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Abstract Spoken term detection is an extension of text-based searching that allows users to 
type keywords and search audio files containing recordings of spoken language. 
Performance is dependent on many external factors such as the acoustic channel, 
language, pronunciation variations and acoustic confusability of the search term. 
Unlike text-based searches, the likelihoods of false alarms and misses for specific 
search terms, which we refer to as reliability, play a significant role in the overall 
perception of the usability of the system. In this paper, we present a system that 



predicts the reliability of a search term based on its inherent confusability. Our 
approach integrates predictors of the reliability that are based on both acoustic and 
phonetic features. These predictors are trained using an analysis of recognition errors 
produced from a state of the art spoken term detection system operating on the Fisher 
Corpus. This work represents the first large-scale attempt to predict the success of a 
keyword search term from only its spelling. We explore the complex relationship 
between phonetic and acoustic properties of search terms. We show that a 76 % 
correlation between the predicted error rate and the actual measured error rate can 
be achieved, and that the remaining confusability is due to other acoustic modeling 
issues that cannot be derived from a search term’s spelling. 
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Abstract Spoken term detection is an extension of text-
based searching that allows users to type keywords and
search audio files containing recordings of spoken language.
Performance is dependent on many external factors such as
the acoustic channel, language, pronunciation variations and
acoustic confusability of the search term. Unlike text-based
searches, the likelihoods of false alarms and misses for spe-
cific search terms, which we refer to as reliability, play a
significant role in the overall perception of the usability of
the system. In this paper, we present a system that predicts
the reliability of a search term based on its inherent con-
fusability. Our approach integrates predictors of the relia-
bility that are based on both acoustic and phonetic features.
These predictors are trained using an analysis of recognition
errors produced from a state of the art spoken term detec-
tion system operating on the Fisher Corpus. This work rep-
resents the first large-scale attempt to predict the success of
a keyword search term from only its spelling. We explore the
complex relationship between phonetic and acoustic proper-
ties of search terms. We show that a 76 % correlation be-
tween the predicted error rate and the actual measured error
rate can be achieved, and that the remaining confusability is
due to other acoustic modeling issues that cannot be derived
from a search term’s spelling.

Keywords Spoken term detection · Voice keyword search ·
Information retrieval

A.H.H.N. Torbati (�) · J. Picone
Department of Electrical and Computer Engineering, Temple
University, 1947 North 12th Street, Philadelphia, PA 19027, USA
e-mail: joseph.picone@isip.piconepress.com

Fig. 1 Spoken term detection can be partitioned into two tasks: index-
ing and search. One common approach to indexing is to use a speech
to text system (after Fiscus et al. 2007)

1 Introduction

The goal of a Spoken Term Detection (STD) system is “to
rapidly detect the presence of a word or phrase in a large au-
dio corpus of heterogeneous speech material” (Fiscus et al.
2007). As shown in Fig. 1, STD systems typically index the
audio data as a preprocessing step, allowing users to rapidly
search the index files using common information retrieval
approaches. Indexing can be done using a speech to text
(STT) system (Miller et al. 2007), or simpler engines based
on phoneme recognition (Nexidia 2008). Like most detec-
tion tasks, STD can be characterized in terms of two kinds
of errors: false alarms and missed detections (Martin et al.
1997). The overall error can be defined as a linear combina-
tion of these two errors. In this paper, we give equal weights
to both types of errors.

mailto:joseph.picone@isip.piconepress.com
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Fig. 2 A prototype of a
web-based application that
predicts voice keyword search
term reliability is shown. The
search term reliability is
automatically updated as the
user types a search term. A
demonstration is available at
http://www.isip.piconepress.
com/projects/ks_prediction/
demo/current/

