linguistic 

representations (e.g., N-grams of phones or broad phonetic class). The machine learning block estimates 

one or more reliability scores, and passes these to the postprocessor for aggregation and normalization. 

For the machine learning task, we have implemented several statistical models based linear regression 

(Bishop, 2011), feed-forward neural networks (Bishop, 2011) and random forests (Breiman, 2001). The 

feature extraction process is central to this work since we have investigated what underlying linguistic 

properties of a word are the strongest predictors of search error rates. Since different approaches predict 
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the error rate in different ways, we also explored combining predictors using a simple linear averaging 

that employs particle swarm optimization (PSO) to find the optimal weights (Kennedy & Eberhart, 1995). 

II. FEATURE GENERATION 

In this section we explore several approaches to generating features that can be used to measure the 

similarity between words. Our goal is to determine feature combinations that have the highest correlation 

with measured error rates. 

A. Acoustic-Based Features 

Based on our hypothesis that words with similar acoustic properties will result in similar error rates, one 

possibility to predict the quality of a search term is to cluster words with similar acoustic properties and 

average their associated error rates. We explored two ways to do this based on their acoustic and phonetic 

properties. For an acoustic-based distance algorithm, the criterion used was a Euclidian distance in the 

acoustic space. The acoustic space is constructed from features vectors based on a concatenation of 

standard MFCC features (with derivatives and acceleration components) and duration (Young et al., 

2006; Davis & Mermelstein, 1980), 

The acoustic data was, of course, extracted from a different, non-overlapping corpus: 

SWITCHBOARD (SWB) (Godfrey et al., 1992). A list of words was extracted from our target database, 

the Fisher Corpus (Cieri et al., 2004). All instances of these words were located in SWB using the 

provided time alignments (Deshmukh et al., 1998). Durations of the corresponding tokens were 

normalized using a variation of an averaging approach developed by Karsmakers et al. (2007). Feature 

vectors were constructed using three different approaches.  

In the first approach, each token was divided into three sections by taking its total duration in frames 

and splitting that duration into three sections with durations arranged in 3-4-3 proportions (e.g., a token of 

20 frames was split into three sections of lengths 6, 8 and 6 frames respectively). The average of the 

corresponding feature vectors in each segment was computed, and the three resulting feature vectors were 

concatenated into one composite vector. The final feature vector was obtained by adding the duration of 
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the token to the three 39-dimensional MFCC feature vectors, bringing the total dimension of the feature 

vector to 3*39+1=118. 

We then created an alternate segmentation following the procedure described above that was based on 

a 10-24-32-24-10 proportion. This resulted in a feature vector of dimension 5*39+1=196 elements. In our 

third approach, we divided the utterance into 10 equal-sized segments, which resulted in a feature vector 

of dimension 39*10+1=391.  

Since there are so many word tokens, we used a combination of K-MEANS clustering and k-nearest 

neighbor classification (kNN) to produce an estimate of a test token’s error rate. All feature vectors for a 

given word were clustered into K representative feature vectors, or cluster centroids, using K-MEANS 

clustering. We then used kNN classification to locate the k nearest clusters for a test token. The overall 

error rate for a word was computed as the weighted average of the k clusters, with the weighting based on 

an acoustic distance: 
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where iw  is the word in question, kD  is the set of k nearest neighbors, and   is a small positive constant 

that guarantees the denominator will be non-zero.  

B. Linguistically-derived Features 

A second approach based on a phonetic distance measure was also employed. Each token was converted 

into a phonetic representation using a dictionary or letter to sound rules (Elovitz et al., 1976). An edit 

distance (Wagner and Fischer, 1974) was computed using a standard dynamic programming approach. 

This approach was an attempt to model the underlying phonetic similarity between words, particularly 

compound words or words that shared morphemic representations. 

