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Libraries and Defines
Include the dependent libraries for this notebook and define variables that will be used throughout
the notebook:

[618]: import os
import sys
import time
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import datetime as dt
from importlib import reload

pd.options.mode.chained_assignment = None # default='warn'

Import/Re-Import Custom Makin Library

The custom python library developed for this project is makin_2018_tools.py. This is a developing
library, so it might change while working in this notebook. If code is changed, the code below will
re-import the library with its latest changes.

[247]: # will be working on makin_tools while developing this notebook
# so if it has changed, reload it

# check the latest modification time of the custom Makin Lib
makinLibMod_t1 = os.path.getmtime('../makin_2018_tools.py')

# was the time 2 variable created (which would happen when loading the lib)
if 'makinLibMod_t2' in globals():

if (makinLibMod_t1 != makinLibMod_t2):
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print("Reloading makin_2018_tools.py")
mt = reload(mt)

else:
## make sure to add the parent directory to the python search path
## that is where the makin_tools lib is
sys.path.append("../")
import makin_2018_tools as mt

makinLibMod_t2 = os.path.getmtime('../makin_2018_tools.py')
makinLibMod_T2_str = time.strftime('%m/%d/%Y %H:%M:%S',\

time.gmtime(makinLibMod_t2))

print(f"The Makin Library was imported with file last modified at:\
{makinLibMod_T2_str}")

The Makin Library was imported with file last modified at: 04/16/2024
06:14:49

1 Abstract
The purpose for this project is to write, document, and publish a Python library for neural signal
decoding to use in conjunction with a published dataset (O’Doherty et al., 2020). Specifically, this
library is built to match results and implement decoders seen in the results file accompanying the
O’Doherty dataset and collected by Makin et al., 2018. This Python library is publicly available at
Samarco and Obeid 2024. The fundamental neural decoding applied here is prediction of fingertip
kinematics (that is, position, velocity, and acceleration in two dimensions) from the firing rates
of populations of single-unit (SU) neurons observed in small temporal windows (or bins). The
results reported by O’Doherty et al., 2020 include 7 different decoders (linear regression, Kalman
Filter (KF) supervised, KF unsupervised with static mapping, KF unsupervised with a dynamic
(KF) mapping, unscented KF (UKF), recurrent exponential-family harmonium (rEFH) with static
mapping, and rEFH with dynamic (KF) mapping) for 47 reaching trials for 2 different monkeys
(“indy” and “loco”). In this work, 3 of those algorithms (linear regression, KF supervised, and KF
unsupervised with static mapping) have been implemented in Python and documented sufficiently
such that other investigators can easily modify or extend their functionality. Results were collected
for these implementations on the O’Doherty et al., 2020 data and compared for exactness to Makin
et al., 2018’s MATLAB based solution. Of the 2 monkeys for the dataset, this effort was not
able to effectively reconstruct the “loco” monkey results (i.e. 21 % of the results) and so reported
results in this project are made in reference to only the “indy” monkey. The average difference in
signal-to-noise ratio (SNR) performance from the Makin et al., 2018 results, when considering all
kinematic states and tested bin widths (16 ms, 32 ms, 64 ms, and 128 ms), was at most ~2 % (with
< 1 % difference in standard error) for linear regression and KF supervised. The KF unsupervised
with static mapping decoder implemented in this work demonstrated an improvement over Makin
et al., 2018’s implementation with the average improvement in SNR performance being > 59 %
(𝑝 > 0.05; when considering all kinematic states and tested bin widths).

The library implemented here was further extended to allow neuron dropping and spike pooling
on observational data to test decoding results under sub-optimal decoding conditions. Using spike
pooling, or multi-unit (MU), neural observations in place of SU observations proved beneficial or

2

https://zenodo.org/records/3854034
https://iopscience.iop.org/article/10.1088/1741-2552/aa9e95
https://github.com/Neural-Instrumentation-Lab/makin_2018_reproduction
https://zenodo.org/records/3854034
https://zenodo.org/records/3854034
https://iopscience.iop.org/article/10.1088/1741-2552/aa9e95
https://iopscience.iop.org/article/10.1088/1741-2552/aa9e95
https://iopscience.iop.org/article/10.1088/1741-2552/aa9e95
https://iopscience.iop.org/article/10.1088/1741-2552/aa9e95
https://iopscience.iop.org/article/10.1088/1741-2552/aa9e95


did not substantially affect acceleration estimation for the regression and KF supervised decoders
when binning at 128 ms (percent increase from average SU SNR of 82 % and 27 % for acceleration
in the 𝑥 and 𝑦 direction respectively for regression (𝑝 > 0.15); percent decrease from average SU
SNR of < 0.5 % and < 4 % for acceleration in the 𝑥 and 𝑦 direction respectively for KF supervised
(𝑝 > 0.15)). In the case of randomly dropping spikes, uniformly, from single-unit neurons, linear
regression degrades in an approximate linear fashion with the percentage of dropped spikes when
considering all kinematic state results combined for any bin size (e.g., 5 % of randomly dropped
spikes corresponds to a 5 % decrease in SNR). In considering the KF supervised decoder, a decrease
in SNR performance of < 9 % can be expected when considering all kinematic results overall
and when randomly dropping up to 15 % of all spikes recorded. For the KF unsupervised with
static mapping decoder, removing a random 5 % of spikes essentially produced no change in SNR
performance when considering all kinematic states results for any bin size (𝑝 > 0.05).

2 Introduction
2.1 Motivation
Brain Machine Interface (BMI) decoders bridge the connection between electrical signals of the
brain, or observed neuron activity, and typically some high-level task or thought process carried
out by a human or other animal. These decoders can involve decoding of signals down to the single
neuron level for real-time interpretation of a desired thought or task. Therefore, BMI decoders
are vital in the development of prosthetics, as well as other forms of brain-machine control. Many
research efforts today are focused on decoding brain activity to interpret tasks intended to be
carried out by the body’s motor system. One group previously used finger-tip kinematic decoding
in a BMI system involving real non-human primate experiments and a published dataset (Makin et
al., 2018; O’Doherty et al., 2020). Makin et al., 2018’s made a direct comparison, measuring signal-
to-noise ratio (SNR), among early, conventional, and contemporary BMI decoders like Kalman
filters (supervised, unsupervised, unscented, etc.) and the newly introduced BMI decoder—the
recurrent Exponential-Family Harmonium (rEFH). The decoders were implemented in MATLAB
(code can be found at Makin and O’Doherty 2018) and the results for each decoder’s performance
for each experimental data file was published alongside the dataset (as a .csv file). The MATLAB
code by Makin and O’Doherty 2018 was not written in a way to directly reproduce the results
that accompany the O’Doherty et al., 2020 published neural-kinematic signal dataset. It was
specifically published with instructions on how to use their code to run a general exponential-family
harmonium, or EFH. It does contain a “neural analysis” folder, which looks to house functions that
might ultimately be pieced together to replicate the results published with the O’Doherty et al.,
2020 dataset.

This project’s aim is to develop a Python library for neural signal decoding that is well documented
and can be directly implemented on a published dataset. The O’Doherty et al., 2020 dataset was
chosen as the dataset to use for this library for several reasons. The primary reason being that it has
results published with it for many relevant and new decoders, which were collected in a publication
(Makin and O’Doherty 2018). The results effectively serve to prove the decoders implementation
here as correct. Another reason is that the dataset contains data over a span of 44 different days
and over a collection for two different subjects, or monkeys (named “loco” and “indy”). This can
be advantageous when considering investigating the concept of transfer learning, or how decoder
model information can be leveraged from subject to subject or from one day to another.

After successfully implementing the decoders, an additional sub-task will be pursued—that is,
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quantifying the implemented neural-kinematic signal decoder’s performance (SNR) when presented
with sub-optimal data. The results file that this library uses to confirm decoder implementation,
reflects results for “single-unit” (SU) neuron spike data. This project will explore the performance
expected for these decoders on this dataset when the “spike-sorting” process is skipped and the
original SU detected neurons are all pooled in the electrode channel that they were sorted on.
Spike-sorting typically entails a complex and computationally expensive process to associate single
neurons to recorded neural “spikes” and thus is not always feasible for every application. Lastly,
in practical BMI systems, especially wireless systems, observational data is subject to dropping
out. This project will also quantify the performance (SNR) among the implemented decoders when
single-unit neural data is randomly dropped over a session for different drop rates.

2.2 Background
2.2.1 Data Acquisition Overview

Figure 1. This is an overview of a typical brain machine interface system. (a) The subject has
chronically implanted electrodes in its brain to record neural activity. The subject can be a person
or non-human primate. (b) An example photo of micro-electrode arrays implanted in brain tissue
(photo from Rajan et al., 2015). Specifically, this image shows Utah arrays (Blackrock Neurotech
(New York City, New York)). (c) Each electrode measures raw electrical potential from the neurons
that neighbor it. (d) A pre-amplifier, filters, amplifies, and samples, or digitizes, the raw analog
electrode signals. This conditions the signal for the processing system. (e) The processing system
processes the digitized electrode signals and runs application algorithms on the data to achieve a task.
(f) The algorithms typically consist of a spike detection phase, followed by (or optionally skipped)
a spike sorting/classification algorithm. The “spike” data is asynchronous and usually needs to be
time aligned, or binned. The binned spike data then feeds the main application algorithm/model
which essentially decodes that data and transforms it to an equivalent action, task, and/or state of
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a system. (g) Finally, the prediction from the decoder algorithm can be used to update the state of
a device (for example, control position of a prosthesis). Figure 1 above depicts a typical overview
and flow for acquired neural data in a single-unit BMI system. This project is mostly concerned
with the decoding aspect, or the (f) block seen in figure 1.

In single-unit BMI collection systems, micro-electrode arrays are chronically implanted extracellular
to neural tissue. The electrodes, forming the array, sense the electrical signals generated by neurons
in their proximity. Each electrode will produce a raw signal comprised of the superposition of
potentials sensed from neurons closest to it. These electrodes produce very small (typically in the
range of 100s of microvolts), noisy analog signals.

The electrode signals are typically passed to a pre-amplifier prior to processing the signals on a dig-
ital platform. The pre-amplifier attenuates unwanted noise via filtering, amplifies the signals, and
then converts these analog signals into digital signals with quantized amplitudes and periodic sam-
pling. Acommonl BMI pr-eamplifier is thePZ2 Pr-eamplifier (Tucker-Davis Technologies, Alachua,
FL). The digitized electrode recordings can be processed raw (for example, potential vs. time) or
“spike detected” to detect neuron action potentials. A leading theory of neural function is that
information is encoded in neural spike timing.

To extract neural spike times, a processor system will typically be equipped with some spike de-
tection, sorting, and binning algorithms. Spikes can be detected using static or adaptive simple
thresholds, or with more sophisticated tools such as Wiener Filters. Following spike detection is
spike sorting which classifies the detected spikes, sorting them to individual neurons. While spike
sorting is technically an optional process, it is generally accepted as an important step. At this point,
the “spikes” are reduced to merely “firing” times, or the time that the neuron spiked/activated.
Since a spike can happen at any given time, these firing times are asynchronous and do not align
with any periodic sampling rate. Therefore, to synchronize the firing times to a sampling period,
the firing times are “binned” to produce spike counts at each periodic sampling interval.

The spike counts on each sampling interval, for each neuron or electrode (in the case of skipping
spike sorting) is passed to a decoder, which maps those spike counts to an equivalent state of a
system. This allows for the potential to update a system to that predicted state.

Finally, it is worth noting that the pipeline for the neural data flow can be wired or wireless at
any point after electrode measurement at the source (the brain). Wireless transmission can present
some challenges that might need to be considered such as data dropouts.

2.2.2 Spike Sorted or Single-Unit Neural Data

Spike “sorting” is a method aimed at differentiating between multiple single neurons detected on
the same electrode. Conventionally, spike sorting entails a three-step process (Zhang et al., 2023).
First, a spike detection algorithm reduces the electrode data from all time samples to just segments,
or periods, where the electrodes are thought to have recorded a neuron firing/producing an action
potential. Then, a feature extraction algorithm is deployed to discover features that best explain
the differences among the different neurons. Finally, a classification algorithm is applied to the
features and labels are placed for most likely fit of which neuron produced which “spike”. Spike
sorting is computationally expensive but provides finest grain detail on neuronal function.

As Zhang et al., 2023 has illustrated (see Figure 1 in that paper), spike sorting is gaining traction
as a fundamental process to BMI systems with the number of spike sorting publications increasing
exponentially since the 1950’s. However, spike sorting also has its drawbacks. Even putting aside
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the added computational complexity, spike sorting is an added process that typically requires rounds
of training for development of classification/clustering models. Furthermore, as Zhang et al., 2023
points out in some of their descriptions for the various spike sorting algorithms (for example, K-
means, Spiking Neural Networks, Template Matching, etc.), this development can require manual
calibration. This limits actual time to application (for example, controlling a prosthesis).

2.2.3 Pooled or Multi-Unit Neural Data

An alternative approach to spike sorting is using multi-unit spike detected data. In multi-unit
(MU) data, each electrode is essentially treated as a single neuron with all detected spikes lumped
together into a single binned dimension in the neural measurement that feeds the decoder, 𝑟𝑟𝑟𝑚.
There has been recent work aimed at skipping the conventional spike sorting process and in testing
the feasibility of multi-unit data decoding performance (for example, Chestek et al., 2011, Todorova
et al., 2014, and Trautmann et al., 2019). Trautmann et al., 2019 reproduced the results from
three separate spike sorting publications, but instead of spike sorting, used multi-unit data for
decoding and demonstrated that the results were very similar to the original spike sorted case.
Their conclusion was that multi-unit data can be especially effective when decoding activity is
reliant on population neural data as opposed to single neurons.

Spike sorting adds an additional layer of complexity to the BMI chain, which can make multi-unit
more favorable to some applications. This complexity will also scale with the number of electrode
channels, which can be an issue with spike sorting as the number of electrodes employed in recent
BMI studies are reaching the thousand (Musk and Neuralink, 2019; Steinmetz, 2020). Added
complexity comes with the demand for more powerful computational resources, which comes with
added size, power, and thermal requirements. For embedded/real-time applications, this may prove
non-feasible based on the inherent biological requirements at hand—again, making a case for multi-
uni processing. Hence, as mentioned previously as a sub-goal, decoders implemented in this project
will be evaluated for their handling of MU observational data.

