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PREDICTING SEARCH TERM RELIABILITY
FOR SPOKEN TERM DETECTION SYSTEMS
Amir Hossein Harati Nejad Torbati and Joseph Picone
Abstract— Spoken term detection is an extension of text-based searching that allows users to type keywords and search audio files containing recordings of spoken language. Performance is dependent on many external factors such as the acoustic channel, language, pronunciation variations and acoustic confusability of the search term. Unlike text-based searches, the likelihoods of false alarms and misses for specific search terms, which we refer to as reliability, play a significant role in the overall perception of the usability of the system. In this paper, we present a system that predicts the reliability of a search term based on its inherent confusability. Our approach integrates predictors of the reliability that are based on both acoustic and phonetic features. These predictors are trained using an analysis of recognition errors produced from a state of the art spoken term detection system operating on the Fisher Corpus. We show that a 76% correlation between the predicted error rate and the actual measured error rate can be achieved, and that the remaining confusability is due to other acoustic modeling issues that cannot be derived from a search term’s spelling.
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INTRODUCTION
The goal of a Spoken Term Detection (STD) system is “to rapidly detect the presence of a word or phrase in a large audio corpus of heterogeneous speech material” (Fiscus et al., 2007). As shown in Figure 1, STD systems typically index the audio data as a preprocessing step, allowing users to rapidly search the index files using common information retrieval approaches. Indexing can be done using a speech to text (STT) system (Miller et al., 2007), or simpler engines based on phoneme recognition (Nexidia, 2008). Like most detection tasks, STD can be characterized in terms of two kinds of errors: false alarms and missed detections (Martin et al., 1997). The overall error can be defined as a linear combination of these two errors. In this paper, we give equal weights to both types of errors.
Search engines have been used extensively to retrieve information from text files. Regular expressions (Duford, 1993) and statistically-based information retrieval algorithms (Manning et al., 2008) have been the foundations of such searches for many years. Text-based search algorithms use simple character recognition and character matching algorithms in which the identity of a character is known with probability 1 (no ambiguity). Unlike searching text data, searching through audio data requires handling ambiguity at the acoustic level. Determining the presence of a particular phone or word is not an exact science and must be observed through probabilities. A similarity measure used in such searches is typically based on some kind of score computed from a machine learning system. For text–based search systems, the performance of the system is independent of the term being searched (at least for a language like English where words are explicitly separated using spaces). For audio-based searches, however, the performance of the system depends on many external factors including the acoustic channel, speech rate, accent, language, vocabulary size and the inherent confusability of the search terms. Here we address the latter problem – predicting the reliability of a search term based on its inherent confusability.
The motivation for this work grew out of observations of typical users interacting with both word‑based (Miller et al., 2007) and phone‑based (Nexidia, 2008) voice keyword search systems over the past seven years. While it is well known that some aspects of search term performance, such as the duration of the word, correlate with search term performance (Doddington et al., 1999; Harati & Picone, 2013), selecting robust and accurate search terms can be as much art as science. Users can quickly become frustrated because the nuances of the underlying speech processing engine don’t always align with users’ expectations based on their experiences with text-based searches. Therefore, our goal in this work was to develop a technology similar to password strength checking which displays the predicted strength of a keyword as a user types a search term. A demonstration of the system is available at http://www.isip.piconepress.com/projects/ks_prediction/demo/current/. A screenshot of the user interface is shown in Figure 2.
Our general approach in this work was to analyze error patterns produced by existing keyword search systems and to develop a predictive model of these errors. To build predictors of errors, we investigated both the acoustic phonetic distance between words and similarity measures of the underlying phone sequences. Our hypothesis for the acoustic phonetic approach was that acoustically similar words should have the same average error rate for a given speech recognizer. The similarity measure-based approach calculates an edit distance between the underlying phone sequences (Picone et al., 1990). These two approaches provided simple but useful baseline performance. A third approach, which is a major focus of this work, is based on extracting a variety of features from the spelling of a word and uses machine learning algorithms to estimate the error rate for that word.  
A block diagram of our general approach is demonstrated in Figure 4. The input, a keyword search term that can consist of a word or phrase, is first transformed into features. These features result from the conversion of a word into several linguistic representations (e.g., phones, syllables). The preprocessor forms an augmented feature vector from an analysis of these linguistic representations (e.g., N-grams of phones or broad phonetic class). The machine learning block estimates one or more reliability scores, and passes these to the postprocessor for aggregation and normalization. For the machine learning task, we have implemented several statistical models based linear regression (Bishop, 2011), feed-forward neural networks (Bishop, 2011) and random forests (Breiman, 2001). The feature extraction process is central to this work since we have investigated what underlying linguistic properties of a word are the strongest predictors of search error rates. Since different approaches predict the error rate in different ways, we also explored combining predictors using a simple linear averaging that employs particle swarm optimization (PSO) to find the optimal weights (Kennedy & Eberhart, 1995).
