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CHAPTER 1

INTRODUCTION

Speech is a most natural and efficient way to exchange information for human

beings.To make a real“intelligent computer,” it is importantthat themachinecan“hear,”

“ understand,” and “ act upon” spoken information, and also “ speak” to complete the

information exchange. Therefore, speech recognition is essential for a computer to reach

the goal of natural human-computer communication [1].

After more than 40 years of research, many algorithms have been proposed and

implemented for automatic speech recognition. The “pattern-matching” method is one of

the well-studied approaches. In this method, the system stores one or more prototypes

(templates) for each word in the vocabulary, and compares the incoming speech signal

with each of them to find the best-matched one as the recognition result. This approach

involvestwo steps,trainingthetemplateset,andrecognitionof thetestsignalvia apattern

matching method. Figure1 shows a block diagram of such a system.

Thetrainingprocessconstructsa templatefor eachword in thevocabulary. Speech

signals in the training database are first divided into frames of equal length. Then the

acousticfront-endconvertseachframeinto a featurevectorthatcapturesthepropertiesof

thesignalin that frame.Thesefeaturevectorswill beclusteredinto groupsby thepattern

clustering block to form a word model. This process is repeated for every word in the

vocabulary. The concept is that if enough versions of a pattern to be recognized are

included in the training set, the training procedure should be able to adequately
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characterize the acoustic properties of the pattern [2].

The recognition procedure first converts the unknown signal into a sequence of

feature vectors using the same acoustic front-end as the training process. This feature

vector sequence is then compared to each possible word template learned during training

by the pattern matching block. A recognition decision is made based on the goodness of

the match, which is quantified by a distance function between two sequences of feature

vectors, one representing the word model and the other representing the input signal [2].

This approach raises three questions; the fi rst one is how to derive a set of

parameters to represent speech signals in a form which is convenient for subsequent

processing. Linear Predictive Coding (LPC) is a dominant representation method for the

Acoustic
Front-End

Pattern
Clustering

Training Signals

Feature Vector
Sequences

Word Template

(a)

Acoustic
Front-End

Pattern
Matching

Test Signal

Feature Vector
Sequence

a(m)

Recognition
Result

(b)

Word Templates

Figure 1. Block diagram of simplified speech recognition system.
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spectral analysis model of a speech signal. It provides a good model to approximate the

vocal tract spectral envelope of speaking. The method of LPC is mathematically precise,

simple and straightforward to implement in either software or hardware. Also, it works

well in recognition applications [2]. Based on these considerations, we will use an LPC

front-end in this project.

Thesecondquestionis how to generateanefficient andsuccincttemplatefor each

word.Sincethetestsignalwill berecognizedbasedonthedistancebetweenthesignaland

the word templates, the goodness of the templates determines the recogni tion

performance. As we discussed before, a template should contain enough information of

various renditions of the word it represents in order to reduce the error rate.

The last question is how to find a reasonable definition of dissimilarity between a

template and a signal. After all, both the template and the signal are sequences of feature

vectors,sothis problemcanbesplit into two smallerproblems.Thefirst oneis to definea

distance metric between two feature vectors, or the local distance. The second one is to

defineamethodto combinethedistancebetweeneachvectorpair into theoverall distance

betweentwo sequences,or theglobaldistance.Itakuradistancehasbeenprovedto bethe

best distance measurement for LPC signals. Rather than compute the distance between

two vectors directly, it compares the prediction error for a particular speech sample using

these two LPC vectors. In this project, we also implemented the Euclidean distance and

absolutedistance,which arecommonlyusedin engineeringcomputation,to give theuser

a chanceto examinetheir performance.Dynamicprogramming(DP) is usuallyappliedto

solve thesecondproblem.Its applicationin speechrecognitionis known asdynamictime
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warping (DTW), which stretches or compresses signals nonlinearly to achieve the best

matching between them.

Thegoalof thisprojectis to introducetheconceptof speechrecognitionto student

engineers by building a Java-based digit recognition system using the dynamic time

warping technique. One of the key di fficul ties in signal processing courses is the

visualizationof thetheoriesandconcepts.Studentsneedanexamplesystemto helpthem

to understand the theory, to develop their intuition by interacting with an actual system,

and to reinforce what they learned by practice [3]. Combining what we discussed above,

this project resulted in the following two major capabilities:

• DTW match:given a testsignalanda template,the appletshouldbe able to
find the best matching path and associated matching cost. Also, it should be
able to recognize the signal, print out the best matching cost.

• Visualization:to fulfill our educationalgoals, the applet should be able to
synthesize the signal and provide a visualization of the signal, the template,
and the actual matching between them. so that a user can visually compare
them.

Institute for Signal and Information Processing (ISIP) has developed a set of

Java-baseddemosfor courseslikeSignalsandSystems,DSPandPatternRecognition.An

appletfor speechrecognitionwill bea goodcomplementto this demofamily. Thedemos

are available in the public domain at ISIP’s web site: http://www.isip.msstate.edu/.

Another important reason that we chose to implement the system as a Java applet

is that this way morestudentscangetaccessto thesoftware.An appletis a Java program

that runs inside a Java-enabled web browser. Comparing with other commercial software

like Matlab, Visual C++, Visual Basic, etc., Java has a number of advantages:
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• Portability. Java is totally platform-independent.The only thing that the user
will need is a Java-enabled web browser.

• Java is free! A numberof studentsdo not have hundredsof dollars to buy a
copy of Matlab or VC.