2.2.4 Neural Decoding

Extensive research in the BMI field is aimed at decoding neural activity with the intent to translate
that into or predict a certain action or task performed by an animal. “Decoding” is the process of
deciphering what the neurons are ‘thinking’ about with respect to a particular task. It is common
to see a research effort directed at decoding an action involving an arm reach, finger movement,
or some other bodily kinematic state. This type of research is vital to the development of BMI
systems targeted for prosthesis. Specifically, in this effort, the decoding will involve the trajectory
(or the position, velocity, and acceleration) of a fingertip from a monkey performing reaches to
targets in space.

In the past, researchers employed linear models trained with regression to do this decoding. Later
models used more sophisticated probabilistic linear filters—primarily a variant of the Kalman
filter—to do this. Contemporary approaches allow for the neural-kinematic model to have non-
linearities, be non-Gaussian, and for the training be unsupervised. Specifically, one of the more
recent filters introduced into the BMI field for this contemporary style of modeling is the recurrent
exponential-family harmonium (rEFH). In 2018, a research paper was published that introduced
the rEFH used in this regard and compared performance among the different existing type of fil-
ters/modeling methods mentioned here (Makin et al., 2018). For the Python library being built in
this work, decoders seen in the aforementioned paper will be implemented here and results will be
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compared on the same dataset to confirm the implementation.

2.3 Dataset
The dataset for this project can be found here:

O’Doherty, J. E., Cardoso, M. M. B., Makin, J. G., & Sabes, P. N. (2020, May 26).

Nonhuman primate reaching with Multichannel Sensorimotor Cortex Electrophysiology.

Zenodo. https://zenodo.org/doi/10.5281/zenodo.788569

2.3.1 Experiment

The data collected is from a series of repeated experiments on a couple monkeys, who had micro-
electrode arrays implanted into their brains and a BMI system set up to record their single-unit
neural spikes and ground truth kinematic fingertip data. In the experiments the monkeys made
reaches in space to hit targets (target positions were recorded in real time). The reaches were
performed in the zone just below shoulder level and the only kinematic states recorded were position
in the “x” and “y” direction. The x and y plane are defined as shown in the illustration below for
a subject (Figure 2).

Figure 2. The axes defined for fingertip kinematics from Makin et al., 2018. Reaching tasks were
performed in the x-y plane to hit targets with a fingertip. +x corresponded to reaches to the right
of the subject and +y corresponded to reaches rostral to the subject (“-” is opposite that).

2.3.2 Session/File Information:

Each data file from the Nonhuman primate reaching with Multichannel Sensorimotor Cortex Elec-
trophysiology experiment contains data collected from a “session” of the experiment. The data file
is named with respect to the name of the subject, or monkey, and session date and number for
which the data was collected on (e.g. file indy_20160411_02.mat has data collected from the 2nd
session on 04/11/2016 and from a monkey named “Indy”). The data files are formatted as “.mat”
files (i.e. binary MATLAB files, which store MATLAB workspace variables).

In the following code below, all of the data file/session names, as well as their complete paths, will
be collected. The number of sessions is counted and some general information, provided in the file
names, is obtained as well.

[250]: # 0. ******* First, define the path where the data files are stored
# (this is hard-coded and provided by reader/user):
fdir_dat = r"/data/isip/data/makin_primate"

[251]: # Load All of the data files, or sessions, from the dataset

# 1. ******* Collect all the datafiles and information regarding sessions
fnames = [] # array for data file names
monkeys= [] # array for names of monkeys from the experiments
dates = [] # array for experiment dates

for file in os.listdir(fdir_dat):
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# files that end in ".mat" are the data files
if file.endswith(".mat"):

# collect filename
fnames.append(file)

# get monkey name
monkey = file.split("_")[0]
if (monkey not in monkeys):

monkeys.append(monkey)

# get dates
date_str = file.split("_")[1]
date_num = dt.datetime.strptime(date_str, '%Y%m%d')
if (date_str not in dates):

dates.append(date_str) # collect new date

# update earliest and latest date
if (len(dates) > 1):

if ((date_num - date_min).days < 0):
date_min = date_num

if ((date_num - date_max).days > 0):
date_max = date_num

else:
date_min = date_num
date_max = date_num

# sort the files alpha-numerically
# (easier to compare to provided results excel file)
fnames = sorted(fnames)

# 2. ******* Print names of files in dataset:
print("Files in Dataset:")
for i in fnames:

print(i)

Files in Dataset:
indy_20160407_02.mat
indy_20160411_01.mat
indy_20160411_02.mat
indy_20160418_01.mat
indy_20160419_01.mat
indy_20160420_01.mat
indy_20160426_01.mat
indy_20160622_01.mat
indy_20160624_03.mat
indy_20160627_01.mat
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indy_20160630_01.mat
indy_20160915_01.mat
indy_20160916_01.mat
indy_20160921_01.mat
indy_20160927_04.mat
indy_20160927_06.mat
indy_20160930_02.mat
indy_20160930_05.mat
indy_20161005_06.mat
indy_20161006_02.mat
indy_20161007_02.mat
indy_20161011_03.mat
indy_20161013_03.mat
indy_20161014_04.mat
indy_20161017_02.mat
indy_20161024_03.mat
indy_20161025_04.mat
indy_20161026_03.mat
indy_20161027_03.mat
indy_20161206_02.mat
indy_20161207_02.mat
indy_20161212_02.mat
indy_20161220_02.mat
indy_20170123_02.mat
indy_20170124_01.mat
indy_20170127_03.mat
indy_20170131_02.mat
loco_20170210_03.mat
loco_20170213_02.mat
loco_20170214_02.mat
loco_20170215_02.mat
loco_20170216_02.mat
loco_20170217_02.mat
loco_20170227_04.mat
loco_20170228_02.mat
loco_20170301_05.mat
loco_20170302_02.mat

From the data files, the following information is gathered:

[252]: # print number of files, monkeys, session days, and day span for sessions

print(f"Number of files in dataset:\t\t\t\t {len(fnames):3d}")
print(f"Number of monkey subjects from experiment:\t\t" +\

f" {len(monkeys):3d} (Names: {monkeys})")
print(f"Number of days sessions were had:\t\t\t {len(dates):3d} days")
print(f"Span of days from first session collect to last:\t" +\

f" {(date_max - date_min).days:3d} days" +\
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f" ({date_min.strftime('%Y-%m-%d')}, " +\
f"{date_max.strftime('%Y-%m-%d')})")

Number of files in dataset: 47
Number of monkey subjects from experiment: 2 (Names: ['indy',
'loco'])
Number of days sessions were had: 44 days
Span of days from first session collect to last: 329 days (2016-04-07,
2017-03-02)

Session Variables: Now, to take a more in-depth look into the contents of these files, the custom
makin_2018_tools.py library will be employed. The code below loads the variables from the given
data file into the workspace (object variable, data). It also renames the original variable “spikes”
from the “.mat” file to “Espks” and adds variables “Sspks”, “Mspks” and “Elabels.” The variable
“Espks” is an array of arrays. The first dimension of “Espks” represents electrode data. Within
each element of the first dimension are arrays of data for each of the detected single-units from
that electrode. Each single-unit array contains the times when that single-unit neuron spiked.

The “Sspks” and “Mspks” variables are created from the “Espks” variable. “Sspks” is the “valid”
unpacked electrode data, or the collection of single-unit spike time arrays for all of the “valid”
neurons. A “valid” neuron is one which exhibits a firing rate greater than or equal to 0.5 Hz.
“Mspks” is the unpacked single-unit neuron data per electrode (spike sorting to individual neurons
is removed here). Lastly, the “Elabels” array is an array of labels which track the available electrodes
from all original channels. Note that some electrodes may be unavailable (have no data on them)
for a session or could have been dropped in the case of no “valid” neuron being detected on it.

[253]: # provide complete data path for sample data file
fpath = fdir_dat + r"/" + fnames[0]

# extract data from the test file
data = mt.load_data(fpath)

# extract variables from the data dictionary
## define print template and headers
printTemp = "{0:15} | {1:15}"
print(printTemp.format("Variable", "Size of Variable"))
for key,val in data.items():

try:
print(printTemp.format(f"{key}",f"{val.shape}"))

except:
print(printTemp.format(f"{key}",f"{len(val)}"))

exec(key + '=val')

Variable | Size of Variable
chan_names | 192
cursor_pos | (204446, 2)
finger_pos | (204446, 3)
t | (204446,)
target_pos | (204446, 2)
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wf | 192
Espks | 192
Elabels | 141
Mspks | 141
Sspks | 291

The variables from the “data” dictionary above can be defined in the following way:

• chan_names: This variable is an array that contains the name of each electrode. The elec-
trodes are named by the region of the brain they were placed in (i.e. primary somatosensory
(S1) or primary motor (M1) cortex) and their number in the electrode array in that region
of the brain. This is size 𝐸, with 𝐸 being the total number of electrodes.

• cursor_pos: This variable contains the computer cursor that tracked the finger tip loca-
tion during the reaches in the experiment. This is an array of 𝑥 and 𝑦 position (cartesian
coordinates) and in units of mm. This is size (𝑀, 2) with 2 being the number of positional
coordinates and 𝑀 being the total number of time samples collected.

• finger_pos: This variable contains the positional measurements of the monkey’s finger tip
in cartesian coordinates (z,-x,-y) in units of cm. This is size (𝑀, 3) with 3 being the number
of positional coordinates.

• t: This is the time vector for the session. This vector contains the times when the syn-
chronously sampled data (e.g. “cursor_pos,” “finger_pos,” “target_pos”) were measured in
the session. This time vector is in seconds and represents elapsed time in the session (vector
of length 𝑀).

• target_pos: This is the position for each target, which the monkeys are tasked with making
finger tip reaches to. This is an array of cartesian coordinates (x,y). This array is size (𝑀, 2)
with 2 being the number of positional coordinates.

• wf : This is an array of raw voltage snippets, representing the waveform for detected spike
of each neuron in each electrode. The values are in microvolts. The size of this array is
(𝐸, 𝐶, 𝑀).

• Espks: This is an array containing the times when spikes were detected for each neuron in
each electrode. The values are in seconds. The size of this array is (𝐸, 𝐶, 𝑀), with 𝐶 being
the number of Neurons detected. Note: in this variable, all original data is kept and no
neuron spike arrays are discarded for being “invalid.”

• Elabels: The label/classification for available electrons (out of all original channels).
• Mspks: This array contains multi-unit spike data. I.e. times when spikes were detected on

each electrode. Each element of this array is a vector of times for the detected spikes on an
electrode. Invalid (pooled) electrode arrays are discarded. A valid neuron/electrode is one
which has a neural firing rate of ≥ 0.5 Hz. The size of this array is (𝐸, 𝑀).

• Sspks: This array contains single-unit spike data. I.e. arrays of times when spikes were
detected for each valid neuron. Each element of this array is a vector of times for the detected
spikes for a single neuron. The size of this array is (𝐶, 𝑀).

2.3.3 Conditioning Dataset for Decoding

Obtaining All Kinematic States Notice that when loading data from a session, the cursor_pos
variable only contains the cartesian coordinates in the x and y direction for the finger tip position.
To get velocity in the x and y direction, the change in successive cursor positions in the x and y
direction is taken and then divided by the sample time, or 4 ms. To get the acceleration in the x
and y direction, the change in successive velocity positions in the x and y direction is taken and
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then divided by the sample time. This is defined in equations (1) and (2). This is also what is done
in the custom “bin_data” function when the data output from the “load_data” function from the
custom library is passed to it.

𝑥𝑣𝑒𝑙𝑜𝑖
[𝑚] =

𝑥𝑝𝑜𝑠𝑖
[𝑚]

bin size (1)

𝑥𝑎𝑐𝑐𝑖
[𝑚] =

𝑥𝑣𝑒𝑙𝑜𝑖
[𝑚]

bin size (2)

where, 𝑖 is the respective coordinate (𝑥 or 𝑦) and 𝑚 is the sample or time step in the session.

Binning/Syncronyzing Variables: Note that the neural data collected in variables Sspks,
Espks, and Mspks are just spike times and can occur at any given time. For example, the output
of the code below shows a plot of all the arrays (SU spike arrays) in the Espks variable. Each
dot in the plot represents a spike event. Each neuron spike array is offset along the y-axis with
neurons from the same electrode being the same color and offset by a little. Neurons from different
electrodes are offset by a more.

[19]: # assign a color for each electrode channel
color = plt.cm.rainbow(np.linspace(0, 1, len(Espks)))

# plot every neuron spike array
plt.figure(figsize=(13,8))
i = 0 # variable for offsetting spike dots
for electrode in Espks:

for neuron in electrode:
if (neuron is not None):

if (neuron.size > 1):
offs = np.ones(len(neuron)) + i*100
plt.plot(neuron, offs, '.', color=color[i], ms=2)

i += 1

plt.xlim([240,250])
plt.xticks(np.arange(240,250+1,1))
plt.grid()
plt.xlabel("Time Elapsed in Trial\n(seconds)", fontsize=20)
plt.xticks(fontsize=16)
plt.title("Electrode Spike Events vs. Time", fontsize=24)
frame1 = plt.gca()
frame1.axes.yaxis.set_ticklabels([]);

12



Figure 3. This plot is over a snippet of time for a trial in the O’Doherty et al., 2020 dataset.
In this plot, each SU array from the dictionary data variable “ESpks” output from the custom
“load_data” function is plotted. Each SU spike sorted neuron is offset vertically. The markers
across the horizontal indicate when a spike detected event occurred for a neuron corresponding to
the vertical position of those horizontal mark sets. Dot color is unique to each electrode here. If
there is complete white space across, where a neuron spike array would be, it means no data was
recorded for that neuron during this session.

As evident by the plot above, the neural spike data right now is comprised of all the times when
spikes were detected (for electrodes/neurons) and are thus asynchronous. This means that the vari-
ables Sspks, Espks, and Mspks will not align with the kinematic measurements that are sampled
synchronously at a steady sample rate of 250 Hz (cursor_pos, finger_pos, and target_pos).