Search engines have been used extensively to retrieve
information from text files. Regular expressions (Duford
1993) and statistically-based information retrieval algo-
rithms (Manning et al. 2008) have been the foundations of
such searches for many years. Text-based search algorithms
use simple character recognition and character matching al-
gorithms in which the identity of a character is known with
probability 1 (no ambiguity). Unlike searching text data,
searching through audio data requires handling ambiguity
at the acoustic level. Determining the presence of a partic-
ular phone or word is not an exact science and must be ob-
served through probabilities. A similarity measure used in
such searches is typically based on some kind of score com-
puted from a machine learning system. For text-based search
systems, the performance of the system is independent of
the term being searched (at least for a language like En-
glish where words are explicitly separated using spaces). For
audio-based searches, however, the performance of the sys-
tem depends on many external factors including the acoustic
channel, speech rate, accent, language, vocabulary size and
the inherent confusability of the search terms. Here we ad-
dress only the latter problem—predicting the reliability of a
search term based on its inherent confusability.

The motivation for this work grew out of observations of
typical users interacting with both wordbased (Miller et al.
2007) and phonebased (Nexidia 2008) voice keyword search
systems over the past seven years. While it is well known
that some aspects of search term performance, such as the
duration of the word, correlate with search term perfor-
mance (Doddington et al. 1999; Harati and Picone 2013), se-
lecting robust and accurate search terms can be as much art
as science. Users can quickly become frustrated because the
nuances of the underlying speech processing engine don’t
always align with users’ expectations based on their ex-
periences with text-based searches. Therefore, our goal in

this work was to develop a technology similar to password
strength checking which displays the predicted strength of a
keyword as a user types a search term.

A demonstration of the system is available at http://www.
isip.piconepress.com/projects/ks_prediction/demo/current/.
A screenshot of the user interface is shown in Fig. 2. The
output of the tool is a visual feedback to the user in the form
of a numeric score in the range [0,100 %] that indicates the
quality of the search term (e.g., 100 % means the search
term is strong and less likely to result in inaccurate hits). If a
search term is likely to cause inaccurate results, that results
in users having to sift through many utterances to find con-
tent of interest. The tool is an attempt to provide users with
an interactive indication of the quality of a proposed term
before they execute the search. Our experience with users
is that, without this type of feedback, they often gravitate
towards short search terms that are highly confusable. The
tool makes it very easy for users to understand the value of
selecting alternate search terms. Though not currently in-
cluded in this tool, an obvious extension is to provide users
with a list of alternate terms that are semantically similar
yet have better reliability. Though we have not conducted
extensive user evaluations with this tool, anecdotal results
suggest that the feedback is very useful to casual users, and
that users quickly understand the importance of selecting
good search terms.

Our general approach in this work was to analyze er-
ror patterns produced by existing keyword search systems
and to develop a predictive model of these errors. To build
predictors of errors, we investigated both the acoustic pho-
netic distance between words and similarity measures of the
underlying phone sequences. The use of acoustic measures
resulted from a detailed analysis of the limited predictive
power of phonetic or linguistic information. Our hypothe-
sis for the acoustic phonetic approach was that acoustically

http://www.isip.piconepress.com/projects/ks_prediction/demo/current/
http://www.isip.piconepress.com/projects/ks_prediction/demo/current/
http://www.isip.piconepress.com/projects/ks_prediction/demo/current/
http://www.isip.piconepress.com/projects/ks_prediction/demo/current/
http://www.isip.piconepress.com/projects/ks_prediction/demo/current/
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Fig. 3 In our approach to predicting search term reliability, we decompose terms into features, such as N-grams of phonemes and the number of
phonemes, and apply these features to a variety of machine-learning algorithms

similar words should have the same average error rate for a
given speech recognizer. The similarity measure-based ap-
proach calculates an edit distance between the underlying
phone sequences (Picone et al. 1990). These two approaches
provided simple but useful baseline performance. A third ap-
proach, which is a major focus of this work, is based on ex-
tracting a variety of features from the spelling of a word and
uses machine learning algorithms to estimate the error rate
for that word.