• Convenientaccess.The usereven doesnot needto keepa local copy of the
appletin their machine.Only typein theaddressof theapplet,andwait for the
applet to show up without installing and running it locally.

The report is organized as follows: chapter 2 describes a linear prediction method

for generatingfeaturevectorsfrom speechsignals.Severalmethodsfor computing , the

distance between two frames, are described using the LPC representation. Chapter 3

describes the training process that builds the word templates. Chapter 4 introduces the

dynamicprogrammingalgorithmandit’sapplicationin speechrecognition:DTW, i.e., the

algorithm to compute the dissimilarity of two feature vector sequences. Chapter 5

describes the design and implementation details of the applet, and chapter 6 gives a brief

summary of this project. The source code and a tutorial for the applet are included at the

end of this report.

d f

D
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CHAPTER 2

LINEAR PREDICTIVE CODING

A typical speechsignalis ananalogsignalwhich varieswith time.We use to

denoteananalogspeechsignalfunction.Part of figure2 shows a portionof a spoken

vowel sound. To process the signal by digi tal means, i t is necessary to sample the

continuous-time signal into a discrete-time signal, and then convert the discrete-time

continuous-valued signal into a discrete-time, discrete-valued (digital) signal [5]. The

digitizedsignalis shown in part of figure2, which is denotedas . Theproperties

of a speech signal change relatively slowly with time, so that we can divide the speech

signalinto asequenceof un-correlatedsegments,or frames,andprocessthesequenceasif

eachframehasfixedproperties.Underthisassumption,wecanextractthefeaturesof each

frame based on the samples inside this frame only. And usually, the feature vector will

replace the original signal in further processing, which means the speech signal is

converted from a time-varying analog signal into a sequence of feature vectors. Linear

predictive coding is one of the most powerful techniques for estimating basic speech

properties, such as pitch, formants and spectra [4]. In this chapter, we will discuss the

procedure of deriving the linear prediction coefficients from the speech signal, and the

distance measurement between two LPC vectors. Because of the short time processing

assumption,thediscussionin this chapterwill berestrictedto oneframeof speechsignal.

As shown in part of figure2, speechsamplesinsidethis frameareindexedby , and

range from  to .

s t( )

a( )

b( ) s n( )

c( ) n

s 0( ) s N 1–( )



7

2.1.Linear Predictive Modeling for Speech Signal

The basic idea behind the LPC model is that a speech sample can be

approximated as a linear combination of the past speech samples , ,

, , such that

(2.1)

If we define the predicted sample for  as , then

(a) (b)

(c)

Figure 2. Speechsignal: (a) analogsignal s(t), (b)
digital signal s(n), (c) a frame of s(n).

s(0)

s(1)

s(2) s(3)

s(4)

s(5)

s n( )

p s n 1–( ) s n 2–( )

… s n p–( )

s n( ) aks n k–( )
k 1=

p

∑–≈

s n( ) ŝ n( )
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, (2.2)

where the terms define the predictor coefficients of this

frame. Taking the -transform for both sides, we get the system function of the predictor

as

(2.4)

And the prediction error for sample  is defined as

, (2.5)

where .

The objective of l inear predictive analysis is to determine a set of which

minimize the total squared error, which is defined as

. (2.6)

where  and  define the index limits over which error minimization occurs.

ŝ n( ) aks n k–( )
k 1=

p

∑–=

ak– k, 1 2 … p, , ,=

z

P z( ) akz
k–

k 1=

p

∑–=

s n( )

e n( ) s n( ) ŝ n( )– s n( ) aks n k–( )
k 1=

p

∑+= =

aks n k–( )
k 0=

p

∑=

a0 1=

ak–

E e
2

n( )
n n0=

n1

∑=

aks n k–( )
k 0=

p

∑
2

n n0=

n1

∑=

ai
j 0=

p

∑ s n i–( )s n j–( )a j
i 0=

p

∑
n n0=

n1

∑=

n0 n1
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If we define

, (2.7)

equation (2.6) can be simplified as

. (2.8)

We solve the minimization problem by taking the partial differential of with

respect to , and setting to zero. Therefore, from equation (2.8), we get:

. (2.9)

Since , (2.9) can be extended as

. (2.10)

In this equation, are determined by

equation (2.7), which only involves samples from to , so that the

unknown predictor coefficients can be obtained by solving the set of l inear

functions [6].

Two specific cases of the selection of and have been investigated in detail,

they are referred to as the autocorrelation method and the covariance method. We use the

former one in this project.

φ i j,( ) s n i–( )s n j–( )
n n0=

n1

∑=

E ai
j 0=

p

∑ φ i j,( )a j
i 0=

p

∑=

E

ak k, 0 1 … p, , ,=

ak∂
∂

E 0 2 aiφ i k,( )
i 0=

p

∑= = 0 k p≤ ≤

a0 1=

φ 0 k,( ) aiφ i k,( )
i 1=

p

∑+ 0= 1 k p≤ ≤

φ i j,( ) i, 0 1 2 … p j, , , , , 0 1 2 … p, , , ,= =

s n( ) n n0 p–= n1 p

ak{ } p

n0 n1
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Thecovariancemethodis definedby setting , and , sothatthe

total prediction error is minimized over the interval , and all samples are

involved in the calculation of . Please refer to [6] for more detai l about the

covariance method.