This asynchonous data becomes a problem for the main goal of the decoder: that is, to predict the
kinematic state at the next time step given the state of the current observed (neural) data and the
current kinematic state estimate. It is not possible to make these predictions if a decoder’s model
works synchronously and the observed is not updated/measured synchronously at each time step.

To convert the asynchronous neural spike data to synchronous data, the neural spikes can be
“binned.” In binning, the time vector in a session is divided into fixed windows, or “bins,” and
the neural data is converted into counts/number of spike occurances during each bin interval. In
Makin et al., 2018, neural data was binned with bin intervals of 16 ms, 32 ms, 64 ms, and 128 ms.
The same will be done in this project. It is also worth noting that these bin sizes will make the
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neural data periodic, but not at the same rate as the kinematic state measurements (250 Hz). To
align the kinematic measurements with this new binned data, the kinematic measurements can be
downsampled from 250 Hz to the new rate, 1

bin size . To do the downsampling, a decimate function
is called inside the “bin_data” function to ensure anti-aliasing of the kinematic states.

The code below makes use of a custom function, “bin_data,” which does this binning and down-
sampling to sync up the data.

Partitioning Dataset into Training and Evaluation Datasets: Another key concept is the
idea of “training” and “evaluation.” The neural decoders are to predict kinematic states from neural
observations from some model that relates the data. In order to develop that model, its parameters
must be “trained” from data. Therefore, each session is broken up into training and evaluation
sets. The training set is used strictly for model tuning/to learn parameters for the predictive model.
The evaluation set is used in determining how well the model predicts the kinematic state from the
observations in the evaluation set. For all sessions, the neural decoding models are trained on data
collected up to the first 320 seconds of the session and evaluated on all data collected after that.

On top of binning, the custom function “bin_data” (used below), splits the new synchronized data
into “train” and “test” sets.

[20]: # binwidths used for binning neural spike data in Makin paper
bin_widths_ms = [16, 32, 64, 128]

# bin spike data, resample all data to be in sync,
# and split into test and train sets
v = mt.bin_data(data,bin_width_ms=bin_widths_ms[0])

# extract variables from the binned data dictionary, v
## define print template and headers
printTemp = "{0:15} | {1:15}"
print(printTemp.format("Variable", "Size of Variable"))
for key,val in v.items():

try:
print(printTemp.format(f"{key}",f"{val.shape}"))

except:
print(printTemp.format(f"{key}",f"{len(val)}"))

Variable | Size of Variable
kinematic_train | (6, 20001)
kinematic_test | (6, 31111)
su_spikes_train | (291, 20001)
su_spikes_test | (291, 31111)
mu_spikes_train | (141, 20001)
mu_spikes_test | (141, 31111)
t_train | (20001,)
t_test | (31111,)

This variables output here, from the code above and from the “bin_data” function, are all in sync
and can now be used by the different decoders in training their models, making predictions, and
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collect results.

These new synchronous variables output from the code above can be defined as:

• kinematic_train: This is the ground truth kinematic states for the training set of the
session and is sampled at 1

bin size . This array has dimensions (𝑁, 𝑀), where 𝑁 is 6 for the
kinematic states 𝑥𝑝𝑜𝑠𝑥

, 𝑥𝑝𝑜𝑠𝑦
, 𝑥𝑣𝑒𝑙𝑜𝑥

, 𝑥𝑣𝑒𝑙𝑜𝑦
, 𝑥𝑎𝑐𝑐𝑥

, and 𝑥𝑎𝑐𝑐𝑦
.

• kinematic_test: This is the ground truth kinematic states for the evaluation set of the
session and is sampled at 1

bin size . This array has dimensions (𝑁, 𝑀), where 𝑁 is 6 for the
kinematic states 𝑥𝑝𝑜𝑠𝑥

, 𝑥𝑝𝑜𝑠𝑦
, 𝑥𝑣𝑒𝑙𝑜𝑥

, 𝑥𝑣𝑒𝑙𝑜𝑦
, 𝑥𝑎𝑐𝑐𝑥

, and 𝑥𝑎𝑐𝑐𝑦
.

• su_spikes_train: This is the binned single-unit neural spike counts of the training set.
This array has dimensions (𝐶, 𝑀), where 𝐶 is the number of valid neurons.

• su_spikes_test: This is the binned single-unit neural spike counts of the evaluation set.
This array has dimensions (𝐶, 𝑀), where 𝐶 is the number of valid neurons.

• mu_spikes_train: This is the binned multi-unit neural spike counts of the training set.
This array has dimensions (𝐸, 𝑀), where 𝐸 is the number of electrodes.

• mu_spikes_test: This is the binned multi-unit neural spike counts of the evaluation set.
This array has dimensions (𝐸, 𝑀), where 𝐸 is the number of electrodes.

• t_train: This is the time vector for the training set of the session and is sampled at 1
bin size .

This vector is length 𝑀 .
• t_test: This is the time vector for the evaluation set of the session and is sampled at 1

bin size .
This vector is length 𝑀 .

2.4 Research Objectives
The objectives for this project are to:

1. Document and design and implement a Python library for conventional neural signal decoders
for use with a published neural-kinematic dataset (O’Doherty et al., 2020 ) This will be done
by demonstrating similarity to the performance metrics in the results file accompanying the
dataset (ideally the results here should match exactly). The results were collected by Makin et
al., 2018 and the different decoder implementations are described there as well. The authors
for Makin et al., 2018 mention that they share MATLAB code at Makin and O’Doherty 2018
for their implementations. The metrics being compared are signal-to-noise ratio (SNR) and
coefficient of determination (𝑅2) and can be computed from the outputs of the decoder, or
the kinematic state estimates, and the ground truth kinematic state evaluation data. These
metrics are defined as:

𝑅2 = 1 − (𝑋𝑋𝑋 − �̂̂��̂�𝑋)2

(𝑋𝑋𝑋 − �̄�𝑋𝑋)2
(3)

𝑆𝑁𝑅 = −10𝑙𝑜𝑔10(1 − 𝑅2) (4)

where, bar ( ̄) indicates sample average, hat ( ̂) indicates estimate, and 𝑋𝑋𝑋 are the kinematic states
for all time steps in the evaluation partition for a session (nothing above 𝑋𝑋𝑋 indicates ground-truth
kinematic data).

2. In objective 1 results are collected using single-unit neuron spike observations. After confirm-
ing that the decoders are implemented properly and match the results from a published paper
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that worked on the dataset, test the decoders ability to handle sub-optimal observational data.
That is, simulate skipping of the spike sorting process by pooling all spike sorted data in each
electrode. This will result in single spike arrays per electrode. Next, for the single-unit data,
test the decoders ability to handle spikes that are missing by (uniform) randomly dropping
spikes at different rates for a session. The drop rates to test for the sessions will be 5 %, 15 %,
25 %, and 50 %. For both the multi-unit (spike pooling) and spike dropping cases, quantify
any improvements and/or by how much the decoders performance changed from single-unit
baseline case with no dropping or pooling.

3 Methods
The neural decoders are of main focus in Makin et al., 2018 and this extended effort. Due to the
limited time-frame at the time of this Master’s Project, all decoders from Makin et al., 2018 were
not fully implemented. Only three decoders were implemented. The decoders featured here are
regression, Kalman filter supervised, and Kalman filter unsupervised with static mapping (from
latent to ground-truth). Prior to presenting these decoders, it is worth defining variable and
notation definitions:

3.1 Notations and Variable Definitions:

Notation Definition
lower case, non-bold, letter (e.g. 𝑥) scalar
lower case, bold, letter (e.g. x) vector
upper case, bold, letter (e.g. X) matrix
Hat (e.g. X̂) Estimate
Bar (e.g. X̄) Sample Average
Single Quotation (e.g. X′) Transpose of Matrix/Vector
Bar Power, Subscript 𝑚 (e.g. x̂−

𝑚) Is a prediction (made for time step 𝑚)
𝐸[ ] Expectation
𝐶𝑜𝑣[ ] Covariance

Variable Size Definition
𝑀 scalar Number of Samples.
𝐶 scalar Number of Observed Neurons.
𝐸 scalar Number of Observed Electrodes.
𝑁 scalar Number of States to be predicted (e.g. # Kinematic states, # Latent

states).
𝑥𝑛,𝑚 scalar 𝑛-th Kinematic State at time step 𝑚.
x𝑚 (𝑁 ,1) Kinematic State Vector at time step 𝑚.
X (𝑁 ,𝑀) Kinematic State Matrix (collection of 𝑀 successive Kinematic State

Vectors).
X1 (𝑁 ,𝑀 − 1) Current time step’s Kinematic State Matrix (collection of Kinematic State

Vectors measured/estimated at each of the 𝑀 − 1 time steps for that time
step).
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Variable Size Definition
X2 (𝑁 ,𝑀 − 1) Next time step’s Kinematic State Matrix (collection of Kinematic State

Vectors measured/estimated at each of the 𝑀 − 1 time steps for the next
time step).

𝑧𝑛,𝑚 scalar 𝑛-th Latent State at time step 𝑚.
z𝑚 (𝑁 ,1) Latent State Vector at time step 𝑚.
Z (𝑁 ,𝑀) Latent State Matrix (collection of 𝑀 successive Latent State Vectors).
Z1 (𝑁 ,𝑀 − 1) Current time step’s Latent State Matrix (collection of Latent State Vectors

measured/estimated at each of the 𝑀 − 1 time steps for that time step).
Z2 (𝑁 ,𝑀 − 1) Next time step’s Latent State Matrix (collection of Latent State Vectors

measured/estimated at each of the 𝑀 − 1 time steps for the next time step).
𝑟𝑐,𝑚 scalar 𝑐-th Observation at time step 𝑚.
r𝑚 (𝐶,1) Observation Vector at time step 𝑚.
R (𝐶,𝑀) Observation Matrix (collection of 𝑀 successive Observation Vectors).
𝛽𝛽𝛽 (𝑁 ,𝐶 + 1) Parameter Matrix used in the Linear Regression Decoder and a constant

employed in Factor Analysis.
𝜖 N/A Noise Distribution used in the Linear Regression Decoder and Factor

Analysis.
ΨΨΨ (𝐶,𝐶) The covariance matrix for the generative LGDS model used in Factor

Analysis.
H (𝐶,𝑁) Observation Matrix for the LGDS Neural-Kinematic (or Latent) model.
A (𝑁 ,𝑁) State Transition Matrix for the LGDS Neural-Kinematic (or Latent) model.
h (𝐶,1) Observation Offset Vector for the LGDS Neural-Kinematic (or Latent)

model.
a (𝑁 ,1) State Offset Vector for the LGDS Neural-Kinematic (or Latent) model.
q N/A Is the observation noise associated with the LGDS Neural-Kinematic (or

Latent) model.
Q (𝐶,𝐶) Observation Covariance Matrix for the LGDS Neural-Kinematic (or

Latent) model.
w N/A Is the process noise associated with the LGDS Neural-Kinematic (or

Latent) model.
W (𝑁 ,𝑁) State Covariance Matrix for the LGDS Neural-Kinematic (or Latent)

model.
P−

𝑚 (𝑁 ,𝑁) State Estimate Covariance Matrix prediction for the 𝑚-th step of the KF
decoder (𝑚 = 0 is the prior prediction).

̂𝑥̂𝑥̂𝑥−
𝑚 (𝑁 ,𝑁) State Estimate prediction for the 𝑚-th step of the KF decoder (𝑚 = 0 is

the prior prediction).
𝐾𝐾𝐾𝑚 (𝑁 ,𝐶) Kalman Gain at time step 𝑚 for the KF decoder.
𝑃𝑃𝑃 𝑚 (𝑁 ,𝐶) State Estimate Covariance Matrix for the 𝑚-th step of the KF decoder.
L (𝐶,𝑁) Factor Loading Matrix used in the Factor Analysis LGDS model.
𝜇𝜇𝜇 (𝐶,1) Mean of the observational data (used in Factor Analysis).
J𝑚 (𝑁 ,𝑁) Smoother Gain Matrix used in the KF Unsupervised Decoder.
̂𝑧 ̂𝑧 ̂𝑧𝑠𝑚𝑚

(𝑁 ,1) Smoothed/Refined Latent State Estimates (used in KF Unsupervised
Decoder).

P𝑠𝑚𝑚−1
(𝑁 ,𝑁) Smoothed/Refined Latent State Covariance Estimates (used in the KF

Unsupervised Decoder).
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Variable Size Definition
P𝑠𝑚𝑚,𝑚−1

(𝑁 ,𝑁) Smoothed/Refined Latent State Covariance Extrapolation Estimates (used
in the KF Unsupervised Decoder).

P𝑚,𝑚−1 (𝑁 ,𝑁) Expected State Extrapolation Covariance Matrix (used in KF
Unsupervised Decoder).

D (𝑁 ,𝑁𝑙𝑎𝑡𝑒𝑛𝑡) Static Mapping Matrix that transforms the latent states to the kinematic
states (used in KF Unsupervised Static Mapping Decoder).

d (𝑁 ,1) Static Mapping Offset Vector that completes the linear transformation from
latent state to kinematic states (used in KF Unsupervised Static Mapping
Decoder).

I𝑁 (𝑁 ,𝑁) Identity Matrix.

Note: In the above:

• If considering multi-unit data, the dimension 𝐶 for parameters changes to 𝐸.

3.2 Neural Decoders:
3.2.1 Regression

Linear Model Regression is a method that essentially finds a line-of-best-fit between one variable
and another. For this application, the kinematic states at time 𝑚, or 𝑥𝑥𝑥𝑚, is regressed on the neuron
firing rates at time 𝑚, or 𝑟𝑟𝑟𝑚, via linear regression. This regression can be described mathematically
as:

𝑋𝑋𝑋 = 𝛽𝛽𝛽𝑅𝑅𝑅𝐴 + 𝜖 (5)

where:

𝑋𝑋𝑋 = [𝑥𝑥𝑥1,𝑥𝑥𝑥2, ...,𝑥𝑥𝑥𝑀 ] ∈ (𝑁, 𝑀)
𝑅𝑅𝑅𝐴 = [111;𝑅𝑅𝑅] ∈ (𝐶 + 1, 𝑀)
𝑅𝑅𝑅 = [𝑟𝑟𝑟1, 𝑟𝑟𝑟2, ..., 𝑟𝑟𝑟𝑀 ] ∈ (𝐶, 𝑀)
𝛽𝛽𝛽 = [𝛽𝛽𝛽0,𝛽𝛽𝛽1,𝛽𝛽𝛽2, ...,𝛽𝛽𝛽𝐶] ∈ (𝑁, 𝐶 + 1)
with,

𝑥𝑥𝑥𝑚 = [𝑥1,𝑚, 𝑥2,𝑚, ..., 𝑥𝑁,𝑚]𝑇 being a column vector with 𝑁 kinematic states at time 𝑚.