Next we introduced a family of algorithms based on features extracted from the linguistic properties 

of words. These features included duration, length (number of letters), number of syllables, number of 
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syllables/length, number of consonants/length, number of vowels/length, a ratio of the number of vowels 

to the number of consonants, number of occurrences in the language model (count), monophone 

frequency, broad phonetic class (BPC) frequency, consonant-vowel-consonant (CVC) frequency, biphone 

frequency, 2-grams of the BPC and CVC frequencies, and 3-grams of the CVC frequencies. We have 

used a simple phoneme-based duration model (Harati and Picone, 2013) to estimate the duration. The 

correlation between duration and the average error rate is shown in Figure 4. The average error rate 

decreases as the duration increases. However, as we will see shortly, the variance of this predictor is too 

high to be useful in practical applications. 

The number of syllables was determined using a dictionary or syllabification software (Fisher, 1997) 

for terms not in the dictionary. Mapping phones to consonant and vowel classes was easily accomplished 

using a table lookup. The frequency of occurrence of a word, which we refer to as count, was measured 

on the Fisher Corpus. A summary of the BPC classes used in our study is shown in Table 1. The 

frequency measures used with these features consisted of the fraction of times each symbol appears in a 

word. Next, we explore how these features were analyzed using several machine learning algorithms. 

III. MACHINE LEARNING 

We evaluated three types of machine learning algorithms to map features to error rates. These algorithms 

were chosen because they are representative of the types of learning algorithms available, provide a good 

estimate of what type of performance is achievable, and also give us insight into the underlying 

dependencies between features. Some have historical significance (e.g., linear regression) as a baseline 

algorithm while others are known to provide state of the art performance (e.g., random forests). 

Linear regression (LR) (Bishop, 2011) is among the simplest methods that can be used to explore 

dependencies amongst features. We assume that the predictive variable (e.g. error rate) can be expressed 

as linear combination of the features: 

 y = Xb + e ,

 

(3) 

   
b = X ' X( )

-1
X ' y .

 

(4)
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where X  represents the input feature vector for a word, y  represents the predicted error rate, e  is the 

prediction error and b  represents the weights to be learned from the training data. 

Feed-forward neural networks (NN) (Bishop, 2011) are among the most efficient ways to model a 

nonlinear relationship and have demonstrated robust performance across a wide range of tasks. As before, 

we assume a simple predictive relationship between X and y : 

  
y = f (X )+ e

 
.
 

(5) 

In our implementation, f () , the function to be estimated, is approximated as a weighed sum of sigmoid 

functions. We have used a network with one hidden layer. The output node is chosen to be linear. 

Training was implemented the back-propagation algorithm. 

A random forest (RF) (Breiman, 2001) gives performance that is competitive with the best algorithms 

and yet does not require significant parameter tuning. The merits of the RF approach include speed, 

scalability and, most importantly, robustness to overfitting. A common approach for implementing a 

random forest is to grow many regression trees, each referred to as a base learner, using a probabilistic 

scheme. The training process for each base learner seeks the best predictor feature at each node from 

among a random subset of all features. A random subset of the training data is used that is constructed by 

sampling with replacement so that the size of the dataset is held constant. This randomization helps 

ensure the independence of the base learners. Each tree is grown to the largest extent possible without any 

pruning.  

RFs can also be used for feature selection using a bagging process that is implemented as follows. For 

one-third of trees in the forest, we generate the training subset using a special scheme: for the k
th
 tree we 

first put aside one-third of the data from the bootstrap process (sampling with replacement), and label this 

data out-of-bag (OOB) data. We apply the OOB data to each tree and compute the mean square error 

(MSE). Next, we randomly permute the value of a specific feature, rerun the OOB data, and compute the 

difference between old and new MSE. The value of this difference, averaged across all trees, shows the 

degree of sensitivity to this feature, and can be interpreted as the importance of that variable. 
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IV. BASELINE EXPERIMENTS 

The data used in this project was provided by BBN Technologies (BBN) and consisted of recognition 

output for the Fisher 2300-hour training set (Cieri et al., 2004). The speech recognizer was trained on 

370 hours of SWB. The decoder used was configured to run 10 times faster than real time and was similar 

to a decoder used for keyword search (Miller et al., 2007). Recognition output consisted of word lattices, 

which we used to generate 1-best hypotheses and average duration information.  