FEATURE GENERATION
In this section we explore several approaches to generating features that can be used to measure the similarity between words. Our goal is to determine feature combinations that have the highest correlation with measured error rates.
Acoustic-Based Features
Based on our hypothesis that words with similar acoustic properties will result in similar error rates, one possibility to predict the quality of a search term is to cluster words with similar acoustic properties and average their associated error rates. We explored two ways to do this based on their acoustic and phonetic properties. For an acoustic-based distance algorithm, the criterion used was a Euclidian distance in the acoustic space. The acoustic space is constructed from features vectors based on a concatenation of standard MFCC features (with derivatives and acceleration components) and duration (Young et al., 2006; Davis & Mermelstein, 1980),
The acoustic data was, of course, extracted from a different, non-overlapping corpus: SWITCHBOARD (SWB) (Godfrey et al., 1992). A list of words was extracted from our target database, the Fisher Corpus (Cieri et al., 2004). All instances of these words were located in SWB using the provided time alignments (Deshmukh et al., 1998). Durations of the corresponding tokens were normalized using a variation of an averaging approach developed by Karsmakers et al. (2007). Feature vectors were constructed using three different approaches. 
In the first approach, each token was divided into three sections by taking its total duration in frames and splitting that duration into three sections with durations arranged in 3-4-3 proportions (e.g., a token of 20 frames was split into three sections of lengths 6, 8 and 6 frames respectively). The average of the corresponding feature vectors in each segment was computed, and the three resulting feature vectors were concatenated into one composite vector. The final feature vector was obtained by adding the duration of the token to the three 39-dimensional MFCC feature vectors, bringing the total dimension of the feature vector to 3*39+1=118.
We then created an alternate segmentation following the procedure described above that was based on a 10‑24‑32‑24‑10 proportion. This resulted in a feature vector of dimension 5*39+1=196 elements. In our third approach, we divided the utterance into 10 equal-sized segments, which resulted in a feature vector of dimension 39*10+1=391. 
Since there are so many word tokens, we used a combination of K-MEANS clustering and k‑nearest neighbor classification (kNN) to produce an estimate of a test token’s error rate. All feature vectors for a given word were clustered into K representative feature vectors, or cluster centroids, using K-MEANS clustering. We then used kNN classification to locate the k nearest clusters for a test token. The overall error rate for a word was computed as the weighted average of the k clusters, with the weighting based on an acoustic distance:
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where  is the word in question,  is the set of k nearest neighbors, and  is a small positive constant that guarantees the denominator will be non-zero. 
Linguistically-derived Features
A second approach based on a phonetic distance measure was also employed. Each token was converted into a phonetic representation using a dictionary or letter to sound rules (Elovitz et al., 1976). An edit distance (Wagner and Fischer, 1974) was computed using a standard dynamic programming approach. This approach was an attempt to model the underlying phonetic similarity between words, particularly compound words or words that shared morphemic representations.
[bookmark: _GoBack][bookmark: _MON_1390122136]Next we introduced a family of algorithms based on features extracted from the linguistic properties of words. These features included duration, length (number of letters), number of syllables, number of syllables/length, number of consonants/length, number of vowels/length, a ratio of the number of vowels to the number of consonants, number of occurrences in the language model (count), monophone frequency, broad phonetic class (BPC) frequency, consonant-vowel-consonant (CVC) frequency, biphone frequency, 2-grams of the BPC and CVC frequencies, and 3-grams of the CVC frequencies. We have used a simple phoneme‑based duration model (Harati and Picone, 2013) to estimate the duration. The correlation between duration and the average error rate is shown in Figure 3. The average error rate decreases as the duration increases. However, as we will see shortly, the variance of this predictor is too high to be useful in practical applications.
The number of syllables was determined using a dictionary or syllabification software (Fisher, 1997) for terms not in the dictionary. Mapping phones to consonant and vowel classes was easily accomplished using a table lookup. The frequency of occurrence of a word, which we refer to as count, was measured on the Fisher Corpus. A summary of the BPC classes used in our study is shown in Table 1. The frequency measures used with these features consisted of the fraction of times each symbol appears in a word. Next, we explore how these features were analyzed using several machine learning algorithms.
Machine Learning
We evaluated three types of machine learning algorithms to map features to error rates. These algorithms were chosen because they are representative of the types of learning algorithms available, provide a good estimate of what type of performance is achievable, and also give us insight into the underlying dependencies between features. Some have historical significance (e.g., linear regression) as a baseline algorithm while others are known to provide state of the art performance (e.g., random forests).
Linear regression (LR) (Bishop, 2011) is among the simplest methods that can be used to explore dependencies amongst features. We assume that the predictive variable (e.g. error rate) can be expressed as linear combination of the features:
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where  represents the input feature vector for a word,  represents the predicted error rate,  is the prediction error and  represents the weights to be learned from the training data.