The autocorrelation method is defined by setting , and , and

defining , for and . Under this condition, can be simplified

as

. (2.11)

Replacing  with , (2.10) leads to

. (2.12)

The matrix form of (2.12) is

, (2.13)

where , , and .

n0 p= n1 N 1–=

p N 1–,[ ] N

φ i j,( )

n0 ∞–= n1 ∞=

s n( ) 0= n 0< n N≥ φ i j,( )

φ i j,( ) s n i–( )s n j–( )
n ∞–=

∞

∑=

s n( )s n i j–+( )
n ∞–=

∞

∑=

s n( )s n i j–+( )
n 0=

N 1– i j––

∑=

r i j–( )=

φ i j,( ) r i j–( )

r k( ) ai r⋅ i k–( )
i 1=

p

∑= 1 k p≤ ≤,

r R a⋅=

r

r 1( )
r 2( )
…

r p( )

= R

r 0( ) r 1( ) … r p 1–( )
r 1( )
…

r 2( )
…

… r p 2–( )
… …

r p 1–( ) r p 2–( ) … r 0( )

= a

a1

a2

…
ap

=
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And from (2.13), we can get the solution of the linear predictive coefficients:

, (2.14)

Usually, is called the LPC vector of a frame of speech

signal. In this project, speech signals will be converted into sequences of LPC vectors by

the acoustic front-end block of figure 1 before further processing.

2.2.Distance Measurement

From chapter 1, we know that pattern matching recognition is based upon the

comparison of two frames. Therefore, a proper distance metric between two LPC vectors

is important for this approach to speech recognition.

Weuse to denotethedistancebetweenframesof speechsignalwith LPC

parameter sets , and . Since is a

distance measure, we require that:

1. ,

2. ,

3. .

Any function that meets the above properties is a legitimate metric on the vector

space. Therefore, there are many metrics, each having i ts own advantages and

disadvantages. Usually we use particular cases of the Minkowski metric in engineering

computations. The Minkowski metric of order  between frame  and  is

a R
1–

r⋅=

a 1 a1 a2 … ap, , , ,[ ]T
=

d f a b,( )

a 1 a1 a2 … ap, , , ,[ ]T
= b 1 b1 b2 … bp, , , ,[ ]T

= d f

d f a b,( ) 0≥

d f a b,( ) d f b a,( )=

d f a b,( ) d f a c,( ) d f c b,( )+≤

s a b
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. (2.15)

The ones we will use in this project are

• The  or city block metric,

. (2.16)

• The  or Euclidean metric,

. (2.17)

If the vectors are defined in an orthonormal space, then the Euclidean distance

between two vectors conforms exactly to the “natural” distance between them. However,

the LPC space is not orthonormal; parameters are highly correlated. So the unweighted

Euclidean distance and absolute distance are not appropriate here [1].

Themostfrequentlyuseddistancemeasurementfor LPC vectorswasproposedby

Itakura in 1975 [8]. To understand this distance measurement, let’s look at this problem

from another point of view. In the last section, we know that for a segment of speech

signal , if we use LPC vector  to model the signal, the prediction error will be

. (2.18)

In matrix form, this equation is

, (2.19)

ds a b,( ) ak bk–
s

k 1=

p

∑s≡

l1

d1 a b,( ) ak bk–
k 1=

p

∑=

l2

d2 a b,( ) ak bk–
2

k 1=

p

∑2≡

s n( ) a

E ai
j 0=

p

∑ φ i j,( )a j
i 0=

p

∑=

E a
T

R a⋅ ⋅=
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where .

In the paper of [8], Itakura explained the maximum likelihood method to estimate

the set of parameters given the signal . Using equation 2.5 as the hypothesize

model specified by LPC vector , the maximum value of the l ikel ihood function is

proportional to the prediction error, which is

, (2.20)

where is the signal , and is a constance. Let’s assume

that  is the maximum likelihood estimate of , and define

. (2.21)

Since is the best estimate of , if the model defined by is close to the actual

process which generates , then is close to , and is close to zero, otherwise,

is significantlylarge.In this sense, canberegardedasa distancemeasure

between  and the model specified by equation 2.5 [8].

Now let’s come back to the problem of measuring the distance between LPC

vector and . Both of these two vectors refer to a segment of speech signal. If we

considerthesignalthat refersto as , anduseboth and to modelthissignal,then

is the one that results in maximum value of likelihood, and function

R

r 0( ) r 1( ) … r p( )
r 1( )
…

r 2( )
…

… r p 1–( )
… …

r p( ) r p 1–( ) … r 0( )

r 0( ) r
T

r R
= =

a s n( )

a

L* S a( ) N 2⁄( ) a
T

R a⋅ ⋅( )log– C+=

S s 1( ) s 2( ) … s N( ), , ,{ } C

â a

d S a( ) a
T

R a⋅ ⋅
â

T
R â⋅ ⋅

---------------------log=

â a a

S â a d S a( )

d S a( ) d S a( )

S

a b

a S a b a
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(2.22)

is the distance between signal and , or between and . We re-write the left

part as , equation 2.22 comes to

, (2.23)

and this is called the Itakura distance.

d S a( ) b
T

R b⋅ ⋅
a

T
R a⋅ ⋅

---------------------log=

S b a b

d a b,( )

d a b,( ) b
T

R b⋅ ⋅
a

T
R a⋅ ⋅

---------------------log=
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CHAPTER 3

TEMPLATE TRAINING

As described in chapter 1, using the pattern-matching technique to solve the

speech recognition problem, the input speech signal is compared with the model of each

word by measuring the dissimilari ty between them. Chapter 2 has described l inear

predictive coding and how to measure the distance (dissimilarity) between two LPC

vectors. In this chapter, we will discuss the problem of how to obtain the set of acoustic

models, in other word, the training problem.