Though it is preferable to have disjoint training and evaluation sets, because the data available is 

limited, we used a cross-validation approach. We divided the data into 10 subsets and at each step use one 

of these subsets as the evaluation set and other 9 subsets as training data. At each step we trained models 

from a flat-start state using the corresponding training data. After rotating through all 10 subsets, we 

concatenated the results to obtain the overall estimate of performance. Statistics on both the training and 

evaluation sets are reported in terms of MSE, correlation and R values.  

We have used two feature selection algorithms to explore which features are most important: 

sequential feature selection (the function sequentialfs in MATLAB) (Aha & Bankert, 1996) and random 

forests (the function TreeBagger in MATLAB) (Breiman, 2001). We began with a set of 150 features. We 

generated 7 subsets of these features as shown in Table 2. Set 1 was generated using sequential feature 

selection and linear regression with correlation as the criterion function. Set 2 was similar to set 1 except 

it used MSE as the criterion. Sets 3 and 4 used sequential feature selection with a neural network, with 

correlation and MSE as criteria. Sets 5 and 6 used a regression tree (built using the MATLAB function 

RegressionTree.template), with correlation and MSE as criteria respectively. Set 7 used the RF approach 

previously described. We see in Table 2 that approximately 50 features seems to be optimal but as few as 

7 features gives reasonable performance. It also appears the training data is large enough to support these 

kinds of investigations as the results are well-behaved as a function of the number of features. 

A plot of feature importance as determined by the RF algorithm is shown in Figure 5. Count, which 

represents the frequency of occurrence of a word, is recognized as the most important feature (its removal 

causes the highest increase in error.) Note that this does not mean that count is the most important feature 
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in predicting the error rate. It simply means that the other features are highly correlated with each other, 

so removing any one of these does not appreciably reduce the information content in the feature vector. 

In Table 3, we present the correlation of the predicted error rates for the acoustic-based features using 

the K-MEANS/kNN approach previously described. In Table 4, we show results as a function of the 

number of nearest neighbors for the phonetic-based distance metric. Though the MSEs are comparable for 

both methods, the R values are higher for the acoustic-based metric, indicating a better prediction of the 

error rates. In Table 5, we compare three different classification algorithms as a function of the feature 

sets. The acoustic-based metric resulted in an R value of 0.6 on the evaluation set, while the 

phonetic-based methods resulted in an R value of 0.5, and the feature-based methods resulted in an R of 

0.7. The RF and NN classification methods resulted in similar R values. 

V. SYSTEM COMBINATION 

In order to investigate whether we can build a better predictor by combining different machines, we 

examined the correlation between predictors. As shown in Table 6, the acoustic-based distance is least 

correlated with the phonetic-based approach, indicating there could be a benefit to combining these 

predictors. We have explored combining systems using a weighted average of systems, where optimum 

weights are learned using particle swarm optimization (PSO) (Kennedy and Eberhart, 1995). The training 

process for PSO followed the same procedure described previously: the data, in this case word error rates 

for individual words, is divided into 10 equal subsets. One subset is used for evaluation, the remaining 9 

subsets are used for training, and the process is repeated by selecting each of the 10 subsets as the 

evaluation set. The 9 subsets are used to train 75 different classifiers representing a variety of systems 

selected across the three approaches (acoustic, phonetic and feature-based). PSO is applied to the 

predicted error rates produced by these 75 models on the held-out training data (referred to as 

development data).  The result of this process is a vector representing the optimum weight of each 

machine. This process is repeated for each of the 10 partitions. The 10 vectors that result are then 

averaged together to produce the overall optimum weights. These weights are used to combine all 75 
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machines into a single model. The error rate predictions of this model are then evaluated against the 

reference error rates measured from the speech recognition output. 

In this work we have a linearly constrained problem in which we want to find optimum weights for 

our classifiers under the constraint that these weights sum to one. We have used Paquet and 

Engelbrecht (2003) for this constrained optimization problem. In Table 7, we show the results obtained by 

combining all 75 machines using PSO. These 75 machines are composed of 27 machines that use the 

acoustic-based approach, 8 machines using the phonetic-based approach and 40 machines using the 

feature-based approach. We also investigated removing the 8 linear regression machines, reducing the 

number of systems from 75 to 67. This is shown in the second row of Table 7. The last three columns 

show the percent that each machine contributes to the overall score. 