𝑟𝑟𝑟𝑚 = [𝑟1,𝑚, 𝑟2,𝑚, ..., 𝑟𝐶,𝑚]𝑇 being a column vector with 𝐶 observations (binned neural spikes) at
time 𝑚.

𝛽𝛽𝛽𝑐 = [𝛽1,𝑐, 𝛽2,𝑐, ..., 𝛽𝑁,𝑐]𝑇 , 𝑐 ≠ 0, being a column vector comprised of 𝑁 coefficients. The 𝑛-th
coefficient in this vector represents essentially how much the 𝑐-th observation contributes toward
the transformation to the 𝑛-th kinematic state.

𝛽𝛽𝛽0 = [𝛽1,0, 𝛽2,0, ..., 𝛽𝑁,0]𝑇 being an 𝑁 element column vector with each element representing an
offset. Each offset in the vector is positioned with respect to the state that it is to complete the
linear transformation for.
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Note that the rows of 𝛽𝛽𝛽 are comprised of the coefficients that transform (collectively) the 𝑚-th
observation vector, 𝑟𝑟𝑟𝑚, to the 𝑛-th state at time 𝑚, or 𝑥𝑛,𝑚. Each row of 𝛽𝛽𝛽 is made up of weights
that determine how much each observed element (respective to coefficient element) contribute in
the transformation to the output state, 𝑛. The 𝛽𝑛,0 term of that row combines with a 1 to scale
up or down the transformation by 𝛽𝑛,0 to compensate for an expected offset.

𝜖 is the unaccounted for noise associated with the model (needed to make the model exact).

Now, to solve for the parameters, 𝛽𝛽𝛽 of the model, an objective function, 𝑆(𝛽𝛽𝛽) is used. The objective
will be to solve for the 𝛽𝛽𝛽 that minimizes the mean square of the error, or:

𝑆(𝛽𝛽𝛽) = ‖𝑋𝑋𝑋 − 𝛽𝛽𝛽𝑅𝑅𝑅𝐴‖2 (6)

expanding this:

= (𝑋𝑋𝑋 − 𝛽𝛽𝛽𝑅𝑅𝑅𝐴)(𝑋𝑋𝑋 − 𝛽𝛽𝛽𝑅𝑅𝑅𝐴)′

= 𝑋𝑋𝑋𝑋𝑋𝑋′ − 𝑋𝑋𝑋𝑅𝑅𝑅′
𝐴𝛽𝛽𝛽′ − 𝛽𝛽𝛽𝑅𝑅𝑅𝐴𝑋𝑋𝑋′ + 𝛽𝛽𝛽𝑅𝑅𝑅𝐴𝑅𝑅𝑅′

𝐴𝛽𝛽𝛽′

Training To minimize this, take the derivative with respect to 𝛽𝛽𝛽 and set this equal to 0:

𝑑𝑆(𝛽𝛽𝛽)
𝑑𝛽𝛽𝛽 = −𝑋𝑋𝑋𝑅𝑅𝑅′

𝐴 − 𝑅𝑅𝑅𝐴𝑋𝑋𝑋′ + 2𝛽𝛽𝛽𝑅𝑅𝑅𝐴𝑅𝑅𝑅′
𝐴 = 0

= −2𝑋𝑋𝑋𝑅𝑅𝑅′
𝐴 + 2𝛽𝛽𝛽𝑅𝑅𝑅𝐴𝑅𝑅𝑅′

𝐴

⇒ 𝑋𝑋𝑋𝑅𝑅𝑅′
𝐴 = 𝛽𝛽𝛽𝑅𝑅𝑅𝐴𝑅𝑅𝑅′

𝐴

⇒ 𝛽𝛽𝛽 = 𝑋𝑋𝑋𝑅𝑅𝑅′
𝐴(𝑅𝑅𝑅𝐴𝑅𝑅𝑅′

𝐴)−1 (7)

This is called a least squares approximation.

Finally, note that to solve equation 5, data must be collected to fill out the 𝑋𝑋𝑋 and 𝑅𝑅𝑅 matrices. This
is done over a subset of the session data. In Makin et al., 2018, this subset was defined as the first
320 seconds of the session. This subset is called “training” data and the same approach is applied
here. All data following that is called “test”/“evaluation” data. Following training, and with the
“test” subset, the neural data is plugged into equation 5 above (neglecting 𝜖) and kinematic states,
�̂̂��̂�𝑋, for the “test” subset are predicted and compared to the true data from the experiment. 𝑆𝑁𝑅
and 𝑅2 metrics are used to compare how well this decoder works. The code below does the training
and evaluation for all session kinematic state/bin width combinations for the regression decoder.
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Run Regression Implementation and Log Results: The first code snippet below will collect
results for the main experiment, or the one that validates the implementation for the decoders
(the SU results that are reported by O’Doherty et al., 2020 ) The next code snippet collects the
multi-unit results for the regression decoder, or that when the neural data input to the regression
model are the pooled electrode spikes (spike sorting abandoned). The last code snippet collects the
results for the four spike dropped cases for the regression decoder (5 %, 15 %, 25 %, and 50 % of
spikes dropped).

Single-Unit Regression Results:
[28]: resultsDir = os.getcwd() + r"\single_unit_results"

df_regress = mt.collectResults(decoder="regression",\
dataDir=os.getcwd(),\
resultsDir=resultsDir,\
bMU=False, dropPercent=0,\
bTransferLearn=False,\
bUseOldResults=True,\
bNewFile=True, fExt=0,\
bPrintRes=False,\
bSaveParams=False)

df_regress

[28]: session monkey num_neurons num_training_samples \
0 indy_20160407_02 indy 291 20001
1 indy_20160407_02 indy 291 20001
2 indy_20160407_02 indy 291 20001
3 indy_20160407_02 indy 291 20001
4 indy_20160407_02 indy 291 20001
… … … … …
1123 loco_20170302_02 loco 500 2501
1124 loco_20170302_02 loco 500 2501
1125 loco_20170302_02 loco 500 2501
1126 loco_20170302_02 loco 500 2501
1127 loco_20170302_02 loco 500 2501

num_testing_samples kinematic_axis bin_width decoder rsq \
0 31111 posx 16 regression 0.073790
1 31111 posy 16 regression 0.103486
2 31111 velx 16 regression 0.200799
3 31111 vely 16 regression 0.243252
4 31111 accx 16 regression 0.043045
… … … … … …
1123 15338 posy 128 regression 0.206600
1124 15338 velx 128 regression -0.045028
1125 15338 vely 128 regression 0.222251
1126 15338 accx 128 regression -0.254173
1127 15338 accy 128 regression -0.109364
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snr
0 0.332903
1 0.474428
2 0.973442
3 1.210485
4 0.191084
… …
1123 1.005079
1124 -0.191278
1125 1.091606
1126 -0.983573
1127 -0.450740

[1128 rows x 10 columns]

Multi-Unit Regression Results:
[29]: resultsDirMU = os.getcwd() + r"\multi_unit_results"

df_regressMU = mt.collectResults(decoder="regression",\
dataDir=os.getcwd(),\
resultsDir=resultsDirMU,\
bMU=True, dropPercent=0,\
bTransferLearn=False,\
bUseOldResults=True,\
bNewFile=True, fExt=0,\
bPrintRes=False,\
bSaveParams=False)

Spike Dropped Regression Results:
[30]: resultsDirDrop = os.getcwd() + r"\dropped_spikes_results"

df_regressD05 = mt.collectResults(decoder="regression",\
dataDir=os.getcwd(),\
resultsDir=resultsDirDrop,\
bMU=False, dropPercent=5,\
bTransferLearn=False,\
bUseOldResults=True,\
bNewFile=True, fExt=1,\
bPrintRes=False,\
bSaveParams=False)

df_regressD15 = mt.collectResults(decoder="regression",\
dataDir=os.getcwd(),\
resultsDir=resultsDirDrop,\
bMU=False, dropPercent=15,\
bTransferLearn=False,\
bUseOldResults=True,\
bNewFile=True, fExt=1,\
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bPrintRes=False,\
bSaveParams=False)

df_regressD25 = mt.collectResults(decoder="regression",\
dataDir=os.getcwd(),\
resultsDir=resultsDirDrop,\
bMU=False, dropPercent=25,\
bTransferLearn=False,\
bUseOldResults=True,\
bNewFile=True, fExt=1,\
bPrintRes=False,\
bSaveParams=False)

df_regressD50 = mt.collectResults(decoder="regression",\
dataDir=os.getcwd(),\
resultsDir=resultsDirDrop,\
bMU=False, dropPercent=50,\
bTransferLearn=False,\
bUseOldResults=True,\
bNewFile=True, fExt=1,\
bPrintRes=False,\
bSaveParams=False)

3.2.2 Kalman Filter Supervised/Observed

LGDS model The Kalman Filter (KF) decoder is one which employs knowledge of a system’s
dynamical model, noisy measurements, and the uncertainties (or noise) in the model and measure-
ments to make an estimate about a system’s state(s) over time. By using all of this knowledge,
the KF is able to make an informed estimate about the system state(s), resulting in better estima-
tion when compared to estimating from measurements alone. The KF typically involves a linear
gaussian dynamical system (LGDS). For this application, a state-space LGDS model is defined and
used in the KF decoder, specifically:

𝑟𝑟𝑟𝑚 = 𝐻𝐻𝐻𝑥𝑥𝑥𝑚 + ℎℎℎ + 𝑞 (8)

𝑥𝑥𝑥𝑚+1 = 𝐴𝐴𝐴𝑥𝑥𝑥𝑚 + 𝑎𝑎𝑎 + 𝑤 (9)

Equation (6) is defined as the measurement equation and equation (7) is defined as the state
extrapolation equation. The parameters for those equations can be defined as,

𝐻𝐻𝐻 ∈ (𝐶, 𝑁) is the observation matrix, which transforms the state vector, 𝑥𝑥𝑥𝑚, to the observation
space.

𝐴𝐴𝐴 ∈ (𝑁, 𝑁) is the state transition matrix, which transforms the state vector at the current time
(𝑚), 𝑥𝑥𝑥𝑚, to the space associated with the state vector at the very next time step (𝑚 + 1), 𝑥𝑥𝑥𝑚+1.

ℎℎℎ ∈ (𝐶, 1) is the observation offset vector or mean and scales up or down 𝐻𝐻𝐻𝑥𝑥𝑥𝑚 to complete the
transformation from 𝑥𝑥𝑥𝑚 to 𝑟𝑟𝑟𝑚.

22



𝑎𝑎𝑎 ∈ (𝑁, 1) is the state offset vector or mean and scales up or down 𝐴𝐴𝐴𝑥𝑥𝑥𝑚 to complete the transfor-
mation from 𝑥𝑥𝑥𝑚 to 𝑥𝑥𝑥𝑚+1.

𝑞 ∼ 𝑁(0,𝑄𝑄𝑄) is the observation noise and essentially informs the KF as to how much trust can be
given into computing an estimate from the measurements alone. 𝑄𝑄𝑄 ∈ (𝐶, 𝐶) is the observation
covariance.

𝑤 ∼ 𝑁(0,𝑊𝑊𝑊) is the process noise and essentially informs the KF as to how much trust can be given
into computing an estimate from the model alone. 𝑊𝑊𝑊 ∈ (𝑁, 𝑁) is the state covariance.

Note

: While this model could be time-varying, where the parameters change with time, the system here
is assummed time-invariant with independent and identically distributed (IID) random variables.
I.e., the parameters of the model 𝐻𝐻𝐻, ℎℎℎ, 𝑄𝑄𝑄, 𝐴𝐴𝐴, 𝑎𝑎𝑎, and 𝑊𝑊𝑊 are constant.

Training In the Kalman Filter observed, the parameters will be learned from the training dataset
(i.e. the first 320 seconds of a session) using the actual ground truth kinematic states–𝑋𝑋𝑋. The 𝐻𝐻𝐻,
ℎℎℎ, 𝐴𝐴𝐴, and 𝑎𝑎𝑎 parameters will be learned via linear regression using a least squares approximation
(as derived in the “regression” decoder section). The 𝑄𝑄𝑄 and 𝑊𝑊𝑊 covariance matricies can then be
found by squaring the errors (difference in actual from the approximation by the LGDS model),
normalized by the number of samples used, 𝑀 . I.e., these parameters can be found as follows:

[ℎℎℎ,𝐻𝐻𝐻] = 𝑅𝑅𝑅𝑋𝑋𝑋′
𝐴(𝑋𝑋𝑋𝐴𝑋𝑋𝑋′

𝐴)−1 (10)

[𝑎𝑎𝑎,𝐴𝐴𝐴] = 𝑋𝑋𝑋2𝑋𝑋𝑋′
𝐴1

(𝑋𝑋𝑋𝐴1
𝑋𝑋𝑋′

𝐴1
)−1 (11)

𝑄𝑄𝑄 = (𝑅𝑅𝑅 − (𝐻𝐻𝐻𝑋𝑋𝑋 + ℎℎℎ))(𝑅𝑅𝑅 − (𝐻𝐻𝐻𝑋𝑋𝑋 + ℎℎℎ))𝑇

𝑀 (10)

𝑊𝑊𝑊 = (𝑋𝑋𝑋2 − (𝐴𝐴𝐴𝑋𝑋𝑋1 + 𝑎𝑎𝑎))(𝑋𝑋𝑋2 − (𝐴𝐴𝐴𝑋𝑋𝑋1 + 𝑎𝑎𝑎))𝑇

𝑀 − 1 (12)

where, in the above:

𝑋𝑋𝑋𝐴 = [1;𝑋𝑋𝑋] ∈ (𝑁 + 1, 𝑀)
𝑋𝑋𝑋𝐴1

= [1;𝑋𝑋𝑋1] ∈ (𝑁 + 1, 𝑀 − 1)
𝑋𝑋𝑋1 = [𝑥𝑥𝑥1,𝑥𝑥𝑥2, ...,𝑥𝑥𝑥𝑀−1] ∈ (𝑁, 𝑀 − 1)
𝑋𝑋𝑋2 = [𝑥𝑥𝑥2,𝑥𝑥𝑥3, ...,𝑥𝑥𝑥𝑀 ] ∈ (𝑁, 𝑀 − 1)
𝑋𝑋𝑋 and 𝑋𝑋𝑋1 are prepended with a row of 1’s to form 𝑋𝑋𝑋𝐴 and 𝑋𝑋𝑋𝐴1

so that the offset vectors ℎℎℎ and 𝑎𝑎𝑎
can be found. These offset vectors are the first columns of the output matrix in equations (8) and
(9), respectively.