The objective of training is to create a consistent and succinct template for each

word which appears in the vocabulary. A trivial idea is to use an utterance for each word

spokenby onepersonastheprototypeset.Thisapproachfailsbecauseit makesnoattempt

to estimate the pattern variabi l i ty [2]. For speaker-independent speech recognition,

template training is required in order to achieve high word recognition accuracy for

practical tasks. In this paper, the terms acoustic model, prototype, template and reference

pattern are interchangeable.

3.1.Vector Quantization

Quantization is used to approximate continuous amplitude signals by discrete

signals, so as to reduce the data redundancy [10]. 1-dimensional signal quantization is

called scalar quantization. If the signal is multi-dimensional, the joint quantization of all

dimensions is cal led as vector quantization (VQ). Figure 3 shows an example of
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2-dimensional vector quantization. The space is partitioned into 4 cells, vectors falling in

thesamecell arehighly similarunderthedistancemeasurementchosenfor therecognizer

design. We use the centroid value of that cell as the quantized value of these vectors.

A vectorquantizeris usuallytrainedby a largedataset.After thetrainingprocess,

we get a codebook containing the centroid value of each cell. In a speech recognition

application, for each word in the vocabulary, we perform this training procedure, and

catenate codewords to form the template for this word. The performance of a quantizer is

measuredby theaveragedistortion.Supposeanoriginalvectoris , thequantizedvalueis

, and associated quantization distortion is . Then the average distortion is

Figure 3. Partitioning of 2-dimensional space into 4 cells.

x

z d f x z,( )
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, (3.1)

where  is number of training vectors.

3.2.Training Database

Themajorconcernof VQ is to find thesetof codewords.As mentionedin thelast

section, this goal is usually achieved by training on a large database. Once the training

data set is large enough, we say the result is optimal.

We used the TI digi ts database as the training database. This database was

collected by Texas Instruments via telephone lines, and includes over 100 speakers. The

part of training signals that we used in this project is the male-subset. There are 20

speakers, each having two renditions for one word, one in increasing intolerance, and the

other in decreasing intolerance. For each word we have 38 to 40 training signals, and the

length of these training signals ranges from 60 frames to 120 frames.

3.3.K-means Algorithm

Suppose for one word in the vocabulary, we have training signals, each with

length , where is notnecessarilyto beequalto when . Weuse

to indicate the total number of vectors in all these  signals, that is

. (3.2)

D
1
N
---- d f xi zi,( )

i 1=

N

∑=

N

N

L1 L2 … LN, , , Li L j i j≠ L

N

L Li
i 1=

N

∑=
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We also assume that each template has states. The training goal is to classify

these vectors into groups. The centroid of each group will be represented using ,

where . Catenatingthe together, we getthetemplatefor this word.The

K-means algorithm is a simple but powerful classification algorithm for performing

unsupervised training. The procedure is:

1. Initialization:Arbitrarily choose vectorsastheinitial setof codewordsin the

codebook.

2. Nearest-Neighbor Search: For each training vector, find the codeword in the

current codebook that is closest, and assign this vector to the corresponding class.

3. Centroid update: Compute the centroid of the training vectors in each class and

use these new values to form the updated codebook.

4. I teration: Repeat steps 2 and 3 unti l the average distortion fal ls below a

pre-determined threshold.

Repeating this procedure for al l words in the vocabulary, we get a complete

template set.

In thisproject,thetemplatefor eachwordcontains33states:11statesfor theword

itself, surrounded by a silence model state on each side of the word.

M

L M zi

i 1 2 … M, , ,= zi

M
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CHAPTER 4

DYNAMIC TIME WARPING ALGORITHM

Many algorithms are currently used for searching a best matching path between

two signals. Some of the more successful techniques include hidden Markov models

appliedat boththephonemeandat theword level. However, dynamicprogramming(DP)

remainsthemostwidely usedalgorithmfor real-timerecognitionsystems.It is considered

sufficiently mature to solve sequential decision problems. Silverman and Morgan gave

detaileddescriptionof thehistoryof theapplicationof DP in speechrecognitionin [9]. In

this chapter, we will look at the general concept of dynamic programming first, then

dynamictime warpingasanapplicationof DP in speechrecognitionwill beintroducedin

detail.

4.1.Problem Definition

Because of di fferent accents, speaking styles of individual speakers, etc.,

waveforms of one word may have a lot of differences. Even spoken by the same speaker,

differences still exist because of speaking rate, loudness and stress. Some patterns may

have a longerdurationandhigheramplitude;othersmaybeshorterandweaker. Parts

and of figure 4 show two repetitions of the word “speech.” Comparing these two

signals,phones , and of signal1 areshorter, andphone is longer, aspart of

figure 4. Here, we use a dotted line to show signal 1, and a solid line to show signal 2 so

that they can be distinguished in the same plot. The problem of comparing these two

a( )

b( )

s p ch iy c( )
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signals as they are is that their lengths are not the same. From chapter 2, we know that a

speech signal can be represented by a sequence of feature vectors. Let’ s use

to indicate signal1, and to indicate signal 2.

Thelengthsof thesetwo signalsmaynot bethesamesothat doesnot necessarilyequal

to . A simple normalization scheme is to extend the shorter signal linearly to the length

of thelongerone.Let’sassumethat , anduse to denotethedistancebetween

signal  and , which can be computed as

a a1 a2 … aI, , ,{ }= r r1 r2 … rJ, , ,{ }=

Figure 4. Comparisonof differenttimenormalizationsfor theword“speech.”