Acoustic-based and feature-based machines contribute equally to the overall score, and both 

contribute significantly more than the phonetic-based approaches. In fact, when all 75 machines are 

pooled, 43 of these machines (57%) have weights that are zero, implying they add no additional 

information. The 43 machines included 12 from the acoustic-based machines (out of 27), 6 from the 

phonetic-based machines (out of 8), and 25 from the feature-based machines (out of 40). By manually 

excluding the 8 linear regression machines performance increases slightly. Prior to using PSO, our best 

performance was an R value of 0.708. Our best R value with PSO and system combination was 0.761, 

which is an improvement of 7.5%. Figure 6 shows the predicted error rate versus the reference error rate 

for the system representing the second row of Table 7, demonstrating that there is good correlation 

between the two. 

VI. SUMMARY  

We have demonstrated an approach to predicting the quality of a search term in a spoken term 

detection system that is based on modeling the underlying acoustic phonetic structure of the word. Several 

similarity measures were explored (acoustic, phonetic and feature-based), as were several machine 

learning algorithms (regression, neural networks and random forests). The acoustic-based and feature-

based representations gave relatively good performance, achieving a maximum R value of 0.7. By 
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combining these systems using a weighted averaging process based on particle swarm optimization, the R 

value was increased to 0.761.  

To further improve these results, we need to find better features. One of the more promising 

approaches to feature generation involves an algorithm that predicts the underlying phonetic confusability 

of a word based on inherent phone-to-phone confusions (Picone et al., 1990). We also, of course, need 

more data, particularly data from a variety of keyword search engines. It is hoped that such data will 

become available with the upcoming Spoken Term Detection evaluation to be conducted by NIST in 

2013.  
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Figure 1. Spoken term detection can be partitioned into two tasks: indexing and search. One common 

approach to indexing is to use a speech to text system (after Fiscus et al., 2007). 

Figure 2. A prototype of a web-based application that predicts voice keyword search term reliability is 

shown. The search term reliability is automatically updated as the user types a search term. A 

demonstration is available at http://www.isip.piconepress.com/projects/ks_prediction/demo/current/. 

Figure 3. In our approach to predicting search term reliability, we decompose terms into features, such as 

N-grams of phonemes and the number of phonemes, and apply these features to a variety of machine-

learning algorithms. 

Figure 4. The relationship between duration and error rate shows that longer words generally result in 

better performance, but the overall variance of this measure is high. 

Figure 5. Feature importance based on the RF algorithm is shown. The feature ”count,” which represents 

the frequency of occurrence of a word, is by far the singlemost valuable feature since it is not correlated 

with any of the other features. 

Figure 6. The predicted error rate is plotted against the reference error rate, demonstrating good 

correlation between the two. 
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Figure 1. Spoken term detection can be partitioned into two tasks: indexing and search. One common 

approach to indexing is to use a speech to text system (after Fiscus et al., 2007).  
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Figure 3. In our approach to predicting search term reliability, we decompose terms into features, such as 

N-grams of phonemes and the number of phonemes, and apply these features to a variety of machine-learning 

algorithms. 

 

 

 

 

Figure 2. A prototype of a web-based application that predicts voice keyword search term reliability is 

shown. The search term reliability is automatically updated as the user types a search term. A 

demonstration is available at http://www.isip.piconepress.com/projects/ks_prediction/demo/current/. 
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Figure 4. The relationship between duration and error rate shows that longer words generally result in 

better performance, but the overall variance of this measure is high. 
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Figure 5. Feature importance based on the RF algorithm is shown. The feature 

”count,” which represents the frequency of occurrence of a word, is by far the 

singlemost valuable feature since it is not correlated with any of the other features. 

 

 

Figure 6. The predicted error rate is plotted against the reference error rate, 

demonstrating good correlation between the two. 
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Table 4. Results are shown for the phonetic distance algorithm as a function of the number of nearest 
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Table 5. A comparison of the different classification algorithms as a function of the feature sets is shown. 

R values are shown (the MSE results follow the same trend). Random forests (RF) give very stable results 

across a wide range of conditions. 