Estimation After learning the parameters, the KF can be implemented on the test data in the
following series of steps:
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Initialize Time step is 0 here.

Make assumptions on prior knowledge (a priori) for the first outcome of a trial. I.e. What is the
first estimated state prediction ( ̂𝑥̂𝑥̂𝑥−

0 )? What is the uncertainty in that initial prediction (𝑃𝑃𝑃 −
0 )?

In Makin et al., 2018, the initial state and uncertainty in the initial state is assumed as the mean
and convariance, respectively, over all kinematic state measurements from the training dataset, or:

̂𝑥 ̂𝑥̂𝑥−
0 = �̄�𝑋𝑋 (13)

𝑃𝑃𝑃 −
0 = cov(𝑋𝑋𝑋,𝑋𝑋𝑋) (14)

where, equation (12) is the sample average for each state vector in the training set (i.e. average
across columns of 𝑋𝑋𝑋) and ̂𝑥̂𝑥̂𝑥−

0 ∈ (𝑁, 1) and 𝑃𝑃𝑃 −
0 ∈ (𝑁, 𝑁).

Measure Increment to newest time step and collect this time step’s neural observation vector,
𝑟𝑟𝑟𝑚.

Update (posteriori) Solve the following Equations:

Calculate the Kalman Gain (Kalman Gain Equation):

𝐾𝐾𝐾𝑚 = 𝑃𝑃𝑃 −
𝑚𝐻𝐻𝐻′(𝐻𝐻𝐻𝑃𝑃𝑃 −

𝑚𝐻𝐻𝐻′ + 𝑄𝑄𝑄)−1 (15)

Estimate the Current State (State Update Equation):

̂𝑥̂𝑥̂𝑥𝑚 = ̂𝑥̂𝑥̂𝑥−
𝑚 + 𝐾𝐾𝐾𝑚(𝑟𝑟𝑟𝑚 − (𝐻𝐻𝐻 ̂𝑥̂𝑥̂𝑥−

𝑚 + ℎℎℎ)) (16)

Update the Current Estimate Uncertainty (Covariance Update Equation):

𝑃𝑃𝑃 𝑚 = (𝐼𝐼𝐼𝑁 − 𝐾𝐾𝐾𝑚𝐻𝐻𝐻)𝑃𝑃𝑃 −
𝑚 (17)

where, 𝐾𝐾𝐾𝑚 ∈ (𝑁, 𝐶) is a matrix that dynamically updates at each time step. It essentially weights
the prediction and the result from measured data at time step 𝑚 to determine how much of each
to use in computing the final estimate for state and uncertainty at time 𝑚.

Predict the Next State and Estimate Uncertainty in that Prediction (a priori): Solve
the following Equations:

Predict the next state (State Extrapolation Equation):

̂𝑥̂𝑥̂𝑥−
𝑚+1 = 𝐴𝐴𝐴 ̂𝑥̂𝑥̂𝑥𝑚 + 𝑎𝑎𝑎 (18)

Extrapolate Estimate Uncertainty (Covariance Extrapolation Equation):

𝑃𝑃𝑃 −
𝑚+1 = 𝐴𝐴𝐴𝑃𝑃𝑃 𝑚𝐴𝐴𝐴′ + 𝑊𝑊𝑊 (19)

Repeat steps 2-4 for Each Time Step in the test trial.

24



Run Kalman Filter Supervised Implementation and Log Results: The first code snippet
below will collect results for the main experiment, or the one that validates the implementation
for the decoders (the SU results that are reported by O’Doherty et al., 2020). The next code
snippet collects the multi-unit results for the KF supervised (or KF observed) decoder, or that
when the neural data input to the KF supervised model are the pooled electrode spikes (spike
sorting abandoned). The last code snippet collects the results for the four spike dropped cases for
the KF supervised decoder (5 %, 15 %, 25 %, and 50 % of spikes dropped).

Single-Unit KF Supervised Results:
[31]: resultsDir = os.getcwd() + r"\single_unit_results"

df_kfObs = mt.collectResults(decoder="KF_observed",\
dataDir=os.getcwd(),\
resultsDir=resultsDir,\
bMU=False, dropPercent=0,\
bTransferLearn=False,\
bUseOldResults=True,\
bNewFile=True, fExt=0,\
bPrintRes=False,\
bSaveParams=False)

df_kfObs

[31]: session monkey num_neurons num_training_samples \
0 indy_20160407_02 indy 291 20001
1 indy_20160407_02 indy 291 20001
2 indy_20160407_02 indy 291 20001
3 indy_20160407_02 indy 291 20001
4 indy_20160407_02 indy 291 20001
… … … … …
1123 loco_20170302_02 loco 500 2501
1124 loco_20170302_02 loco 500 2501
1125 loco_20170302_02 loco 500 2501
1126 loco_20170302_02 loco 500 2501
1127 loco_20170302_02 loco 500 2501

num_testing_samples kinematic_axis bin_width decoder rsq \
0 31111 posx 16 KF_observed 0.654239
1 31111 posy 16 KF_observed 0.720598
2 31111 velx 16 KF_observed 0.464961
3 31111 vely 16 KF_observed 0.519963
4 31111 accx 16 KF_observed 0.019262
… … … … … …
1123 15338 posy 128 KF_observed 0.465985
1124 15338 velx 128 KF_observed 0.063036
1125 15338 vely 128 KF_observed 0.398612
1126 15338 accx 128 KF_observed -0.184109
1127 15338 accy 128 KF_observed 0.006796
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snr
0 4.612244
1 5.537712
2 2.716147
3 3.187252
4 0.084469
… …
1123 2.724469
1124 0.282771
1125 2.208456
1126 -0.733918
1127 0.029615

[1128 rows x 10 columns]

Multi-Unit KF Supervised Results:
[32]: resultsDirMU = os.getcwd() + r"\multi_unit_results"

df_kfObsMU = mt.collectResults(decoder="KF_observed",\
dataDir=os.getcwd(),\
resultsDir=resultsDirMU,\
bMU=True, dropPercent=0,\
bTransferLearn=False,\
bUseOldResults=True,\
bNewFile=True, fExt=0,\
bPrintRes=False,\
bSaveParams=False)

Spike Dropped KF Supervised Results:
[33]: resultsDirDrop = os.getcwd() + r"\dropped_spikes_results"

df_kfObsD05 = mt.collectResults(decoder="KF_observed",\
dataDir=os.getcwd(),\
resultsDir=resultsDirDrop,\
bMU=False, dropPercent=5,\
bTransferLearn=False,\
bUseOldResults=True,\
bNewFile=True, fExt=1,\
bPrintRes=False,\
bSaveParams=False)

df_kfObsD15 = mt.collectResults(decoder="KF_observed",\
dataDir=os.getcwd(),\
resultsDir=resultsDirDrop,\
bMU=False, dropPercent=15,\
bTransferLearn=False,\
bUseOldResults=True,\

26



bNewFile=True, fExt=1,\
bPrintRes=False,\
bSaveParams=False)

df_kfObsD25 = mt.collectResults(decoder="KF_observed",\
dataDir=os.getcwd(),\
resultsDir=resultsDirDrop,\
bMU=False, dropPercent=25,\
bTransferLearn=False,\
bUseOldResults=True,\
bNewFile=True, fExt=1,\
bPrintRes=False,\
bSaveParams=False)

df_kfObsD50 = mt.collectResults(decoder="KF_observed",\
dataDir=os.getcwd(),\
resultsDir=resultsDirDrop,\
bMU=False, dropPercent=50,\
bTransferLearn=False,\
bUseOldResults=True,\
bNewFile=True, fExt=1,\
bPrintRes=False,\
bSaveParams=False)

3.2.3 Kalman Filter Unsupervised/Latent

LGDS Model The KF unsupervised model assumes kinematic states are not measured and
known. This decoder uses intermediate “latent” states which are estimated first from observed
neural data. Then, from the “latent” states, the kinematic states are estimated. For this model,
the LGDS is as follows:

𝑟𝑟𝑟𝑚 = 𝐻𝐻𝐻𝑧𝑧𝑧𝑚 + ℎℎℎ + 𝑞 (20)
𝑧𝑧𝑧𝑚+1 = 𝐴𝐴𝐴𝑧𝑧𝑧𝑚 + 𝑎𝑎𝑎 + 𝑤 (21)

These are the same equations as (6) and (7), with the exception being that the kinematic states,
𝑥𝑥𝑥, are replaced with the latent states, 𝑧𝑧𝑧.

Training As stated before, the assumption with KF unsupervised is that the ground truth states,
or the kinematic states, are not available. Thus, the training from the supervised case cannot
be applied here. Instead an Expectation-Maximization (EM) algorithm is applied to learn the
parameters that maximize the probability of observing the neural states in the training partition.

Perform Factor Analysis to Initialize the Latent States, their Uncertainty, and the
Parameters for the LGDS Prior to applying the EM algorithm for parameter discovery, ini-
tial values are to be assumed for the LGDS parameters and the latent states, 𝑍𝑍𝑍 (for the training
partition). Factor Analysis can be applied to perform initialization and help in preventing conver-
gence to local maxima in the actual EM training to be applied for discovery of most likely LGDS
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parameters (section 3.2.2.). Factor Analysis will work to discover a generative model for the ob-
servational data (or the likelihood, ℒ(𝑍𝑍𝑍|𝑅𝑅𝑅)) and a generative model for the latent states (or the
posterior, 𝑝(𝑍𝑍𝑍|𝑅𝑅𝑅)). Prior to applying factor analysis, some assumptions will be made that were
made in Makin et al., 2018: first, the number of latent states will be set to one third the number
of observations (or 1

3𝐶) (this was said to provide “the best results” for this dataset); secondly, to
avoid over-fitting, the state (𝑊𝑊𝑊 ) and observation (𝑄𝑄𝑄) covariance matrices are assumed diagonal.
Factor Analysis models the observation, 𝑟𝑟𝑟𝑚, as a Linear-Gaussian generative model:

𝑟𝑟𝑟𝑚 = 𝐿𝐿𝐿𝑧𝑧𝑧𝑚 + 𝜇𝜇𝜇 + 𝜖 (22)

where,

𝐿𝐿𝐿 ∈ (𝐶, 𝑁) is a factor loading matrix (where, here 𝑁 = 1
3𝐶);

𝜇𝜇𝜇 ∈ (𝐶, 1) is a constant, whose maximum likelihood estimator is the mean of the neural observation
data (set to �̄�𝑅𝑅 for the training partition of the session to be decoded);

𝜖 is the error or noise in the observations, where 𝜖~𝑁(0,ΨΨΨ), with ΨΨΨ being diagonal;

the prior distribution for the latent states is assumed:

𝑝(𝑧𝑧𝑧𝑚) ∼ 𝑁(0, 𝐼𝐼𝐼) (23)

the generative model for the observations, or likelihood at time step 𝑚 is thus:

ℒ(𝑧𝑧𝑧𝑚|𝑟𝑟𝑟𝑚) = 𝑝(𝑟𝑟𝑟𝑚|𝑧𝑧𝑧𝑚) ∼ 𝑁(𝐿𝐿𝐿𝑧𝑧𝑧𝑚 + 𝜇𝜇𝜇, ΨΨΨ) (24)

With this knowledge, the posterior distribution can be deduced as (see appendix for derivation):

𝑝(𝑧𝑧𝑧𝑚|𝑟𝑟𝑟𝑚) ∼ 𝑁(𝛽𝛽𝛽(𝑟𝑟𝑟𝑚 − 𝜇), 𝐼𝐼𝐼𝑁 − 𝛽𝛽𝛽𝐿𝐿𝐿) (25)

with 𝛽𝛽𝛽 = 𝐿𝐿𝐿′(𝐿𝐿𝐿𝐿𝐿𝐿′ + ΨΨΨ)−1. Factor Analysis iterates between an “E” and an “M” step (and checks
for convergence following that) The algorithm can be summarized as follows:

0. Initialization Step (initialize parameters for the model). The “E” step will need the LGDS
parameters to compute the expectation values for the latent state, so initialize parameters 𝐿𝐿𝐿
and ΨΨΨ here. This step is done only initially and then steps 1-3 are iterated over repeatedly.
In this project, ΨΨΨ is initialized as the sample variance computed over the training observation
partition. The factor loading matrix 𝐿𝐿𝐿 is initialized by with the “Loading” matrix from
Principal Components Analysis (PCA) (see Centellegher 2023). This is done by computing
the singular value decomposition (SVD) on the observational training partition and using the
SVD matricies to compute the “Loading” matrix, as follows:

Compute SVD:

𝑅𝑅𝑅 = 𝑈𝑈𝑈𝑆𝑆𝑆𝑉𝑉𝑉 ′

• 𝑈𝑈𝑈 matrix contains the left singular vectors (or “principal components”) of 𝑅𝑅𝑅.
• 𝑆𝑆𝑆 matrix contains the singular values of 𝑅𝑅𝑅.
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• 𝑉𝑉𝑉 matrix has columns which contain the “principal axes” of 𝑅𝑅𝑅.