A block diagram of our general approach is demonstrated
in Fig. 3. The input, a keyword search term that can consist
of a word or phrase, is first transformed into features. These
features result from the conversion of a word into several lin-
guistic representations (e.g., phones, syllables). The prepro-
cessor forms an augmented feature vector from an analysis
of these linguistic representations (e.g., N-grams of phones
or broad phonetic class). The machine learning block esti-
mates one or more reliability scores, and passes these to
the postprocessor for aggregation and normalization. For the
machine learning task, we have implemented several statis-
tical models based linear regression (Bishop 2011), feed-
forward neural networks (Bishop 2011) and random forests
(Breiman 2001). The feature extraction process is central to
this work since we have investigated what underlying lin-
guistic properties of a word are the strongest predictors of
search error rates. Since different approaches predict the er-
ror rate in different ways, we also explored combining pre-
dictors using a simple linear averaging that employs parti-
cle swarm optimization (PSO) to find the optimal weights
(Kennedy and Eberhart 1995).

The problem of predicting search term reliability is a
relatively new problem and for the first time is addressed
comprehensively in this paper. Researchers have often per-
formed error analysis on speech recognition or keyword
search experiments, but these have often been focused on
system optimization and have been very specific to the data
under consideration. The goal of the approaches explored
in this paper is to develop a predictive tool that generalizes
across corpora and can be used for vast audio archives found
in YouTube and through search engines such as Google
ad Bing. Hence, it is important that the methodology mix
both linguistic and acoustic knowledge. In this paper, we
present an extensive analysis of the predictive power of var-
ious types of features derived from this type of information.

2 Feature generation

In this section we explore several approaches to generating
features that can be used to measure the similarity between
words. Our goal is to determine feature combinations that
have the highest correlation with measured error rates. Since
this type of analysis is relatively new, there are no widely
accepted set of baseline features for this problem. Our ap-
proach in this paper is to hypothesize a wide range of lin-
guistic and acoustic features, and then to employ feature
selection methods, discussed in Sect. 3, to select the most
relevant ones.

2.1 Linguistically-derived features

Our original approach, motivated by the need to develop
application-independent metrics, was based on a phonetic
distance measure. Each token was converted into a phonetic
representation using a dictionary or letter to sound rules
(Elovitz et al. 1976). An edit distance (Wagner and Fischer
1974) was computed using a standard dynamic program-
ming approach. This approach was an attempt to model the
underlying phonetic similarity between words, particularly
compound words or words that shared morphemic represen-
tations.

Next we introduced a family of algorithms based on
features extracted from the linguistic properties of words.
These features included duration, length (number of letters),
number of syllables, number of syllables/length, number of
consonants/length, number of vowels/length, a ratio of the
number of vowels to the number of consonants, number of
occurrences in the language model (count), monophone fre-
quency, broad phonetic class (BPC) frequency, consonant-
vowel-consonant (CVC) frequency, biphone frequency, 2-
grams of the BPC and CVC frequencies, and 3-grams of
the CVC frequencies. We have used a simple phonemebased
duration model (Harati and Picone 2013) to estimate the du-
ration. The total number of linguistic features is 150, which
includes a variety of N-grams of the above features.

The correlation between duration and the average error
rate is shown in Fig. 4. The average error rate decreases
as the duration increases. This correlates with our general
experiences with users of these systems. On the surface, it
would appear that the more syllables contained in a search
term, the lesser its likelihood of being confused. However,
as we will see shortly, the variance of this predictor is too
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Fig. 4 The relationship between duration and error rate shows that
longer words generally result in better performance, but the overall
variance of this measure is high

Table 1 A mapping of phones to broad phonetic classes is shown

Class Phonemes

Silence sp sil

Stops b p d t g k

Fricatives jh ch sh s z zh f th v dh hh

Nasals m n ng en

Liquids l el r w y

Vowels iy ih eh ey ae aa aw ayah ao ax oy ow uh iw er

high to be useful in practical applications, due to some is-
sues related to acoustic training in speech recognition.