Table 6. The correlation between various classifiers is shown. The acoustic-based distance is least 

correlated with the phonetic-based approach, indicating there could be a benefit to combining these 

predictors. 

Table 7. Performance improves slightly by combining many predictors using PSO. The acoustic and 

feature-based metrics contribute equally to the overall result. 
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Class Phonemes 

Silence sp sil 

Stops b p d t g k 

Fricatives jh ch sh s z zh f th v dh hh 

Nasals m n ng en  

Liquids l el r w y 

Vowels 
iy ih eh ey ae aa aw ay 

ah ao ax oy ow uh iw er 

 

Table 2. A mapping of phones to broad phonetic classes is shown. 

 

Method 
No. 

Feats 

MSE 

(Train) 

MSE 

(Eval) 

All Features / LR/ Corr 150 0.015 0.018 

SFS / LR / Corr 55 0.016 0.017 

SFS / LR / MSE 54 0.016 0.017 

SFS / NN / Corr 12 0.015 0.015 

SFS / NN / MSE 14 0.015 0.015 

SFS / Tree / Corr 7 0.015 0.020 

SFS / Tree / MSE 7 0.016 0.019 

RF  56 0.006 0.014 

Table 1. The number of features is shown for different feature selection 

methods as a function of the mean square error (MSE) on both the training 

and test sets. Performance for the correlation and MSE criteria was 

comparable. 
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 Train Eval 

Set  K  k MSE R MSE R 

1 1 1 0.027 0.227 0.027 0.270 

1 1 3 0.025 0.340 0.025 0.370 

1 1 5 0.024 0.394 0.023 0.425 

1 1 30 0.021 0.528 0.020 0.543 

1 1 inf  0.023 0.456 0.022 0.471 

1 2 1 0.026 0.293 0.025 0.330 

1 2 3 0.024 0.414 0.023 0.444 

1 2 5 0.022 0.461 0.022 0.473 

1 2 30 0.019 0.569 0.019 0.583 

1 2 inf  0.018 0.601 0.018 0.615 

1 3 5 0.022 0.475 0.022 0.497 

1 3 30 0.019 0.565 0.019 0.579 

1 3 inf  0.018 0.600 0.018 0.614 

1 4 5 0.022 0.477 0.021 0.499 

1 4 30 0.020 0.542 0.020 0.559 

1 4 inf  0.019 0.578 0.018 0.595 

1 12 5 0.024 0.397 0.023 0.432 

1 12 30 0.021 0.503 0.021 0.520 

1 12 inf  0.021 0.519 0.020 0.542 

2 2 5 0.024 0.387 0.024 0.407 

2 4 inf  0.020 0.550 0.019 0.568 

2 15 inf  0.021 0.526 0.020 0.551 

2 17 inf  0.021 0.526 0.020 0.551 

Table 3. The correlation of predicted error rates with actual error rates is shown for our 

acoustic distance measure. Performance on the eval set is comparable for sets 1 and 2 for a 

broad range of parameter settings. The correlation between open set and closed set 

performance is also good. 

 

 Train Eval 

k MSE R MSE R 

1 0.026 0.296 0.026 0.322 

3 0.024 0.405 0.024 0.421 

5 0.023 0.434 0.023 0.451 

30 0.021 0.502 0.021 0.519 

50 0.021 0.503 0.021 0.519 

100 0.021 0.499 0.021 0.515 

300 0.022 0.483 0.022 0.498 

 inf  0.023 0.459 0.022 0.478 

Table 4. Results are shown for the phonetic distance algorithm 

as a function of the number of nearest neighbors used in kNN. 
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Classifier LR NN RF 

Method Train Eval Train Eval Train Eval 

All Features / LR/ Corr 0.683 0.618 0.724 0.624 0.895 0.708 

SFS / LR / Corr 0.654 0.629 0.753 0.692 0.875 0.701 

SFS / LR / MSE 0.654 0.629 0.735 0.686 0.857 0.697 

SFS / NN / Corr 0.571 0.573 0.697 0.691 0.776 0.676 

SFS / NN / MSE 0.573 0.574 0.697 0.689 0.799 0.679 

SFS / Tree / Corr 0.561 0.564 0.674 0.669 0.761 0.659 

SFS / Tree / MSE 0.561 0.564 0.674 0.669 0.761 0.659 

RF  0.635 0.604 0.734 0.675 0.882 0.703 

Table 5. A comparison of the different classification algorithms as a function of 

the feature sets is shown. R values are shown (the MSE results follow the same 

trend). Random forests (RF) give very stable results across a wide range of 

conditions. 