(a) (b)

(c) (d)

(e)

Signal 1 Signal 2

s p iy ch s p iy ch

I

J

J I< D r a,( )

r a
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, (4.1)

where  denotes the distance between frame and .

The result of this linear time normalization alignment is shown as part of

figure 4. It assumes that the speaking rate is proportional to the duration of the utterance,

and is independent of the sound being spoken. But from the plot of signal and , we

know that this assumption may not model the real situation of speech utterance. A good

normalizationschemeshouldchangethedurationof onesignalaccordingto thecharacters

of the other signal, to achieve a reasonable matching between them, so that the distance

can be minimized. Part of figure 4 shows a nonlinear time normalization

example.We canseethatthepartsof , and of signal1 areextended,andpart is

compressed [2].

4.2.Dynamic Programming

Dynamic programming is commonly used to solve sequential decision problems.

The nonlinear matching described in the last section is usually performed in a grid plane

as shown in figure 5. As defined in section 4.1, the signals to be matched are and . In

the grid plane, signal is aligned along the -axis, and signal is aligned along the

-axis. Each intersection in this plane is defined as a node, where node means

matching frame of signal with frame of signal . The node is called the

original node, which is a dummy node that all paths start from. The cost associated with

D r a,( ) d f ri' ai,( )
i 1=

I

∑= i'
J
I
-- i×=

d f r j' ai,( ) r j ai

d( )

r a

D r a,( ) e( )

s p ch iy

a r

a x r

y i j,( )

i a j r 0 0,( )
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this matching is defined as the frame distance between feature vectors and

, which was discussed in chapter 2. The cost at node is defined to be zero,

which is

. (4.2)

A path is defined as the catenation of node pairs , which

means extending from node to node . Here we use to indicate the

index of signal at time , and is theindex of signal at time . A pathwhich starts

f rom node and ends at node has an overal l cost, which means the

accumulated cost from the starting point of this path until it meets node . We use

 to denote this type of cost, and it is defined as

d f i j,( ) a i( )

r j( ) 0 0,( )

d f 0 0,( ) 0=

ik 1– jk 1–,( ) ik jk,( )→

ik 1– jk 1–,( ) ik jk,( ) ik

i

j

I1 2 3 4 5 60
0
1

2

3

4

5

J

Figure 5. Thegrid planeto illustratedynamicprogramming.

a k jk r k

0 0,( ) ik jk,( )

ik jk,( )

D ik jk,( )
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. (4.2)

Since node  is the dummy starting node for all paths, we define

. (4.3)

Tracing the right part of equation (4.2) back to , we get

. (4.4)

The problem can be wri tten as finding a sequence of nodes which

minimizes the accumulated cost for a complete path ending at node:

. (4.5)

In this equation, .

4.3.Dynamic Time Warping

As discussed in chapter 1, the pattern matching method in speech recognition is

usedto measurethedistancebetweenthetestsignalandall of thetemplates,andthenpick

thetemplatewith smallestdistance.Theword thatthis templaterefersto is therecognition

result. Therefore, the recognition problem can be simpli fied as finding the distance

between a signal and a template. From section 4.1, we know that the challenge of this

problemis thediversityof thespeakingbehavior of humans.Thedifferencesimporteddue

to speaking rate, style or accents etc., should not affect the recognition result. The

D ik jk,( ) D ik 1– jk 1–,( ) d f ik jk,( )+=

0 0,( )

D 0 0,( ) 0=

k 1=

D ik jk,( ) d f im jm,( )
m 0=

k

∑=

ik jk,( )

I J,( )

D
*

ik jk,( ) min D ik 1– jk 1–,( )[ ] d f ik jk,( )+=

min d f im jm,( )
m 0=

k

∑=

ik jk,( ) I J,( )=
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discussion of the last section indicated that dynamic programming can be used to find a

nonlinear matching path between the test signal and the template, so that the distance

between them is minimized. This application of dynamic programming is called dynamic

time warping.

Dynamic time warping uses the same grid plane of figure 5 to define the search

space.Here,signal is thetestsignal,and is thetemplatesignal.Wewill searchfor the

best path along the index of the test signal. As the specific appl ication of dynamic

programming in speech recognition, DTW applies particular constraints to the problem

according to a priori information known about the speech signal, and these constraints

define how abruptly the time-scale of one signal can be changed relative to the other

signal. The paths of the search space which are considered unreasonable are pruned [1].

The commonly-used constraints will be discussed in the following subsections.

1. Endpoint Constraints

a r

(I,J)

(1,1)

(0,0)
i

j

I

J

Figure 6. The ending-point constraints.
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Startingpointconstraint:thefirst frameof thetestsignalmustbematchedwith the

first frame of the template signal:

. (4.6)

Endingpoint constraint:thelast frameof thetestsignalmustbematchedwith the

last frame of the reference signal

. (4.6)

Under these constraints, a typical matching path would look like the curve in

figure6.

2. Continuity and monotonicity constraints:

The continuity constraint states that there is no “breaking” point in a path, which

means

. (4.7)

In other words, the matching must be made along the axis of the test signal one

frame after another.

The monotonici ty constraint requires vectors of a word to be clustered in

monotonically increasing order, which means

. (4.8)

Figure 7 is an example of non-monotonic matching. The signal of “pest” is listed

alongx-axis,and“pets” is listedalongy-axis.Thephonemesetsof boththewords“pets”

and “pest” are . Without monotonicity constraints, these two signals can be

i1 j1,( ) 1 1,( )=

ik jk,( ) I J,( )=

ik ik 1–– 1=

jk jk 1–– 0≥

p eh s t, , ,{ }
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matched along the solid line, which gives the incorrect information that these two signals

are similar.