The 𝑆𝑆𝑆 and 𝑉𝑉𝑉 matricies can be combined to compute Loading Matrix:

𝐿𝐿𝐿 = 𝑉𝑉𝑉 𝑆𝑆𝑆√
𝑀 − 1

1. E Step (update posteriors). Find the expectation of the latent states given all the observa-
tional data (𝐸[𝑧𝑧𝑧𝑚|𝑟𝑟𝑟𝑚, 𝜃𝜃𝜃]) and the expectation of the second moment of the latent states given
the observational data (𝐸[𝑧𝑧𝑧𝑚𝑧𝑧𝑧′

𝑚|𝑟𝑟𝑟𝑚], 𝜃𝜃𝜃). Note: 𝜃𝜃𝜃 is all the latest update for parameters 𝐿𝐿𝐿 and
𝜖:

𝐸[𝑧𝑧𝑧𝑚|𝑟𝑟𝑟𝑚, 𝜃𝜃𝜃] = 𝛽𝛽𝛽(𝑅𝑅𝑅 − 𝜇) (26)

𝐸[𝑧𝑧𝑧𝑚𝑧𝑧𝑧′
𝑚|𝑟𝑟𝑟𝑚, 𝜃𝜃𝜃] = 𝐶𝑜𝑣(𝑧𝑧𝑧𝑚|𝑟𝑟𝑟𝑚, 𝜃𝜃𝜃) + 𝐸[𝑧𝑧𝑧𝑚|𝑟𝑟𝑟𝑚, 𝜃𝜃𝜃] 𝐸[𝑧𝑧𝑧𝑚|𝑟𝑟𝑟𝑚, 𝜃𝜃𝜃]′

= 𝐼𝐼𝐼𝑁 − 𝛽𝛽𝛽𝐿𝐿𝐿 + 𝛽𝛽𝛽(𝑟𝑟𝑟𝑚 − 𝜇𝜇𝜇) (𝑟𝑟𝑟𝑚 − 𝜇𝜇𝜇)′𝛽𝛽𝛽′ (27)

which result from using the posterior distribution mean and covariance (Equation 25). At this step,
iterate and solve for all 𝑀 samples in the training partition.

2. M Step (maximize likelihood). Find the parameters (𝐿𝐿𝐿 and 𝜖) that maximize the likelihood
for all the observational data (all time steps) given the latest update for the expected latent
states (refer to Equation 24). This is done by taking the derivative, with respect to the
parameters 𝐿𝐿𝐿 and ΨΨΨ (separately), for the log likelihood of all observational data (given the
latent states) (Equation 28) and setting that derivative to 0 and solving for the respective
parameter. Equation 28 makes use of the standard equation for a multivariate Gaussian
density function. After taking the derivative of equation 28 with respect to the parameters of
interest and setting that equal to 0, Equations 29 and 30 can be derived to give the parameter
that maximizes the likelihood of the latent states given the observations.

𝑙𝑜𝑔(𝑝(𝑅𝑅𝑅|𝑍𝑍𝑍)) = 𝑙𝑜𝑔(
𝑀
∏
𝑚=1

𝑒𝑥𝑝(−1
2(𝑟𝑟𝑟𝑚 − 𝜇𝜇𝜇 − 𝐿𝐿𝐿𝑧𝑧𝑧𝑚)′ΨΨΨ−1(𝑟𝑟𝑟𝑚 − 𝜇𝜇𝜇 − 𝐿𝐿𝐿𝑧𝑧𝑧𝑚))

√(2𝜋)𝐶|ΨΨΨ|
) (28)

𝐿𝐿𝐿 = (
𝑀

∑
𝑚=1

(𝑟𝑟𝑟𝑚 − 𝜇𝜇𝜇)𝐸[𝑧𝑧𝑧𝑚|𝑟𝑟𝑟𝑚]′)(
𝑀

∑
𝑚=1

𝐸[𝑧𝑧𝑧𝑚𝑧𝑧𝑧′
𝑚|𝑟𝑟𝑟𝑚])−1 (29)

ΨΨΨ = 1
𝑀 diag[

𝑀
∑
𝑚=1

(𝑟𝑟𝑟𝑚 − 𝜇)(𝑟𝑟𝑟𝑚 − 𝜇𝜇𝜇)′ − 𝐿𝐸[𝑧𝑧𝑧𝑚|𝑟𝑟𝑟𝑚](𝑟𝑟𝑟𝑚 − 𝜇𝜇𝜇)′] (30)

For Equations 29 and 30, plug in the results for the expectations computed in the “E” step where
appropriate. In equation 30, use the newest updated 𝐿𝐿𝐿 parameter (output of Equation 29). Also,
the “diag()” function in Equation 30 means to set all of the off-diagonal elements for the matrix
computed inside the “diag” function to 0.
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3. Check for Convergence Step. Stop the EM algorithm if 100 EM iterations has passed or
if the Gaussian cross-entropy for the observations has decreased by 1

100 of the total decrease
since initiating the EM algorithm:

Cross-entropy for observational data can be found by taking the log of the product of Gaussian
density functions for all samples in the 𝑅𝑅𝑅 partition. 𝑅𝑅𝑅 ∼ 𝑁(𝜇𝜇𝜇,𝐿𝐿𝐿𝐿𝐿𝐿′ + ΨΨΨ) (Note: 𝐶𝑜𝑣[𝑅𝑅𝑅,𝑅𝑅𝑅] is
derived in the appendix as 𝐿𝐿𝐿𝐿𝐿𝐿′ + ΨΨΨ):

𝑙𝑜𝑔(
𝑀
∏
𝑚=1

𝑝(𝑟𝑟𝑟𝑚)) =
𝑀

∑
𝑚=1

𝑙𝑜𝑔(𝑁(𝜇𝜇𝜇,𝐿𝐿𝐿𝐿𝐿𝐿′ + ΨΨΨ)) (31)

Perform Expectation Maximization to Learn the Parameters with the Maximum Like-
lihood Following FA, an EM algorithm (different than FA’s) can now be applied to learn the
LGDS parameters for the model in Equations (20) and (21). The following steps are taken:

0. Initialization Step (Initialize the parameters for the LGDS and the initial latent state and
its covariance). The parameters, initial latent state, and initial latent covariance will be
initialized as follows:

𝑄𝑄𝑄 = ΨΨΨ

This is initialized to the covariance of the likelihood function learned in FA (or 𝐶𝑜𝑣[𝑅𝑅𝑅|𝑍𝑍𝑍]).

𝑊𝑊𝑊 = 𝐼𝐼𝐼𝑁 − 𝛽𝛽𝛽𝐿𝐿𝐿

This is initialized to the covariance for the posterior distribution learned in FA (or 𝐶𝑜𝑣[𝑅𝑅𝑅|𝑍𝑍𝑍])

𝐻𝐻𝐻 = 𝐿𝐿𝐿

This is initialized to the factor loading matrix learned in FA, which transforms the latent
states to the observational data in FA.

𝐴𝐴𝐴 = 𝐼𝑁𝐼𝑁𝐼𝑁

Here 𝐴𝐴𝐴 is simply set to an identity matrix.

̂𝑧 ̂𝑧 ̂𝑧−
0 = 𝐸[𝑍𝑍𝑍|𝑅𝑅𝑅]

This is initialized to the sample average of the expected latent states learned at each time
step in FA.

𝑃𝑃𝑃 −
0 = 𝐶𝑜𝑣[𝑍𝑍𝑍|𝑅𝑅𝑅]

This is initialized to the sample covariance of the expected latent states learned at each time
step in FA.
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𝑎𝑎𝑎 = 0

Here the latent estimates will be assumed to have 0 mean as was assumed in FA.

ℎℎℎ = 0

The observation offset vector will be assumed 0 and the mean will be removed from the
observations, 𝑅𝑅𝑅, as done in FA; however, after training, the mean of the observations will be
accounted for in the model and factored back into the model as the ℎℎℎ vector.

1. E Step (update posteriors). At the Expectation step, the approach by Shumway and Stoffer
1982 is taken to compute the expected values for the latent state and their covariances. Those
authors first perform a forward Kalman Filter recursion to compute posterior estimates for
the latent states; then, they refine those estimates by working backwards to essentially smooth
the data in light of future data. The smoothing backward recursion algorithm is known as
the Rauch-Tung-Striebel Smoother. This can be outlined as follows:

1.1. First, apply the KF estimator as done in section 2.3 in the supervised case. In this case,
the latent state estimates ( ̂𝑧�̂�𝑧�̂�𝑧𝑚), the uncertainty in the estimates (𝑃𝑃𝑃 𝑚), and the prediction for
the uncertainty of the estimates (𝑃𝑃𝑃 −

𝑚) at each time step is retained. The final Kalman Gain
(𝐾𝐾𝐾) computed in the KF will also be retained for use in the smoother to follow in this “E”
step.

1.2. Second, apply the Rauch-Tung-Striebel Smoother to refine the KF estimates and
compute an additional parameter needed for the “M” step to follow this “E” step. The KF
estimates being refined are the expected latent states and their covariance at each time step.
The additional parameter being computed here is the covariance matrix for the previous and
current state, which describes the uncertainty in extrapolation estimate from one latent state
to its next (𝑃𝑃𝑃 𝑚,𝑚−1). The Rauch-Tung-Striebel Smoother will iterate from the 𝑀 -th sample
to the first sample in the training partition and compute Equations 32-35 as follows:

𝐽𝐽𝐽𝑚−1 = 𝑃𝑃𝑃 𝑚−1𝐴𝐴𝐴′(𝑃𝑃𝑃 −
𝑚−1)−1 (32)

where, 𝐽𝐽𝐽 is the “smoother gain matrix”.

̂𝑧 ̂𝑧 ̂𝑧𝑠𝑚𝑚−1
= ̂𝑧 ̂𝑧 ̂𝑧𝑚−1 + 𝐽𝐽𝐽𝑚−1( ̂𝑧 ̂𝑧 ̂𝑧𝑠𝑚𝑚

− 𝐴𝐴𝐴 ̂𝑧 ̂𝑧 ̂𝑧𝑚−1) (33)

𝑃𝑃𝑃 𝑠𝑚𝑚−1
= 𝑃𝑃𝑃 𝑚−1 + 𝐽𝐽𝐽𝑚−1(𝑃𝑃𝑃 𝑠𝑚𝑚

− 𝑃𝑃𝑃 −
𝑚−1)𝐽𝐽𝐽 ′

𝑚−1 (34)

where, ̂𝑧𝑠𝑚̂𝑧𝑠𝑚̂𝑧𝑠𝑚 and 𝑃𝑃𝑃 𝑠𝑚 are the smoothed, refined KF latent state estimates and their covariance
matrices, respectively ( ̂𝑧 ̂𝑧 ̂𝑧 and 𝑃𝑃𝑃 ). Note: ̂𝑧 ̂𝑧 ̂𝑧𝑠𝑚𝑀

and 𝑃𝑃𝑃 𝑠𝑚𝑀
are set to their respective KF

estimates ( ̂𝑧�̂�𝑧�̂�𝑧𝑀 and 𝑃𝑃𝑃 𝑀).

𝑃𝑃𝑃 𝑠𝑚𝑚−1,𝑚−2
= 𝑃𝑃𝑃 𝑚−1𝐽𝐽𝐽 ′

𝑚−2 + 𝐽𝐽𝐽𝑚−1(𝑃𝑃𝑃 𝑠𝑚𝑀,𝑀−1
− 𝐴𝐴𝐴𝑃𝑃𝑃 𝑚−1)𝐽𝐽𝐽 ′

𝑚−2 (35)

31

https://www.semanticscholar.org/paper/AN-APPROACH-TO-TIME-SERIES-SMOOTHING-AND-USING-THE-Shumway-Stoffer/658ee89b35cde8dae323452f01146b6176b2ece8
https://www.semanticscholar.org/paper/AN-APPROACH-TO-TIME-SERIES-SMOOTHING-AND-USING-THE-Shumway-Stoffer/658ee89b35cde8dae323452f01146b6176b2ece8


Note: Equation (35) will lag an iteration before it is first computed so that 𝐽𝐽𝐽𝑚−2 is had.
Though, at the first iteration the following will be computed (Note: 𝐾𝑀𝐾𝑀𝐾𝑀 is the Kalman gain
computed at the last time step from the KF algorithm run in 1.1.):

𝑃𝑃𝑃 𝑠𝑚𝑀,𝑀−1
= (𝐼𝐼𝐼𝑁 − 𝐾𝐾𝐾𝑀𝐻𝐻𝐻)𝐴𝐴𝐴𝑃𝑃𝑃 𝑚−1

Following this backward recursion, the KF estimates, or the expected values for the latent
states at each time step and their covariance, are then refined and 𝑃𝑚,𝑚−1𝑃𝑚,𝑚−1𝑃𝑚,𝑚−1 (at each time step)
is computed in the following way:

̂𝑧 ̂𝑧 ̂𝑧𝑚 = ̂𝑧 ̂𝑧 ̂𝑧𝑠𝑚𝑚
(36)

𝑃𝑃𝑃 𝑚 = 𝑃𝑃𝑃 𝑠𝑚𝑚
+ ̂𝑧 ̂𝑧 ̂𝑧𝑠𝑚𝑚

̂𝑧 ̂𝑧 ̂𝑧′
𝑠𝑚𝑚

(37)

𝑃𝑃𝑃 𝑚,𝑚−1 = 𝑃𝑃𝑃 𝑠𝑚𝑀,𝑀−1
+ ̂𝑧 ̂𝑧 ̂𝑧𝑠𝑚𝑚

̂𝑧 ̂𝑧 ̂𝑧′
𝑠𝑚𝑚−1

(38)

2. M Step (maximize likelihood). This step finds all parameters that maximize the expected
joint log likelihood for the latent and observed variables, given the observed data. This
expected joint log likelihood is given by:

𝐸[𝑙𝑜𝑔(𝑝(𝑍𝑍𝑍,𝑅𝑅𝑅)|𝑅𝑅𝑅)] = 𝐸[𝑙𝑜𝑔(𝑝(𝑧𝑧𝑧1)
𝑀
∏
𝑚=2

𝑝(𝑧𝑧𝑧𝑚|𝑧𝑧𝑧𝑚−1)
𝑀
∏
𝑚=1

𝑝(𝑟𝑟𝑟𝑚|𝑧𝑧𝑧𝑚))] (39)

where,

𝑝(𝑧𝑧𝑧1) ∼ 𝑁(𝑧𝑧𝑧0,𝑃𝑃𝑃 0)
𝑝(𝑧𝑧𝑧𝑚|𝑧𝑧𝑧𝑚−1) ∼ 𝑁(𝐴𝐴𝐴𝑧𝑧𝑧𝑚−1, 𝑊𝑊𝑊)
𝑝(𝑟𝑟𝑟𝑚|𝑧𝑧𝑧𝑚) ∼ 𝑁(𝐻𝐻𝐻𝑧𝑧𝑧𝑚, 𝑄𝑄𝑄).
Here, 𝑝(𝑧𝑧𝑧𝑚|𝑧𝑧𝑧𝑚−1) and 𝑝(𝑟𝑟𝑟𝑚|𝑧𝑧𝑧𝑚) are a result of the LGDS model.