Feed-forward neural networks (NN) (Bishop, 2011) are among the most efficient ways to model a nonlinear relationship and have demonstrated robust performance across a wide range of tasks. As before, we assume a simple predictive relationship between and :

 .	

In our implementation, , the function to be estimated, is approximated as a weighed sum of sigmoid functions. We have used a network with one hidden layer. The output node is chosen to be linear. Training was implemented the back-propagation algorithm.
A random forest (RF) (Breiman, 2001) gives performance that is competitive with the best algorithms and yet does not require significant parameter tuning. The merits of the RF approach include speed, scalability and, most importantly, robustness to overfitting. A common approach for implementing a random forest is to grow many regression trees, each referred to as a base learner, using a probabilistic scheme. The training process for each base learner seeks the best predictor feature at each node from among a random subset of all features. A random subset of the training data is used that is constructed by sampling with replacement so that the size of the dataset is held constant. This randomization helps ensure the independence of the base learners. Each tree is grown to the largest extent possible without any pruning. 
RFs can also be used for feature selection using a bagging process that is implemented as follows. For one-third of trees in the forest, we generate the training subset using a special scheme: for the kth tree we first put aside one-third of the data from the bootstrap process (sampling with replacement), and label this data out-of-bag (OOB) data. We apply the OOB data to each tree and compute the mean square error (MSE). Next, we randomly permute the value of a specific feature, rerun the OOB data, and compute the difference between old and new MSE. The value of this difference, averaged across all trees, shows the degree of sensitivity to this feature, and can be interpreted as the importance of that variable.
BASELINE EXPERIMENTS
The data used in this project was provided by BBN Technologies (BBN) and consisted of recognition output for the Fisher 2300-hour training set (Cieri et al., 2004). The speech recognizer was trained on 370 hours of SWB. The decoder used was configured to run 10 times faster than real time and was similar to a decoder used for keyword search (Miller et al., 2007). Recognition output consisted of word lattices, which we used to generate 1-best hypotheses and average duration information. 
Though it is preferable to have disjoint training and evaluation sets, because the data available is limited, we used a cross-validation approach. We divided the data into 10 subsets and at each step use one of these subsets as the evaluation set and other 9 subsets as training data. At each step we trained models from a flat-start state using the corresponding training data. After rotating through all 10 subsets, we concatenated the results to obtain the overall estimate of performance. Statistics on both the training and evaluation sets are reported in terms of MSE, correlation and R values. 
We have used two feature selection algorithms to explore which features are most important: sequential feature selection (the function sequentialfs in MATLAB) (Aha & Bankert, 1996) and random forests (the function TreeBagger in MATLAB) (Breiman, 2001). We began with a set of 150 features. We generated 7 subsets of these features as shown in Table 2. Set 1 was generated using sequential feature selection and linear regression with correlation as the criterion function. Set 2 was similar to set 1 except it used MSE as the criterion. Sets 3 and 4 used sequential feature selection with a neural network, with correlation and MSE as criteria. Sets 5 and 6 used a regression tree (built using the MATLAB function RegressionTree.template), with correlation and MSE as criteria respectively. Set 7 used the RF approach previously described. We see in Table 2 that approximately 50 features seems to be optimal but as few as 7 features gives reasonable performance. It also appears the training data is large enough to support these kinds of investigations as the results are well-behaved as a function of the number of features.
A plot of feature importance as determined by the RF algorithm is shown in Figure 5. Count, which represents the frequency of occurrence of a word, is recognized as the most important feature (its removal causes the highest increase in error.) Note that this does not mean that count is the most important feature in predicting the error rate. It simply means that the other features are highly correlated with each other, so removing any one of these does not appreciably reduce the information content in the feature vector.
In Table 3, we present the correlation of the predicted error rates for the acoustic-based features using the K-MEANS/kNN approach previously described. In Table 4, we show results as a function of the number of nearest neighbors for the phonetic‑based distance metric. Though the MSEs are comparable for both methods, the R values are higher for the acoustic-based metric, indicating a better prediction of the error rates. In Table 5, we compare three different classification algorithms as a function of the feature sets. The acoustic‑based metric resulted in an R value of 0.6 on the evaluation set, while the phonetic‑based methods resulted in an R value of 0.5, and the feature‑based methods resulted in an R of 0.7. The RF and NN classification methods resulted in similar R values.