3. Global Path Constraint

This constraintis usedto restricttheextentof compressionor expansionof speech

signals over long ranges of time. The variation of the speaking rate of human beings is

considered to be limited in a reasonable range, which means that we can prune the

unreasonablesearchspace,andlimit thesearchto the“legal” region.Thecommonly-used

global path constraints is shown in figure 8.

Here the search region is limited by four straight lines whose slopes are and

, andpassthroughnode and . Theshadow areais thelegal searchregion.

p

p

eh s t

eh

t

s

Figure 7. Non-monotonic matching between “pest” and “pets”.

s

1 s⁄ 1 1,( ) I J,( )
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4.4.DTW Algorithmic Details

In this section, we will develop the DTW algorithm which will be used in this

project. First of all, let us define the variables and search space which will be used in the

algorithm development.

Thisalgorithmshouldtake theLPCvectorsequenceof thetemplateandtestsignal

as input, and the output should be the matching path and the accumulated cost associated

with the path. We need two arrays to store the template and test signal. Also we need to

storethepathandcost.Let’s use to denotethe componentof the

frameof thetemplate,where , and is theorderof theLP coding.Therangeof

is from to . Also is the componentof the frameof thetestsignal,

(I, J)

(0, 0)

slopes

slope1/s

“Legal”
search region

(1,1)

Figure 8. The global path constraints.

template j[ ] k[ ] k
th

j
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0 k p≤ ≤ p

i 1 J test i[ ] k[ ] k
th

i
th
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and rangesfrom to . We usefigure9 asthesearchplane.In thefigure,eachcolumn

reflectsa frameof testsignal,andeachrow reflectsa frameof template.An intersectionis

apossiblenodein thepath,wherenode meansframe of testsignalis matchedwith

frame of the template, and the accumulated cost for the path going through node

will bestoredin . Everynodein column is apossiblepredecessorof node

. We store the choice of predecessor for each node, so that the path can be obtained

by tracingfrom theendingpoint to thestartingpoint.Thevalueof is

the index of the template of the chosen predecessor of node.

Now let’s develop the algorithm. According to the endpoint constraints, all paths

start from node ; this means , for .

j 1 I

i j,( ) i

j i j,( )

cost i[ ] j[ ] i 1–

i j,( )

1 2 3 4 5 I

i
1

2

3

4

J

j

Figure 9. The search space of DTW.
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6

predecessor i[ ] j[ ]

i j,( )

1 1,( ) predecessor 2[ ] j[ ] 1= 1 j J≤ ≤



29

To satisfy the global path constraints, the nodes to be examined are restricted to a

certain range. From figure 8, we know that the upper boundary of the value of the

index is defined by the value of the  index:

, (4.9)

and the lower boundary is:

, (4.10)

where  is the slope which defines the constraints.
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A nd f or node , a sl ope of val ue means that i f

, then node i s not a l egal predecessor.

Combiningtherequirementof monotonicityconstraints,thechoiceof predecessorsshould

also satisfy equation 4.8. Figure 10 shows the possible predecessors for node for

.

As we discussed in previous sections, at each node , the DTW algorithm

computes the accumulated cost of the paths coming from all possible predecessors. Pick

out the one with minimum cost, and store the index of the template frame of that

predecessor in , and store the accumulated cost in . After

the computation for all frames of the test signal, the algorithm traces back the path from

node to node . Star t i ng f rom and , the val ue of

is theindex of thetemplateframefor column . Thismeansnode

is the predecessor node of node , and it will be stored

in array . The process repeats unti l node ; then array wil l be

reversed to form the ordered sequence of indices for the template frames. The procedure

of this forward-DTW and backtracing algorithm is shown in figure 11.

i j,( ) s

predecessor ik s–[ ] jk s–[ ] j= ik 1– j,( )

i j,( )

s 2=

i j,( )

predecessor i[ ] j[ ] cost i[ ] j[ ]
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1. Initialization: cost ,

.

2. Search for best path:

for ,

,

.

for

for

if

continue

else

compute

next

.

.

next

next

3. Back trace:

,

for ,

next

reverse

1[ ] 1[ ] d f 1 1,( )=
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Figure 11.The forward-DTW and backtracing algorithm.
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CHAPTER 5

SOFTWARE DESIGN AND IMPLEMENTATION

As mentionedin Chapter1, thegoalof thisprojectis to build aneducationaldemo.

It requiresthattheusersshouldbeableto choosedifferentsignals,distancemeasurements

and constraints. More importantly, the system should be able to give the user a clear idea

what the signal “ looks like,” what the grid path looks like, and the comparison of the

frames that are matched together. Also, the user would want to listen to the test signal,

since we are dealing with speech signals. To fulfi l l these requirements, this applet is

designed to contain two major parts. The first part is the core computation part, which is

the search engine for the best matching path. The other part is the user interface. We use

the spectrogram, energy plot and waveform to display the selected signals. There are six

panels in the applet:

• MenuPanel-- designedto controlthewholeapplet,from whichusercanselect
different signals, templates and compute modes;

• TestSignalPanel-- usedto show thespectrogram,energy plot andwaveform
of a selected test signal;

• TemplatePanel-- usedto show thespectrogramandenergy plot of a selected
template;

• GridpathPanel-- usedto show thematchingpathfor aselectedsignal-template
pair;

• WarpedOutputPanel -- usedto show the spectrogramof a warpedtemplate
after DTW matching;

• ProcessDescriptionPanel-- usedto describethe procedurethat the appletis
working on, and to show the matching score and recognized result.
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The applet layout is shown in Figure 12.