The number of syllables was determined using a dictio-
nary or syllabification software (Fisher 1997) for terms not
in the dictionary. Mapping phones to consonant and vowel
classes was easily accomplished using a table lookup. The
frequency of occurrence of a word, which we refer to as
count, was measured on the Fisher Corpus. A summary of
the BPC classes used in our study is shown in Table 1. The
frequency measures used with these features consisted of the
fraction of times each symbol appears in a word.

2.2 Acoustic-based features

Based on our observation that linguistically-derived units
had limited predictive power (to be explored more fully in
Sect. 4), we hypothesized that words with similar acoustic
properties will result in similar error rates. One possibil-
ity to exploit this behavior is to cluster words with similar
acoustic properties and average their associated error rates.
We explored two ways to do this based on their acoustic
and phonetic properties. For an acoustic-based distance al-
gorithm, the criterion used was a Euclidian distance in the

acoustic space. The acoustic space is constructed from fea-
tures vectors based on a concatenation of standard MFCC
features (with derivatives and acceleration components) and
duration (Young et al. 2006; Davis and Mermelstein 1980).

The acoustic data was, of course, extracted from a dif-
ferent, non-overlapping corpus: SWITCHBOARD (SWB)
(Godfrey et al. 1992). A list of words was extracted from
our target database, the Fisher Corpus (Cieri et al. 2004). All
instances of these words were located in SWB using the pro-
vided time alignments (Deshmukh et al. 1998). Durations of
the corresponding tokens were normalized using a variation
of an averaging approach developed by Karsmakers et al.
(2007). Feature vectors were constructed using three differ-
ent approaches.

In the first approach, each token was divided into three
sections by taking its total duration in frames and splitting
that duration into three sections with durations arranged in
3–4–3 proportions (e.g., a token of 20 frames was split into
three sections of lengths 6, 8 and 6 frames respectively). The
average of the corresponding feature vectors in each seg-
ment was computed, and the three resulting feature vectors
were concatenated into one composite vector. The final fea-
ture vector was obtained by adding the duration of the token
to the three 39-dimensional MFCC feature vectors, bringing
the total dimension of the feature vector to 3 ∗ 39 + 1 = 118.

We then created an alternate segmentation following the
procedure described above that was based on a 10–24–32–
24–10 proportion. This resulted in a feature vector of dimen-
sion 5 ∗ 39 + 1 = 196 elements. In our third approach, we
divided the utterance into 10 equal-sized segments, which
resulted in a feature vector of dimension 39 ∗ 10 + 1 = 391.

Since there are so many word tokens, we used a combina-
tion of K-MEANS clustering and knearest neighbor classi-
fication (kNN) to produce an estimate of a test token’s error
rate. All feature vectors for a given word were clustered into
K representative feature vectors, or cluster centroids, using
K-MEANS clustering. We then used kNN classification to
locate the k nearest clusters for a test token. The overall er-
ror rate for a word was computed as the weighted average
of the k clusters, with the weighting based on an acoustic
distance:

err(wi) = A
∑

j∈Dk

1

distEuclidean(wi,wj ) + ε
err(wj ), (1)

A =
∑

j∈Dk

distEuclidean(wi,wj ) + ε, (2)

where wi is the word in question, Dk is the set of k nearest
neighbors, and ε is a small positive constant that guarantees
the denominator will be non-zero.
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3 Machine learning

We evaluated three types of machine learning algorithms to
map features to error rates. These algorithms were chosen
because they are representative of the types of learning al-
gorithms available, provide a good estimate of what type of
performance is achievable, and also give us insight into the
underlying dependencies between features. Some have his-
torical significance (e.g., linear regression) as a baseline al-
gorithm while others are known to provide state of the art
performance (e.g., random forests). The models used in this
paper can be regarded as a baseline for future research on
this topic.

Linear regression (LR) (Bishop 2011) is among the sim-
plest methods that can be used to explore dependencies
amongst features. We assume that the predictive variable
(e.g. error rate) can be expressed as linear combination of
the features:

y = Xβ + ε, (3)
�

β= (
X′X

)−1
X′y, (4)

where X represents the input feature vector for a word, y

represents the predicted error rate, ε is the prediction error
and β represents the weights to be learned from the training
data.