SYSTEM COMBINATION
In order to investigate whether we can build a better predictor by combining different machines, we examined the correlation between predictors. As shown in Table 6, the acoustic-based distance is least correlated with the phonetic-based approach, indicating there could be a benefit to combining these predictors. We have explored combining systems using a weighted average of systems, where optimum weights are learned using particle swarm optimization (PSO) (Kennedy and Eberhart, 1995). The training process for PSO followed the same procedure described previously: the data, in this case word error rates for individual words, is divided into 10 equal subsets. One subset is used for evaluation, the remaining 9 subsets are used for training, and the process is repeated by selecting each of the 10 subsets as the evaluation set. The 9 subsets are used to train 75 different classifiers representing a variety of systems selected across the three approaches (acoustic, phonetic and feature-based). PSO is applied to the predicted error rates produced by these 75 models on the held-out training data (referred to as development data).  The result of this process is a vector representing the optimum weight of each machine. This process is repeated for each of the 10 partitions. The 10 vectors that result are then averaged together to produce the overall optimum weights. These weights are used to combine all 75 machines into a single model. The error rate predictions of this model are then evaluated against the reference error rates measured from the speech recognition output.
In this work we have a linearly constrained problem in which we want to find optimum weights for our classifiers under the constraint that these weights sum to one. We have used Paquet and Engelbrecht (2003) for this constrained optimization problem. In Table 7, we show the results obtained by combining all 75 machines using PSO. These 75 machines are composed of 27 machines that use the acoustic-based approach, 8 machines using the phonetic-based approach and 40 machines using the feature-based approach. We also investigated removing the 8 linear regression machines, reducing the number of systems from 75 to 67. This is shown in the second row of Table 7. The last three columns show the percent that each machine contributes to the overall score.
Acoustic-based and feature-based machines contribute equally to the overall score, and both contribute significantly more than the phonetic-based approaches. In fact, when all 75 machines are pooled, 43 of these machines (57%) have weights that are zero, implying they add no additional information. The 43 machines included 12 from the acoustic-based machines (out of 27), 6 from the phonetic-based machines (out of 8), and 25 from the feature-based machines (out of 40). By manually excluding the 8 linear regression machines performance increases slightly. Prior to using PSO, our best performance was an R value of 0.708. Our best R value with PSO and system combination was 0.761, which is an improvement of 7.5%. Figure 6 shows the predicted error rate versus the reference error rate for the system representing the second row of Table 7, demonstrating that there is good correlation between the two.
SUMMARY 
We have demonstrated an approach to predicting the quality of a search term in a spoken term detection system that is based on modeling the underlying acoustic phonetic structure of the word. Several similarity measures were explored (acoustic, phonetic and feature-based), as were several machine learning algorithms (regression, neural networks and random forests). The acoustic-based and feature-based representations gave relatively good performance, achieving a maximum R value of 0.7. By combining these systems using a weighted averaging process based on particle swarm optimization, the R value was increased to 0.761. 
To further improve these results, we need to find better features. One of the more promising approaches to feature generation involves an algorithm that predicts the underlying phonetic confusability of a word based on inherent phone-to-phone confusions (Picone et al., 1990). We also, of course, need more data, particularly data from a variety of keyword search engines. It is hoped that such data will become available with the upcoming Spoken Term Detection evaluation to be conducted by NIST in 2013. 
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Table 6. The correlation between various classifiers is shown. The acoustic-based distance is least correlated with the phonetic-based approach, indicating there could be a benefit to combining these predictors.
Table 7. Performance improves slightly by combining many predictors using PSO. The acoustic and feature-based metrics contribute equally to the overall result.
TABLES


Method
No. Feats
MSE
(Train)
MSE
(Eval)
All Features / LR/ Corr
150
0.015
0.018
SFS / LR / Corr
55
0.016
0.017
SFS / LR / MSE
54
0.016
0.017
SFS / NN / Corr
12
0.015
0.015
SFS / NN / MSE
14
0.015
0.015
SFS / Tree / Corr
7
0.015
0.020
SFS / Tree / MSE
7
0.016
0.019
RF 
56
0.006
0.014
[bookmark: _Ref216888243][bookmark: _Ref216888236]Table 2. The number of features is shown for different feature selection methods as a function of the mean square error (MSE) on both the training and test sets. Performance for the correlation and MSE criteria was comparable.