There are 13 classes involved in this recognition system:

1. MainMenu

This class is the main control of the whole applet. From this class, the user can

select different templates and test signals from a pull-down menu. The “Models” menu

provides 11 templates that are used in this recognition system, and the “Signal” menu

providesonetestsignalfor eachword.Theusercanalsouse“From File” to input theURL

of the ideal signal, and “Select Signal” to choose from a database of 1210 choices. Users

can choose different constraints and distance measurements from related menu. In the

MainMenu

Grid Path Panel

Process Description Panel

Figure 12.Applet layout.

Template Panel

Signal Panel

Warped Output Panel
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“Edit” menu,the“Scaling” allowstheuserto specifythedisplayregion they areinterested

in, and “Reset” will set the display region to the original value.

2. lpcData

This class is used to represent a linear predictive coded speech signal. It reads in

the signal f rom an ASCI I fi le, and stores i t as a sequence of LPC vectors in a

2-dimensional array.

3. match

This class is the computational core of the applet. After selecting the signals, the

distance measurement, and the slope for global path constraints, it searches the least cost

matching path using the dynamic time warping algorithm. After this forward-searching

procedure, the backTrace() method will trace the path from the matrix which stores the

index of thepredecessorfor eachnodeto form thepatharray. Thisresultwill besentto the

PathPanel class to draw the path in a grid pane.

4. PathDrawingPanel

This class is used to draw the best path after searching. It accepts a path which is

an 1-dimension integer array and draws the path by connecting adjacent nodes together.

5. PathPanel

This class applies a title frame to the PathDrawingPanel.

6. SpectrumDrawingPanel

Thisclassis usedto draw thespectrogramfor aselectedsignalor template,andfor

the warped template. It accepts a signal represented as a sequence of linear prediction

coefficients, computes the energy for each frequency internal of each frame, maps the
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energy valueto a color, anddraws a rectanglefor it. Connectingthecolor cellstogether, a

spectrogram for the signal is drawn. There are six methods involved in the spectrogram

drawing process: attachData() is used in accepting the signal to be drawn; attachPath() is

used to accept a warping path so that the normal ized template can be obtained by

concatenating the frames from the template according to the path; computeSpectrum() is

used to compute the energy spectrum for the attached signal; drawVerticalSpectrum() is

usedto draw a spectrogramwhosetime index is setalongthey-axis.This methodis used

to draw thespectrogramof selectedtemplates.drawHorizontalSpectrum()is usedto draw

a spectrogram whose time index is set along the x-axis, and i t’s used to draw the

spectrogram for a selected test signal. drawWarped() is used to draw the spectrogram for

the normalized template according to the warping path.

7. EnergyDrawingPanel

This class is used to draw the energy plot for a selected test signal and template.

Like the SpectrumDrawingPanel class, this class accepts a signal represented as a

sequence of linear prediction coefficients. It computes the energy for each frame, and

draws the energy plot as a function of time. There are four methods involved in the

drawing process:attachData()is usedin acceptingthesignal,computeEnergy() is usedto

get the energy amplitude for each frame, drawVertical() is used to draw the energy plot

along the -axis, and drawHorizontal() is used to draw the energy plot along the -axis.

8. WaveformDrawingPanel

This class is used to draw the waveform for a selected test signal which has an

associatedaudiofile. It first readsin thesignalfrom a“.au” file, andstoreseachsampleas

y x
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a 16-bit integer, then draws the signal by connecting adjacent samples.

9. SignalPanel

Thi s cl ass i s used to di spl ay a sel ected test si gnal whi ch contai ns a

SpectrumDrawingPanel, a EnergyDrawingPanel and a WaveformDrawingPanel.

10. TemplatePanel

Thi s cl ass i s used to di spl ay a sel ected templ ate whi ch contai ns a

SpectrumDrawingPanel and a EnergyDrawingPanel.

11. WarpOutputPanel

This class is used to display the normal i zed template which contains a

SpectrumDrawingPanel.

12. ProcessBox

This class is used to type out the matching cost for the selected test signal and

template,or to tell theusertherecognitionresult.It alsoprintsout thematchingcondition,

including the distance metric and selected slope.

13. SignalChooser

This class is used to provide a window for the user to choose test signal from a

database.
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CHAPTER 6

SUMMARY

In this project, we defined several fundamental problems in automatic speech

recognition. We choose linear prediction as a representation for the spectrum of a speech

signal, and generated a template set using the -means clustering algorithm. Next, we

useddynamictimewarpingalgorithmto searchfor theleastcostmatchingpathbetweena

test signal and a template. The system was implemented as a Java applet. The applet

allows theuserto selectdifferenttestsignals,choosemodels,distancemeasurementsand

constraints. The user can configure the applet to compute the matching score between a

selected test signal and template, or to recognize an unknown signal. The applet also

allows the user to compare performance between different distance measurement and

constraints. We have tested the applet using the TI digits database. The test data set

contains1210signals,which doesnot have overlappingwith thetrainingsetthatwe used

to generate the template set. The word error rate is as low as 9.7%, comparing with only

431 training signals, this error rate is very low. Besides, the applet provides spectrogram,

energy plot and waveform drawing functions to the signals, and graphical result display,

which helps the user to understand what is going on. The applet was implemented on

JDK 1.2. We used Java Swing to implement the GUI, which is 100% pure Java. The look

and feel of the applet is now platform independent.