Feed-forward neural networks (NN) (Bishop 2011) are
among the most efficient ways to model a nonlinear rela-
tionship and have demonstrated robust performance across
a wide range of tasks. As before, we assume a simple pre-
dictive relationship between X and y:

y = f (X) + ε. (5)

In our implementation, f (), the function to be estimated, is
approximated as a weighed sum of sigmoid functions. We
have used a network with one hidden layer. The output node
is chosen to be linear. Training was implemented the back-
propagation algorithm.

A random forest (RF) (Breiman 2001) gives performance
that is competitive with the best algorithms and yet does
not require significant parameter tuning. The merits of the
RF approach include speed, scalability and, most impor-
tantly, robustness to overfitting. A common approach for
implementing a random forest is to grow many regression
trees, each referred to as a base learner, using a probabilistic
scheme. The training process for each base learner seeks the
best predictor feature at each node from among a random
subset of all features. A random subset of the training data
is used that is constructed by sampling with replacement so
that the size of the dataset is held constant. This random-
ization helps ensure the independence of the base learners.
Each tree is grown to the largest extent possible without any
pruning.

RFs can also be used for feature selection using a bag-
ging process that is implemented as follows. For one-third
of trees in the forest, we generate the training subset using a
special scheme: for the kth tree we first put aside one-third of
the data from the bootstrap process (sampling with replace-
ment), and label this data out-of-bag (OOB) data. We apply
the OOB data to each tree and compute the mean square
error (MSE). Next, we randomly permute the value of a spe-
cific feature, rerun the OOB data, and compute the differ-
ence between old and new MSE. The value of this differ-
ence, averaged across all trees, shows the degree of sensitiv-
ity to this feature, and can be interpreted as the importance
of that variable.

4 Baseline experiments

The data used in this project was provided by BBN Tech-
nologies (BBN) and consisted of recognition output for the
Fisher 2300-hour training set (Cieri et al. 2004). The speech
recognizer was trained on 370 hours of SWB. The decoder
used was configured to run 10 times faster than real time and
was similar to a decoder used for keyword search (Miller
et al. 2007). Recognition output consisted of word lattices,
which we used to generate 1-best hypotheses and average
duration information.

Though it is preferable to have disjoint training and eval-
uation sets, because the data available is limited, we used a
cross-validation approach. We divided the data into 10 sub-
sets and at each step use one of these subsets as the evalua-
tion set and other 9 subsets as training data. At each step we
trained models from a flat-start state using the correspond-
ing training data. After rotating through all 10 subsets, we
concatenated the results to obtain the overall estimate of per-
formance. Statistics on both the training and evaluation sets
are reported in terms of MSE, correlation and R values.

We have used two feature selection algorithms to explore
which features are most important: sequential feature se-
lection (the function sequentialfs in MATLAB) (Aha and
Bankert 1996) and random forests (the function TreeBagger
in MATLAB) (Breiman 2001). We began with a set of 150
features. We generated 7 subsets of these features as shown
in Table 2. Set 1 was generated using sequential feature se-
lection (SFS) and linear regression with correlation as the
criterion function. Set 2 was similar to set 1 except it used
MSE as the criterion. Sets 3 and 4 used sequential feature
selection with a neural network, with correlation and MSE
as criteria. Sets 5 and 6 used a regression tree (built using
the MATLAB function RegressionTree.template), with cor-
relation and MSE as criteria respectively. Set 7 used the RF
approach previously described. We see in Table 2 that ap-
proximately 50 features seems to be optimal but as few as
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Table 2 The number of features is shown for different feature selec-
tion methods as a function of the mean square error (MSE) on both the
training and test sets. Performance for the correlation and MSE criteria
was comparable

Method No. feats MSE (Train) MSE (Eval)