By differentiating Equation (32) with respect to the parameter of interest and then setting that
equation to 0, the parameter that maximizes the likelihood can be solved for. The following
equations are a result of doing that and are computed/updated on each pass of this “M” step:

𝐻𝐻𝐻 = (
𝑀

∑
𝑚=1

𝑟𝑟𝑟𝑚 ̂𝑧 ̂𝑧 ̂𝑧′
𝑚)(

𝑀
∑
𝑚=1

𝐸[𝑧𝑧𝑧𝑚𝑧𝑧𝑧′
𝑚|𝑅𝑅𝑅])−1 (40)

𝑄𝑄𝑄 = 1
𝑀

𝑀
∑
𝑚=1

(𝑟𝑟𝑟𝑚𝑟𝑟𝑟′
𝑚 − 𝐻𝐻𝐻 ̂𝑧 ̂𝑧 ̂𝑧𝑚𝑟𝑟𝑟′

𝑚) (41)

𝐴𝐴𝐴 = (
𝑀

∑
𝑚=2

𝐸[𝑧𝑧𝑧𝑚𝑧𝑧𝑧′
𝑚−1|𝑅𝑅𝑅])(

𝑀
∑
𝑚=2

𝐸[𝑧𝑧𝑧𝑚−1𝑧𝑧𝑧′
𝑚−1|𝑅𝑅𝑅])−1 (42)
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𝑊𝑊𝑊 = 1
𝑀 − 1(

𝑀
∑
𝑚=2

𝐸[𝑧𝑧𝑧𝑚𝑧𝑧𝑧′
𝑚|𝑅𝑅𝑅] − 𝐴𝐴𝐴

𝑀
∑
𝑚=2

𝐸[𝑧𝑧𝑧𝑚−1𝑧𝑧𝑧′
𝑚|𝑅𝑅𝑅]) (43)

𝑧𝑧𝑧0 = ̂𝑧 ̂𝑧 ̂𝑧1 (44)

𝑃𝑃𝑃 0 = 𝐸[𝑧𝑧𝑧1𝑧𝑧𝑧′
1|𝑅𝑅𝑅] − ̄̂𝑧 ̄̂𝑧 ̄̂𝑧1 ̄ ̂𝑧 ̄̂𝑧 ̄̂𝑧′

1 + 1
𝑁

𝑁
∑
𝑛=1

( ̂𝑧𝑛,1 − ̄̂𝑧1)( ̂𝑧𝑛,1 − ̄̂𝑧1)′ (45)

Note: ̄ ̂𝑧 ̄̂𝑧 ̄̂𝑧1 is the sample average across all latent states at time step 1.

3. Check for Convergence Step. If 100 EM iterations were performed, training is complete
(no more iterating between “E” and “M” here, move on). Otherwise, compare the average
change in parameter elements from one “M” step to the next. If the max of those average
parameter changes from one step to the next is < 0.005, then stop the EM training here and
move onto the estimation step (Section 3.3.).

Estimation of Latent States The Kalman Filter unsupervised runs the same KF estimation
algorithm as the supervised version (see section 2.3.). The difference here though is that the KF
estimation algorithm no longer estimates for the kinematic state vector (𝑥𝑥𝑥) at each time step 𝑚,
but instead estimates for a latent state vector, 𝑧𝑧𝑧𝑚. Use the same KF estimation as in section
2.3., but plug in the LGDS parameters and initial latent states and uncertainty learned in section
3.2. above. After predicting the estimated latent state at each time step 𝑚, the prediction for the
kinematic states is obtained as described in section 3.4. below. This is done on each sample in the
“evaluation” partition for the session in an iterative manner.

Prediction of Kinematic State

Static Mapping For the KF unsupervised with static mapping, the latent states are regressed
onto the kinematic states via a linear static transformation:

𝑥𝑥𝑥𝑚 = 𝐷𝐷𝐷𝑧𝑧𝑧𝑚 + 𝑑𝑑𝑑 (33)

where,

𝐷𝐷𝐷 ∈ (𝑁, 𝐾) is the static matrix, which transforms the latent vector, 𝑧𝑧𝑧𝑚, to the kinematic space.

𝑑𝑑𝑑 ∈ (𝑁, 1) is the static offset vector or mean for the kinematic states and scales up or down 𝐷𝐷𝐷𝑧𝑧𝑧𝑚
to complete the transformation from 𝑧𝑧𝑧𝑚 to 𝑥𝑥𝑥𝑚.

In this work, the static terms 𝐷𝐷𝐷 and 𝑑𝑑𝑑 are learned through a least squares approximation (equa-
tion 5) with the true kinematic training states utilized here. Although this is an “unsupervised”
problem, performing an approximation this way assumes a best case of static mapping, or allows
the researcher to gauge what performance can be expected if there is a good understanding for how
the latent states map to the kinematic states beforehand. This is also how it is described as done
in the Makin et al., 2018 paper.
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Run Kalman Filter Unsupervised with Static Mapping Implementation and Log Re-
sults: The first code snippet below will collect results for the main experiment, or the one that
validates the implementation for the decoders (the SU results that are reported by O’Doherty et
al., 2020). The next code snippet collects the multi-unit results for the KF unsupervised with static
mapping (or KF static) decoder, or that when the neural data input to the KF unsupervised model
are the pooled electrode spikes (spike sorting abandoned). The last code snippet collects the results
for the four spike dropped cases for the KF unsupervised with static mapping decoder (5 %, 15 %,
25 %, and 50 % of spikes dropped).

Single-Unit KF Unsupervised with Static Mapping Results:
[319]: resultsDir = os.getcwd() + r"\single_unit_results"

df_kfStatic = mt.collectResults(decoder="KF_static", dataDir=os.getcwd(),\
resultsDir=resultsDir,\
bMU=False, dropPercent=0,\
bTransferLearn=False,\
bUseOldResults=True,\
bNewFile=True, fExt=0,\
bPrintRes=False,\
bSaveParams=False)

df_kfStatic

[319]: session monkey num_neurons num_training_samples
num_testing_samples kinematic_axis bin_width decoder rsq snr
0 indy_20160407_02 indy 291 20001
31111 posx 16 KF_static 0.434861 2.478451
1 indy_20160407_02 indy 291 20001
31111 posy 16 KF_static 0.546503 3.434257
2 indy_20160407_02 indy 291 20001
31111 velx 16 KF_static 0.477894 2.822414
3 indy_20160407_02 indy 291 20001
31111 vely 16 KF_static 0.554535 3.511862
4 indy_20160407_02 indy 291 20001
31111 accx 16 KF_static 0.120434 0.557316
… … … … …
… … … … … …
1123 loco_20170302_02 loco 500 2501
15338 posy 128 KF_static 0.402945 2.239853
1124 loco_20170302_02 loco 500 2501
15338 velx 128 KF_static 0.166345 0.790135
1125 loco_20170302_02 loco 500 2501
15338 vely 128 KF_static 0.422374 2.383531
1126 loco_20170302_02 loco 500 2501
15338 accx 128 KF_static 0.019835 0.087007
1127 loco_20170302_02 loco 500 2501
15338 accy 128 KF_static 0.077881 0.352132

[1128 rows x 10 columns]
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Multi-Unit KF Unsupervised with Static Mapping Results:
[320]: resultsDirMU = os.getcwd() + r"\multi_unit_results"

df_kfStaticMU = mt.collectResults(decoder="KF_static",\
dataDir=os.getcwd(),\
resultsDir=resultsDirMU,\
bMU=True, dropPercent=0,\
bTransferLearn=False,\
bUseOldResults=True,\
bNewFile=True, fExt=0,\
bPrintRes=False,\
bSaveParams=False)

3.5.3. Spike Dropped KF Unsupervised with Static Mapping Results:
[736]: resultsDirDrop = os.getcwd() + r"\dropped_spikes_results"

df_kfStaticD05 = mt.collectResults(decoder="KF_static",\
dataDir=os.getcwd(),\
resultsDir=resultsDirDrop,\
bMU=False, dropPercent=5,\
bTransferLearn=False,\
bUseOldResults=True,\
bNewFile=True, fExt=1,\
bPrintRes=False,\
bSaveParams=False)

df_kfStaticD15 = mt.collectResults(decoder="KF_static",\
dataDir=os.getcwd(),\
resultsDir=resultsDirDrop,\
bMU=False, dropPercent=15,\

bTransferLearn=False,\
bUseOldResults=True,\
bNewFile=True, fExt=1,\
bPrintRes=False,\
bSaveParams=False)

df_kfStaticD25 = mt.collectResults(decoder="KF_static",\
dataDir=os.getcwd(),
resultsDir=resultsDirDrop,\
bMU=False, dropPercent=25,\
bTransferLearn=False,\
bUseOldResults=True,\
bNewFile=True, fExt=1,\
bPrintRes=False,\
bSaveParams=False)

df_kfStaticD50 = mt.collectResults(decoder="KF_static",\
dataDir=os.getcwd(),\
resultsDir=resultsDirDrop,\
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bMU=False, dropPercent=50,\
bTransferLearn=False,\
bUseOldResults=True,\
bNewFile=True, fExt=1,\
bPrintRes=False,\
bSaveParams=False)

4 Results
The O’Doherty et al., 2020 dataset comes with a results file, which has results for all sessions, kine-
matic axes, and bin type for all of the 7 decoders tested (regression, KF Observed, KF Unobserved
with Static mapping, KF Unobserved with Dynamic mapping, Unscented KF, rEFH with Static
mapping, and rEFH with Dyanamic mapping) from the Makin et al., 2018 effort. The table output,
or dataframe, directly below shows a snippet of these results. In order to make comparison to the
Makin et al., 2018 results, the custom makin_2018_tools library is designed to return and operate
on results in that same format. Hence, why the results dataframes for the different decoders shown
in the Methodology section above are formatted similarly.

4.1 Makin Results
[26]: f_results = r"../refh_results.csv"

df_makin = pd.read_csv(f_results)
df_makin

[26]: session monkey num_neurons num_training_samples \
0 indy_20160407_02 indy 291 320
1 indy_20160407_02 indy 291 320
2 indy_20160407_02 indy 291 320
3 indy_20160407_02 indy 291 320
4 indy_20160407_02 indy 291 320
… … … … …
7891 loco_20170302_02 loco 500 320
7892 loco_20170302_02 loco 500 320
7893 loco_20170302_02 loco 500 320
7894 loco_20170302_02 loco 500 320
7895 loco_20170302_02 loco 500 320

num_testing_samples kinematic_axis bin_width decoder rsq \
0 31111 posx 16 regression 0.073015
1 31111 posx 16 KF_observed 0.658503
2 31111 posx 16 KF_static 0.132615
3 31111 posx 16 KF_dynamic 0.467168
4 31111 posx 16 UKF 0.735999
… … … … … …
7891 8828 accy 128 KF_static 0.073140
7892 8828 accy 128 KF_dynamic 0.129986
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7893 8828 accy 128 UKF 0.044782
7894 8828 accy 128 rEFH_static 0.401935
7895 8828 accy 128 rEFH_dynamic 0.423537

snr
0 0.329274
1 4.666132
2 0.617882
3 2.734097
4 5.783946
… …
7891 0.329861
7892 0.604736
7893 0.198973
7894 2.232513
7895 2.392283

[7896 rows x 10 columns]

4.2 Single-Unit/Makin et al., 2018 Reproduction Results
The main goal for this project was to develop a Python library for signal decoding. As a way to
validate the implementation of neural decoders, the results from Makin et al., 2018 can be leveraged
and compared for exactness to the results found on the custom implementations.

4.2.1 Qualitative Assesment for Decoder Implementation

As a qualitative assessment for implementation, the SNR results for the single-unit data reported
by Makin et al., 2018 and in this work for the different sessions, decoders, bin widths, and kinematic
states can be plotted together. Specifically, a scatter plot can be plotted where each data point has
coordinates (Makin et al., 2018 SNR results, this Project SNR Results) for corresponding session,
binwidth, kinematic state, and monkey for each decoder. The code below creates this plot.

[34]: # neural signal decoders implemented in this project
decoders = ["regression", "KF_observed", "KF_static"]

# plot for each decoder, a scatter plot distinguished by
# monkey, bin width, and kinematic axis (hence the 3, below)
f, ax = plt.subplots(len(decoders),3, sharex=True, sharey=True, figsize=(10,10))

# set the axes ranges for the plots (snr)
lowerR = -4
upperR = 8
for i,j in enumerate(decoders):

if (j == "regression"):
df_merge = mt.mergeResults(df_makin,df_regress)

elif (j == "KF_observed"):
df_merge = mt.mergeResults(df_makin,df_kfObs)
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elif (j == "KF_static"):
df_merge = mt.mergeResults(df_makin,df_kfStatic)

# three distinguishable criteria for decoding on sessions
for k in range(3):

if (k == 0):
# get the unique monkeys
filt_criteria="monkey"

elif (k == 1):
# get the unique kinematic axes
filt_criteria="kinematic_axis"

elif (k == 2):
# get the unique bin widths
filt_criteria="bin_width"

# get the unique objects for filter criteria
filter = np.unique(df_merge[filt_criteria])

# plot by filter criteria
for l,m in enumerate(filter):

iFilt = np.where(df_merge[filt_criteria] == m)[0]
ax[i][k].plot(df_merge["snr_ref"].iloc[iFilt],\

df_merge["snr"].iloc[iFilt], '.',\
ms=2, label=m)

# plot a 1 for 1 reference line
# (if results coordinates land on this, they match)
refLine = np.linspace(lowerR,upperR)
ax[i][k].plot(refLine, refLine, '--', lw=2, color="black")

# place axis and title labels
if (i == 0):

ax[i][k].set_title("SNR Comparison by\n" + filt_criteria)

if (k == 0):
ax[i][k].set_ylabel(j + '\n\nCustom SNR')

if (i == len(decoders)-1):
ax[i][k].set_xlabel("Makin SNR")

# configure plot axes
ax[i][k].set_xlim(lowerR, upperR)
ax[i][k].set_ylim(lowerR, upperR)
ax[i][k].set_aspect('equal', adjustable='box')
ax[i][k].legend(frameon=False,markerscale=4)
ax[i][k].grid()
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# adjust plots to fit tightly
f.tight_layout()

Figure 4. This plot provides a qualitative assessment for how well the custom implemented decoders
match the results for Makin et al., 2018 on the same dataset.