 

 Acoustic Phonetic Feature 

Acoustic 1 0.4 0.6 

Phonetic 0.4 1 0.7 

Feature 0.6 0.7 1 

Table 7. The correlation between various classifiers is shown. 

The acoustic-based distance is least correlated with the phonetic-

based approach, indicating there could be a benefit to combining 

these predictors.  

 

 Train Eval Relative Contribution 

Machines MSE R MSE R Acoustic Phonetic Feature 

All 0.00092 0.913 0.012 0.760 41.1% 10.5% 48.3% 

NN+RF 0.00084 0.918 0.012 0.762 44.7% 15.7% 39.5% 

Table 6. Performance improves slightly by combining many predictors using PSO. The 

acoustic and feature-based metrics contribute equally to the overall result. 
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Figure 1. Spoken term detection can be partitioned into two tasks: indexing and search. One common 

approach to indexing is to use a speech to text system (after Fiscus et al., 2007). 

Figure 2. A prototype of a web-based application that predicts voice keyword search term reliability is 

shown. The search term reliability is automatically updated as the user types a search term. A 

demonstration is available at http://www.isip.piconepress.com/projects/ks_prediction/demo/current/. 

Figure 3. In our approach to predicting search term reliability, we decompose terms into features, such as 

N-grams of phonemes and the number of phonemes, and apply these features to a variety of machine-

learning algorithms. 

Figure 4. The relationship between duration and error rate shows that longer words generally result in 

better performance, but the overall variance of this measure is high. 

Figure 5. Feature importance based on the RF algorithm is shown. The feature ”count,” which represents 

the frequency of occurrence of a word, is by far the singlemost valuable feature since it is not correlated 

with any of the other features. 

Figure 6. The predicted error rate is plotted against the reference error rate, demonstrating good 

correlation between the two. 

Figure
Click here to download Figure: paper_v19_figures.docx 

http://www.editorialmanager.com/ijst/download.aspx?id=8573&guid=2ca5c264-22fd-4f11-b108-3b27f70d3d7d&scheme=1
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Figure 1. Spoken term detection can be partitioned into two tasks: indexing and search. One common 

approach to indexing is to use a speech to text system (after Fiscus et al., 2007).  
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Figure 3. In our approach to predicting search term reliability, we decompose terms into features, such as 

N-grams of phonemes and the number of phonemes, and apply these features to a variety of machine-learning 

algorithms. 

 

 

 

 

Figure 2. A prototype of a web-based application that predicts voice keyword search term reliability is 

shown. The search term reliability is automatically updated as the user types a search term. A 

demonstration is available at http://www.isip.piconepress.com/projects/ks_prediction/demo/current/. 
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Figure 4. The relationship between duration and error rate shows that longer words generally result in 

better performance, but the overall variance of this measure is high. 
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Figure 5. Feature importance based on the RF algorithm is shown. The feature 

”count,” which represents the frequency of occurrence of a word, is by far the 

singlemost valuable feature since it is not correlated with any of the other features. 

 

 

Figure 6. The predicted error rate is plotted against the reference error rate, 

demonstrating good correlation between the two. 
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Table 2. A mapping of phones to broad phonetic classes is shown. 

 

Method 
No. 