All Features/LR/Corr 150 0.015 0.018

SFS/LR/Corr 55 0.016 0.017

SFS/LR/MSE 54 0.016 0.017

SFS/NN/Corr 12 0.015 0.015

SFS/NN/MSE 14 0.015 0.015

SFS/Tree/Corr 7 0.015 0.020

SFS/Tree/MSE 7 0.016 0.019

RF 56 0.006 0.014

Fig. 5 Feature importance based on the RF algorithm is shown. The
feature “count,” which represents the frequency of occurrence of a
word, is by far the single most valuable feature since it is not corre-
lated with any of the other features

7 features gives reasonable performance. SFS selected fea-
tures such as duration, length and count as the most rele-
vant, particularly for the case of 7 features. It also appears
the training data is large enough to support these kinds of
investigations as the results are well-behaved as a function
of the number of features.

A plot of feature importance as determined by the RF al-
gorithm is shown in Fig. 5. Count, which represents the fre-
quency of occurrence of a word, is recognized as the most
important feature (its removal causes the highest increase in
error.) Note that this does not mean that count is the most
relevant feature in predicting the error rate. It simply means
that other features are highly correlated with each other, so
removing any one of these does not appreciably reduce the
information content in the feature vector. Figure 5 demon-
strates that no individual feature stands out as having a large

Table 3 The correlation of predicted error rates with actual error rates
is shown for our acoustic distance measure. Performance on the eval set
is comparable for sets 1 and 2 for a broad range of parameter settings.
The correlation between open set and closed set performance is also
good

Set K k Train Eval

MSE R MSE R

1 1 1 0.027 0.227 0.027 0.270

1 1 3 0.025 0.340 0.025 0.370

1 1 5 0.024 0.394 0.023 0.425

1 1 30 0.021 0.528 0.020 0.543

1 1 inf 0.023 0.456 0.022 0.471

1 2 1 0.026 0.293 0.025 0.330

1 2 3 0.024 0.414 0.023 0.444

1 2 5 0.022 0.461 0.022 0.473

1 2 30 0.019 0.569 0.019 0.583

1 2 inf 0.018 0.601 0.018 0.615

1 3 5 0.022 0.475 0.022 0.497

1 3 30 0.019 0.565 0.019 0.579

1 3 inf 0.018 0.600 0.018 0.614

1 4 5 0.022 0.477 0.021 0.499

1 4 30 0.020 0.542 0.020 0.559

1 4 inf 0.019 0.578 0.018 0.595

1 12 5 0.024 0.397 0.023 0.432

1 12 30 0.021 0.503 0.021 0.520

1 12 inf 0.021 0.519 0.020 0.542

2 2 5 0.024 0.387 0.024 0.407

2 4 inf 0.020 0.550 0.019 0.568

2 15 inf 0.021 0.526 0.020 0.551

2 17 inf 0.021 0.526 0.020 0.551

predictive power. For example, N-grams of phonemes indi-
vidually occur so infrequently that it is very hard for any
one N-gram to influence the error rate. On the other hand,
duration, length and other such aggregate features are corre-
lated to each other and hence in combination don’t provide a
significant amount of new information. Therefore, we must
explore more sophisticated combinations of these features.

In Table 3, we present the correlation of the predicted
error rates for the acoustic-based features using the K-
MEANS/kNN approach previously described. Performance
is optimal for K = 2 and k = inf, which simply means the
feature vectors were clustered into 2 clusters, and every el-
ement of each cluster was used in the kNN computation.
However, overall performance is not extremely sensitive to
the parameter settings, and the correlation of performance
between the training and evaluation sets is good.