Class
Phonemes
Silence
sp sil
Stops
b p d t g k
Fricatives
jh ch sh s z zh f th v dh hh
Nasals
m n ng en 
Liquids
l el r w y
Vowels
iy ih eh ey ae aa aw ay
ah ao ax oy ow uh iw er
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Train
Eval
Set
 K
 k
MSE
R
MSE
R
1
1
1
0.027
0.227
0.027
0.270
1
1
3
0.025
0.340
0.025
0.370
1
1
5
0.024
0.394
0.023
0.425
1
1
30
0.021
0.528
0.020
0.543
1
1
inf 
0.023
0.456
0.022
0.471
1
2
1
0.026
0.293
0.025
0.330
1
2
3
0.024
0.414
0.023
0.444
1
2
5
0.022
0.461
0.022
0.473
1
2
30
0.019
0.569
0.019
0.583
1
2
inf 
0.018
0.601
0.018
0.615
1
3
5
0.022
0.475
0.022
0.497
1
3
30
0.019
0.565
0.019
0.579
1
3
inf 
0.018
0.600
0.018
0.614
1
4
5
0.022
0.477
0.021
0.499
1
4
30
0.020
0.542
0.020
0.559
1
4
inf 
0.019
0.578
0.018
0.595
1
12
5
0.024
0.397
0.023
0.432
1
12
30
0.021
0.503
0.021
0.520
1
12
inf 
0.021
0.519
0.020
0.542
2
2
5
0.024
0.387
0.024
0.407
2
4
inf 
0.020
0.550
0.019
0.568
2
15
inf 
0.021
0.526
0.020
0.551
2
17
inf 
0.021
0.526
0.020
0.551
[bookmark: _Ref216976857][bookmark: _Ref218060319]Table 3. The correlation of predicted error rates with actual error rates is shown for our acoustic distance measure. Performance on the eval set is comparable for sets 1 and 2 for a broad range of parameter settings. The correlation between open set and closed set performance is also good.



Train
Eval
k
MSE
R
MSE
R
1
0.026
0.296
0.026
0.322
3
0.024
0.405
0.024
0.421
5
0.023
0.434
0.023
0.451
30
0.021
0.502
0.021
0.519
50
0.021
0.503
0.021
0.519
100
0.021
0.499
0.021
0.515
300
0.022
0.483
0.022
0.498
 inf 
0.023
0.459
0.022
0.478
[bookmark: _Ref216982062][bookmark: _Ref218060326]Table 4. Results are shown for the phonetic distance algorithm as a function of the number of nearest neighbors used in kNN.











Classifier
LR
NN
RF
Method
Train
Eval
Train
Eval
Train
Eval
All Features / LR/ Corr
0.683
0.618
0.724
0.624
0.895
0.708
SFS / LR / Corr
0.654
0.629
0.753
0.692
0.875
0.701
SFS / LR / MSE
0.654
0.629
0.735
0.686
0.857
0.697
SFS / NN / Corr
0.571
0.573
0.697
0.691
0.776
0.676
SFS / NN / MSE
0.573
0.574
0.697
0.689
0.799
0.679
SFS / Tree / Corr
0.561
0.564
0.674
0.669
0.761
0.659
SFS / Tree / MSE
0.561
0.564
0.674
0.669
0.761
0.659
RF 
0.635
0.604
0.734
0.675
0.882
0.703
[bookmark: _Ref216983797][bookmark: _Ref218060333]Table 5. A comparison of the different classification algorithms as a function of the feature sets is shown. R values are shown (the MSE results follow the same trend). Random forests (RF) give very stable results across a wide range of conditions.



Train
Eval
Relative Contribution
Machines
MSE
R
MSE
R
Acoustic
Phonetic
Feature
All
0.00092
0.913
0.012
0.760
41.1%
10.5%
48.3%
NN+RF
0.00084
0.918
0.012
0.762
44.7%
15.7%
39.5%
[bookmark: _Ref217221738][bookmark: _Ref218060347]Table 7. Performance improves slightly by combining many predictors using PSO. The acoustic and feature-based metrics contribute equally to the overall result.


Acoustic
Phonetic
Feature
Acoustic
1
0.4
0.6
Phonetic
0.4
1
0.7
Feature
0.6
0.7
1
[bookmark: _Ref217185274][bookmark: _Ref218060340]Table 6. The correlation between various classifiers is shown. The acoustic-based distance is least correlated with the phonetic-based approach, indicating there could be a benefit to combining these predictors. 
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