During the development of this project, we also gained a comprehensive

understanding of the theory involved in a DTW speech recognition system. Besides the

k
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dynamictimewarpingalgorithm,wealsoexaminedlinearpredictionmodelingandvector

quantization. Furthermore, we visualized these theories using this tool. This project is a

good beginning to the development of tools for a fundamental of speech recognition

course.It servesanicecomplementto otherspeechrecognition-specifictoolsavailableon

the ISIP web site.
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APPENDIX

Source Code

Please refer to http://www.isip.msstate.edu/projects/speech/education/demos/util/

dynamic_time_warping/src/v2.0/ for detail.
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APPENDIX

Tutorial

This documentis meantasa tutorial for thefirst-timeuser. In this tutorial we walk

theuserthroughthedifferentfeaturesof theappletwith hands-onexamples.In doingthis,

we try to revealall of thefeaturesof theapplet.We releasethis versionof thesoftwarein

hopes that it will be beneficial to its users.

STARTING UP

The first thing the user needs to do is to start the applet from our web site http://

www.isip.msstate.edu/projects/speech/education/demos/dynamic_time_warping/. You

could also download the source code from http://www.isip.msstate.edu/projects/speech/

education/demos/util/dynamic_time_warping/v2.0/ and compile it yourself. At this point

in the tutorial we will assume that you can access the applet and that you have started it.

Once the applet has loaded, you will see the following screen:
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This screenhasbeenpartitionedinto aMenuarea,aGrid Pathpanel,aTestSignal

panel, a Model panel, a Warped Output panel and a Process Description panel. All the

elements have been enclosed in separate rectangular border for clarity.

The menu items are used to choose a model, a test signal to recognize, a path

constraint or a distance measurement; also, you can scale the display range for signals.
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The Model panel displays spectrogram and energy plots for a selected acoustic

model.

The Test Signal panel draws the spectrogram, energy plot and waveform for a

selected test signal.

The Warped Output panel draws spectrogram for warped model.

The Grid Path panel shows the matching path between a selected model and test

signal.

The Process Description panel tells the user what the applet is working on, the

matching cost and recognition result.

CHOOSING THE SIGNAL AND MODEL

Thefirst stepin usingthis tool is to decidewhich testsignalyouwantto recognize.

Click onSignal, and you will see that there are three ways to specify the test signal:
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From top to bottom, we have From File, Select Signal and a small list specifying

“One -- Male”, “Two -- Male”, etc.

1. TheFrom File choice will bring you this input window:

If you have a signal in the proper format, you can type the URL of the file in the

text field. By clicking the “Submit” button, the system will read in this file, and use it as

the test signal. The “Cancel” button will cause you go back to the main screen.

2. TheSelected Signal choice will bring you this window:
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You can choose a signal from the list, and click “Select” to confirm your choice.

The “Play” button gives you a chance to listen to the chosen signal before making a

decision. Also, the “Cancel” button will let you return to the main screen.

3. The limited signal list. This is the simplest way to specify your choice. The

systemhasalreadyintegratedonetestsignalfor eachword in thevocabulary, andlists the

name of each under the choice of Selected Signal. Clicking one of them brings it to the

front stage.

In this tutorial we will use signal 5, so select “Five -- Male” now. If you see the

following screen, then you did the right thing:
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Thenext thing you maywantto do is to specifya model.This systemwasbuilt to

recognize 10 digits plus the word “Oh” as an alternative for “ zero.” The menu choice

Modelsgivesyouacompletelist of thetemplatesthatareusedin thissystem.Clicking on

one of them allows you specify the template that you want to use.

In this tutorial we will use model 4, so select “Four” from Models now, and you

should see this:
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SPECIFY PARAMETERS

Selecting constraint and distance measurements can be done by cl icking the

Constraint andDistance menus.
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The applet provides three alternatives for global path constraints: None, Slope 2 -

1/2 and Slope 3 - 1/3. It alsoprovidesthreedistancemetrics:Itakura Distance, Euclidean

Distance and Absolute Distance. Let’s use the default values in this tutorial, which are

None for Constraints andItakura Distance for Distance.

At this time,you have alreadyselecteda testsignalandmodel,andhave specified

the constrai nt and di stance metr i cs, so you are on the way to seei ng what

dynamic-time-warping is.

INVOKING THE TOOL

This system provides two process modes:

• The “Compute” modewill give you the matchingbetweenthe selectedtest
signalandthemodel.By choosingCompute from theGo menu,youshouldget
the following on your screen:
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• The “Recognize” mode will comparethe matchingscorebetweenthe test
signal and all of the templates, and choose the template which gives the least
matching cost as the recognition result. Choose Recognize from the Go menu,
and you will see this:
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Another choice that the Go menu provides is Play. This choice wil l play the

selected test signal, if it is one provided with the applet.

FEATURES OF EDIT MENU

Af ter the matching process, you wi l l see a ni ce gri d path through the

template-signal plane. If you want to have a closer look at some part of the path, or the
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spectrogram and energy plots of the signal, click on the Edit menu, and choose Scaling,

and the following window will open on your screen:

After specifying desired minimum and maximum values of the x-axis, cl ick

“Update,” and the display range of all display panels will change according to the value

that was input. Clicking “Cancel” will return to the main screen.

If we set “XMinimum” as 30, and “XMaximum” as 60, the main screen will be

updated like this:
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