In Table 4, we show similar results as a function of the
number of nearest neighbors for the phoneticbased distance
metric. Though the MSEs are comparable for both methods,
the R values are higher for the acoustic-based metric, indi-
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Table 5 A comparison of the
different classification
algorithms as a function of the
feature sets is shown. R values
are shown (the MSE results
follow the same trend). Random
forests (RF) give very stable
results across a wide range of
conditions

Classifier method No. feats LR NN RF

Train Eval Train Eval Train Eval

All Features/LR/Corr 150 0.683 0.618 0.724 0.624 0.895 0.708

SFS/LR/Corr 55 0.654 0.629 0.753 0.692 0.875 0.701

SFS/LR/MSE 54 0.654 0.629 0.735 0.686 0.857 0.697

SFS/NN/Corr 12 0.571 0.573 0.697 0.691 0.776 0.676

SFS/NN/MSE 14 0.573 0.574 0.697 0.689 0.799 0.679

SFS/Tree/Corr 7 0.561 0.564 0.674 0.669 0.761 0.659

SFS/Tree/MSE 7 0.561 0.564 0.674 0.669 0.761 0.659

RF 56 0.635 0.604 0.734 0.675 0.882 0.703

Table 4 Results are shown for the phonetic distance algorithm as a
function of the number of nearest neighbors used in kNN

k Train Eval

MSE R MSE R

1 0.026 0.296 0.026 0.322

3 0.024 0.405 0.024 0.421

5 0.023 0.434 0.023 0.451

30 0.021 0.502 0.021 0.519

50 0.021 0.503 0.021 0.519

100 0.021 0.499 0.021 0.515

300 0.022 0.483 0.022 0.498

inf 0.023 0.459 0.022 0.478

cating a better prediction of the error rates. This seems to
indicate that acoustic modeling in speech recognition plays
a more dominant role than the linguistic structure of a search
term. Optimal performance is obtained with k = 30, which
is on the order of the number of phonemes in our phoneme
inventory, indicating that an excessive number of degrees of
freedom are not needed in these feature sets.

In Table 5, we compare three different classification algo-
rithms as a function of the feature sets. The acoustic-based
metric resulted in an R value of 0.6 on the evaluation set,
while the phonetic-based methods resulted in an R value of
0.5, and the feature-based methods resulted in an R of 0.7.
The RF and NN classification methods resulted in similar R

values. Approximately 80 % of the R value in these cases
was due to duration. The remaining features accounted for a
very small increase in the R value. There is no strong pref-
erence for features such as BPC and CVC since they were
roughly comparable in their contribution to the overall R

value.
The result of this section shows that some of the features

like duration, count, bigram frequencies and acoustic dis-
tance have a relatively good correlation with the expected
word error rate. A combination of these features can explain
about 50 % of the variance in the prediction results. Our
intuition indicates that duration reduces the acoustic ambi-

Table 6 Performance improves slightly by combining many predic-
tors using PSO. The acoustic and feature-based metrics contribute
equally to the overall result

Machines Train Eval Relative contribution

MSE R MSE R Acoustic Phonetic Feature

All 0.00092 0.913 0.012 0.760 41.1 % 10.5 % 48.3 %

NN+RF 0.00084 0.918 0.012 0.762 44.7 % 15.7 % 39.5 %

guity while bigram frequencies reflect both the occurrence
of the word in the training database and the acoustic confus-
ability of certain phoneme sequences.

5 System combination

In order to investigate whether we can build a better pre-
dictor by combining different machines, we examined the
correlation between predictors. As shown in Table 6, the
acoustic-based distance is least correlated with the phonetic-
based approach, indicating there could be a benefit to com-
bining these predictors. We have explored combining sys-
tems using a weighted average of systems, where opti-
mum weights are learned using particle swarm optimization
(PSO) (Kennedy and Eberhart 1995). The training process
for PSO followed the same procedure described previously:
the data, in this case word error rates for individual words,
is divided into 10 equal subsets. One subset is used for eval-
uation, the remaining 9 subsets are used for training, and
the process is repeated by selecting each of the 10 subsets
as the evaluation set. The 9 subsets are used to train 75 dif-
ferent classifiers representing a variety of systems selected
across the three approaches (acoustic, phonetic and feature-
based). PSO is applied to the predicted error rates produced
by these 75 models on the held-out training data (referred to
as development data). The result of this process is a vector
representing the optimum weight of each machine. This pro-
cess is repeated for each of the 10 partitions. The 10 vectors
that result are then averaged together to produce the over-
all optimum weights. These weights are used to combine all