Feats 

MSE 

(Train) 

MSE 

(Eval) 

All Features / LR/ Corr 150 0.015 0.018 

SFS / LR / Corr 55 0.016 0.017 

SFS / LR / MSE 54 0.016 0.017 

SFS / NN / Corr 12 0.015 0.015 

SFS / NN / MSE 14 0.015 0.015 

SFS / Tree / Corr 7 0.015 0.020 

SFS / Tree / MSE 7 0.016 0.019 

RF  56 0.006 0.014 

Table 1. The number of features is shown for different feature selection 

methods as a function of the mean square error (MSE) on both the training 

and test sets. Performance for the correlation and MSE criteria was 

comparable. 
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 Train Eval 

Set  K  k MSE R MSE R 

1 1 1 0.027 0.227 0.027 0.270 

1 1 3 0.025 0.340 0.025 0.370 

1 1 5 0.024 0.394 0.023 0.425 

1 1 30 0.021 0.528 0.020 0.543 

1 1 inf  0.023 0.456 0.022 0.471 

1 2 1 0.026 0.293 0.025 0.330 

1 2 3 0.024 0.414 0.023 0.444 

1 2 5 0.022 0.461 0.022 0.473 

1 2 30 0.019 0.569 0.019 0.583 

1 2 inf  0.018 0.601 0.018 0.615 

1 3 5 0.022 0.475 0.022 0.497 

1 3 30 0.019 0.565 0.019 0.579 

1 3 inf  0.018 0.600 0.018 0.614 

1 4 5 0.022 0.477 0.021 0.499 

1 4 30 0.020 0.542 0.020 0.559 

1 4 inf  0.019 0.578 0.018 0.595 

1 12 5 0.024 0.397 0.023 0.432 

1 12 30 0.021 0.503 0.021 0.520 

1 12 inf  0.021 0.519 0.020 0.542 

2 2 5 0.024 0.387 0.024 0.407 

2 4 inf  0.020 0.550 0.019 0.568 

2 15 inf  0.021 0.526 0.020 0.551 

2 17 inf  0.021 0.526 0.020 0.551 

Table 3. The correlation of predicted error rates with actual error rates is shown for our 

acoustic distance measure. Performance on the eval set is comparable for sets 1 and 2 for a 

broad range of parameter settings. The correlation between open set and closed set 

performance is also good. 

 

 Train Eval 

k MSE R MSE R 

1 0.026 0.296 0.026 0.322 

3 0.024 0.405 0.024 0.421 

5 0.023 0.434 0.023 0.451 

30 0.021 0.502 0.021 0.519 

50 0.021 0.503 0.021 0.519 

100 0.021 0.499 0.021 0.515 

300 0.022 0.483 0.022 0.498 

 inf  0.023 0.459 0.022 0.478 

Table 4. Results are shown for the phonetic distance algorithm 

as a function of the number of nearest neighbors used in kNN. 
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Classifier LR NN RF 

Method Train Eval Train Eval Train Eval 

All Features / LR/ Corr 0.683 0.618 0.724 0.624 0.895 0.708 

SFS / LR / Corr 0.654 0.629 0.753 0.692 0.875 0.701 

SFS / LR / MSE 0.654 0.629 0.735 0.686 0.857 0.697 

SFS / NN / Corr 0.571 0.573 0.697 0.691 0.776 0.676 

SFS / NN / MSE 0.573 0.574 0.697 0.689 0.799 0.679 

SFS / Tree / Corr 0.561 0.564 0.674 0.669 0.761 0.659 

SFS / Tree / MSE 0.561 0.564 0.674 0.669 0.761 0.659 

RF  0.635 0.604 0.734 0.675 0.882 0.703 

Table 5. A comparison of the different classification algorithms as a function of 

the feature sets is shown. R values are shown (the MSE results follow the same 

trend). Random forests (RF) give very stable results across a wide range of 

conditions. 

 

 Acoustic Phonetic Feature 

Acoustic 1 0.4 0.6 

Phonetic 0.4 1 0.7 

Feature 0.6 0.7 1 

Table 7. The correlation between various classifiers is shown. 

The acoustic-based distance is least correlated with the phonetic-

based approach, indicating there could be a benefit to combining 

these predictors.  

 

 Train Eval Relative Contribution 

Machines MSE R MSE R Acoustic Phonetic Feature 

All 0.00092 0.913 0.012 0.760 41.1% 10.5% 48.3% 

NN+RF 0.00084 0.918 0.012 0.762 44.7% 15.7% 39.5% 

Table 6. Performance improves slightly by combining many predictors using PSO. The 

acoustic and feature-based metrics contribute equally to the overall result. 

 