A
U

T
H

O
R

’S
 P

R
O

O
F

Journal ID: 10772, Article ID: 9197, Date: 2013-05-29, Proof No: 1, UNCORRECTED PROOF

« IJST 10772 layout: Large v.1.3.2 file: ijst9197.tex (Andrius) class: spr-twocol-v1.4 v.2013/04/17 Prn:2013/05/29; 12:58 p. 8/9»
« doctopic: OriginalPaper numbering style: ContentOnly reference style: apa»

Int J Speech Technol

757 811

758 812

759 813

760 814

761 815

762 816

763 817

764 818

765 819

766 820

767 821

768 822

769 823

770 824

771 825

772 826

773 827

774 828

775 829

776 830

777 831

778 832

779 833

780 834

781 835

782 836

783 837

784 838

785 839

786 840

787 841

788 842

789 843

790 844

791 845

792 846

793 847

794 848

795 849

796 850

797 851

798 852

799 853

800 854

801 855

802 856

803 857

804 858

805 859

806 860

807 861

808 862

809 863

810 864

Table 7 The correlation between various classifiers is shown. The
acoustic-based distance is least correlated with the phonetic-based ap-
proach, indicating there could be a benefit to combining these predic-
tors

Acoustic Phonetic Feature

Acoustic 1 0.4 0.6

Phonetic 0.4 1 0.7

Feature 0.6 0.7 1

75 machines into a single model. The error rate predictions
of this model are then evaluated against the reference error
rates measured from the speech recognition output.

In this work we have a linearly constrained problem in
which we want to find optimum weights for our classifiers
under the constraint that these weights sum to one. We have
used Paquet and Engelbrecht (2003) for this constrained op-
timization problem. In Table 7, we show the results obtained
by combining all 75 machines using PSO. These 75 ma-
chines are composed of 27 machines that use the acoustic-
based approach, 8 machines using the phonetic-based ap-
proach and 40 machines using the feature-based approach.
We also investigated removing the 8 linear regression ma-
chines, reducing the number of systems from 75 to 67.
This is shown in the second row of Table 7. The last three
columns show the percent that each machine contributes to
the overall score.

Acoustic-based and feature-based machines contribute
equally to the overall score, and both contribute significantly
more than the phonetic-based approaches. In fact, when all
75 machines are pooled, 43 of these machines (57 %) have
weights that are zero, implying they add no additional in-
formation. The 43 machines included 12 from the acoustic-
based machines (out of 27), 6 from the phonetic-based ma-
chines (out of 8), and 25 from the feature-based machines
(out of 40). By manually excluding the 8 linear regres-
sion machines performance increases slightly. Prior to using
PSO, our best performance was an R value of 0.708. Our
best R value with PSO and system combination was 0.761,
which is an improvement of 7.5 %. Figure 6 shows the pre-
dicted error rate versus the reference error rate for the system
representing the second row of Table 7, demonstrating that
there is good correlation between the two.

6 Summary

We have demonstrated an approach to predicting the quality
of a search term in a spoken term detection system that is
based on modeling the underlying acoustic phonetic struc-
ture of the word. Several similarity measures were explored
(acoustic, phonetic and feature-based), as were several ma-
chine learning algorithms (regression, neural networks and

Fig. 6 The predicted error rate is plotted against the reference error
rate, demonstrating good correlation between the two

random forests). The acoustic-based and feature-based rep-
resentations gave relatively good performance, achieving a
maximum R value of 0.7. By combining these systems us-
ing a weighted averaging process based on particle swarm
optimization, the R value was increased to 0.761.

To further improve these results, we need to find bet-
ter features. One of the more promising approaches to fea-
ture generation involves an algorithm that predicts the un-
derlying phonetic confusability of a word based on inherent
phone-to-phone confusions (Picone et al. 1990). We also, of
course, need more data, particularly data from a variety of
keyword search engines. It is hoped that such data will be-
come available with the upcoming Spoken Term Detection
evaluation to be conducted by NIST in 2013.
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