Figure 4 shows a couple points: one, this project was not able to replicate the results for the
“loco” monkey and get them to match the baseline Makin et al., 2018 results (for this reason, only
“indy” sessions will be considered going forward); two, the KF unsupervised with static mapping
implemented in this project appears to outperform the baseline implementation.
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4.2.2 Bootstrapping Validation

To quantify the similarity between the regression and KF supervised implementations and by how
much the custom KF unsupervised decoder outperforms the baseline implementation, bootstrapping
will be performed.

In Makin et al., 2018 bootstrapping was performed by re-sampling (with replacement) a new set of
SNRs from the original results for all sessions 100,000 times. Each time, the SNR average (or average
difference, for comparisons), weighted by the number of samples in a session’s evaluation partition,
was computed. This returns a distribution of 100,000 SNRs and allows for statistical inference
(e.g. stating a statistic with a confidence level). In this project’s custom library, a bootstrapping
function was made to do this (bootstrapPrimateDat). As a test for how well the bootstrapping
implementation works, the average SNR performance for Makin et al., 2018 main experiment’s
baseline decoder (regression) is computed. This result was reported in Figure 2 of that paper. This
comparison is made in the code below:

[144]: kinAx = ["posx","posy","velx","vely","accx","accy"]

# the main experiment in Makin et al., 2018
# compared results for a 64 ms bin size
binWidth = [64]

# these are the reported results corresponding
# to the kinematic axes in kinAx, respectively
reportedSNR = [0.63,1.51,1.06,1.81,0.09,0.3]

# form print template for results
printTemp = "{0:12}|{1:15}|{2:14}|{3:30}|{4:25}|{5:25}"
# headers
print(printTemp.format("Decoder",\

"Kinematic State",\
"Bin Width (ms)",\
"Makin Reported SNR Avg",\
"Computed SNR Avg",\
"% Diff SNR Avg"
))

# compute the bootstrap average for each kinematic axis,
# binned at 64 ms for the regression decoder
for k,i in enumerate(kinAx):

for _,j in enumerate(binWidth):
res_mk = mt.bootstrapPrimateDat(dfRef=df_makin ,\

statistic="mean",\
decoder="regression",\
monkey="combined",\
bin_width=j, kinAx=i)

# compute average from the 100,000 weighted bootstrap avgs
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mk_snr_avg = np.average(res_mk.bootstrap_distribution)

# compute the percent difference in the average from that reported
pDiffAvg = np.abs((mk_snr_avg-reportedSNR[k])\

/np.average([mk_snr_avg, reportedSNR[k]]))*100

# print the results with the print template
print(printTemp.format("Regression",\

i,\
j,\
f"{reportedSNR[k]:.4f} dB",\
f"{mk_snr_avg:.4f} dB",\
f"{pDiffAvg:.2f} %"
))

Decoder |Kinematic State|Bin Width (ms)|Makin Reported SNR Avg
|Computed SNR Avg |% Diff SNR Avg
Regression |posx | 64|0.6300 dB
|0.6238 dB |0.99 %
Regression |posy | 64|1.5100 dB
|1.5336 dB |1.55 %
Regression |velx | 64|1.0600 dB
|1.0540 dB |0.56 %
Regression |vely | 64|1.8100 dB
|1.8268 dB |0.92 %
Regression |accx | 64|0.0900 dB
|0.0889 dB |1.24 %
Regression |accy | 64|0.3000 dB
|0.2967 dB |1.09 %

As can be seen from the results above, the difference in average SNR’s computed in this effort from
that reported in Makin et al., 2018 is less than 2 % for all kinematic axes. Note: there are 2 result
files missing from the dataset for another monkey which is not in the O’Doherty et al., 2020 dataset
and could explain the slight difference here.

In the next two code cells below, regression and KF supervised bootstrap results are collected for
all bin width and kinematic axis permutations, respectively. The output of the code cells is a table
showing the percent difference in average SNR and standard error for the bootstrap distributions
between this project and Makin et al., 2018. Also, for the 64 ms bin width case, a plot follows each
table overlaying the average SNR bootstrap distributions for each kinematic axis.

4.2.3 Regression Decoder Implementation Validation

[731]: kinAx = ["combined","posx","posy","velx","vely","accx","accy"]
binWidth = ["combined",16,32,64,128]

# plot the 64 ms bin width SNR Average distributions
# between Makin and this Project
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fig, ax = plt.subplots(len(kinAx),1, figsize=(12,15))
maxX = 0
minX = 0

# loop for each kinematic axis and bin width and compute bootstrap statistics
statData = []
for k,i in enumerate(kinAx):

for _,j in enumerate(binWidth):
# bootstrap and collect avgs for Makin's (mk)
# and this projects results (ms)
res_mk = mt.bootstrapPrimateDat(dfRef=df_makin,\

statistic="mean",\
decoder="regression",\
monkey="indy",\
bin_width=j, kinAx=i)

res_ms = mt.bootstrapPrimateDat(dfRef=df_regress,\
statistic="mean",\
decoder="regression",\
monkey="indy",\
bin_width=j, kinAx=i)

# compute sample average from bootstrap distributions
mk_snr_avg = np.average(res_mk.bootstrap_distribution)
ms_snr_avg = np.average(res_ms.bootstrap_distribution)

# compute percent difference in mk and ms computed average
pDiffAvg = np.abs((mk_snr_avg-ms_snr_avg)\

/np.average([mk_snr_avg, ms_snr_avg]))*100

# compute percent difference in standard error for mk and ms
pDiffStdE= np.abs((res_mk.standard_error-\

res_ms.standard_error)\
/np.average([res_mk.standard_error,\

res_ms.standard_error]))*100

# collect statistical results for printing
statData.append([ "regress",\

i,\
j,\
f"{mk_snr_avg:8.4f} dB",\
f"{ms_snr_avg:8.4f} dB",\
f"{pDiffAvg:6.2f} %",\
f"{res_mk.standard_error:8.4f} dB",\
f"{res_ms.standard_error:8.4f} dB",\
f"{pDiffStdE:6.2f} %"])

# plot the 64 ms binned bootstrap SNR avg distributions
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if (j == 64):

if (len(kinAx) <= 1):
pAx = ax

else:
pAx = ax[k]

h1 = pAx.hist(res_mk.bootstrap_distribution,\
bins=50, color="green",\
edgecolor="black",\
label="Makin Avg SNR")

h2 = pAx.hist(res_ms.bootstrap_distribution,\
bins=50, color="blue",\
edgecolor="black", alpha=0.4,\
label="Samarco Avg SNR")

# retain mins and max's for lims
maxX = max([maxX, max(h1[1]), max(h2[1])])
minX = min([minX, min(h1[1]), min(h2[1])])
pAx.set_title('Regression Results (' + f"{i})")
if (k == (len(kinAx)-1)):

pAx.set_xlabel('SNR (dB)')
pAx.set_ylabel('frequency')

pAx.grid()
pAx.legend()

for i in ax:
i.set_xlim([minX,maxX])
i.set_xticks(np.arange(minX,maxX,0.1))

plt.subplots_adjust(hspace = 0.4)
plt.show()

# put statistical results in a df
dfReg_res = pd.DataFrame(statData, columns=[ "Decoder",\

"KinState",\
"Bin (ms)",\
"Makin SNR Avg.",\
"Samarco SNR Avg",\
"% Diff SNR Avg",\
"Makin SNR Std Err",\
"MS SNR Std Err",\
"% Diff Std Err"])
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Figure 5. This plot shows a comparison for the avg SNR bootstrap distributions for Makin et al.,
2018 and this Project’s results (Samarco) on the same dataset for the regression decoder. For mostly
all axes, the two distributions align very nicely. The average SNR acceleration distributions look to
have similar standard error but differ somewhat in overall average.
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[732]: i_combo = np.where(dfReg_res["Bin (ms)"] == "combined")[0]
dfReg_res.iloc[i_combo]

[732]: Decoder KinState Bin (ms) Makin SNR Avg. Samarco SNR Avg % Diff SNR Avg
Makin SNR Std Err MS SNR Std Err % Diff Std Err
0 regress combined combined 0.6985 dB 0.6892 dB 1.33 %
0.0371 dB 0.0372 dB 0.35 %
5 regress posx combined 0.4825 dB 0.4863 dB 0.79 %
0.0548 dB 0.0554 dB 1.19 %
10 regress posy combined 0.9992 dB 1.0070 dB 0.78 %
0.0924 dB 0.0913 dB 1.16 %
15 regress velx combined 0.9180 dB 0.9117 dB 0.68 %
0.0646 dB 0.0627 dB 2.88 %
20 regress vely combined 1.3349 dB 1.3138 dB 1.59 %
0.0992 dB 0.0977 dB 1.54 %
25 regress accx combined 0.1808 dB 0.1606 dB 11.87 %
0.0169 dB 0.0157 dB 7.34 %
30 regress accy combined 0.2925 dB 0.2722 dB 7.20 %
0.0221 dB 0.0210 dB 5.23 %

As evident in the table and plots above for the regression decoder, the implementation in this project
matches its reference fairly well (<1% difference in SNR average performance for all kinematic
states, aside from acceleration, when considering all bin width results). Acceleration predictions
are least accurate with 7-12% difference in SNR average performance, suggesting a difference in
implementation here for acceleration computation.

4.2.4 KF Supervised Decoder Implementation Validation

[721]: kinAx = ["combined","posx","posy","velx","vely","accx","accy"]
binWidth = ["combined",16,32,64,128]

# plot the 64 ms bin width SNR Average distributions
# between Makin and this Project
fig, ax = plt.subplots(len(kinAx),1, figsize=(12,15))
maxX = 0
minX = 0

# loop for each kinematic axis and bin width and compute bootstrap statistics
statData = []
for k,i in enumerate(kinAx):

for _,j in enumerate(binWidth):
# bootstrap and collect avgs for Makin's (mk)
# and this projects results (ms)
res_mk = mt.bootstrapPrimateDat(dfRef=df_makin,\

statistic="mean",\
decoder="KF_observed",\
monkey="indy",\
bin_width=j, kinAx=i)
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res_ms = mt.bootstrapPrimateDat(dfRef=df_kfObs,\
statistic="mean",\
decoder="KF_observed",\
monkey="indy",\
bin_width=j, kinAx=i)

# compute sample average from bootstrap distributions
mk_snr_avg = np.average(res_mk.bootstrap_distribution)
ms_snr_avg = np.average(res_ms.bootstrap_distribution)

# compute percent difference in mk and ms computed average
pDiffAvg = np.abs((mk_snr_avg-ms_snr_avg)\

/np.average([mk_snr_avg, ms_snr_avg]))*100

# compute percent difference in standard error for mk and ms
pDiffStdE= np.abs((res_mk.standard_error-\

res_ms.standard_error)\
/np.average([res_mk.standard_error,\

res_ms.standard_error]))*100

# collect statistical results for printing
statData.append([ "KFObs",\

i,\
j,\
f"{mk_snr_avg:8.4f} dB",\
f"{ms_snr_avg:8.4f} dB",\
f"{pDiffAvg:6.2f} %",\
f"{res_mk.standard_error:8.4f} dB",\
f"{res_ms.standard_error:8.4f} dB",\
f"{pDiffStdE:6.2f} %"])

# plot the 64 ms binned bootstrap SNR avg distributions
if (j == 64):

if (len(kinAx) <= 1):
pAx = ax

else:
pAx = ax[k]

h1 = pAx.hist(res_mk.bootstrap_distribution,\
bins=50, color="green",\
edgecolor="black", label="Makin Avg SNR")

h2 = pAx.hist(res_ms.bootstrap_distribution,\
bins=50, color="blue",\
edgecolor="black", alpha=0.4,\
label="Samarco Avg SNR")

maxX = max([maxX, max(h1[1]), max(h2[1])])
minX = min([minX, min(h1[1]), min(h2[1])])
pAx.set_title('KF Observed Results (' + f"{i})")
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if (k == (len(kinAx)-1)):
pAx.set_xlabel('SNR (dB)')

pAx.set_ylabel('frequency')

pAx.grid()
pAx.legend()

for i in ax:
i.set_xlim([minX,maxX])
i.set_xticks(np.arange(minX,maxX,0.2))

plt.subplots_adjust(hspace = 0.4)
plt.show()

# put statistical results in a df
dfKfObs_res = pd.DataFrame(statData, columns=[ "Decoder",\

"KinState",\
"Bin (ms)",\
"Makin SNR Avg.",\
"Samarco SNR Avg",\
"% Diff SNR Avg",\
"Makin SNR Std Err",\
"MS SNR Std Err",\
"% Diff Std Err"])
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Figure 6. This plot shows a comparison for the avg SNR bootstrap distributions for Makin et al.,
2018 and this Project’s results (Samarco) on the same dataset for the KF supervised decoder. All
distributions, aside acceleration, agree/align very nicely.

[728]: i_combo = np.where(dfKfObs_res["Bin (ms)"] == "combined")[0]
dfKfObs_res.iloc[i_combo]
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[728]: Decoder KinState Bin (ms) Makin SNR Avg. Samarco SNR Avg % Diff SNR Avg
Makin SNR Std Err MS SNR Std Err % Diff Std Err
0 KFObs combined combined 2.4480 dB 2.3986 dB 2.04 %
0.1204 dB 0.1194 dB 0.81 %
5 KFObs posx combined 3.5675 dB 3.5237 dB 1.24 %
0.2406 dB 0.2336 dB 2.99 %
10 KFObs posy combined 4.4497 dB 4.3943 dB 1.25 %
0.2035 dB 0.2158 dB 5.83 %
15 KFObs velx combined 2.4713 dB 2.4334 dB 1.55 %
0.1012 dB 0.0990 dB 2.16 %
20 KFObs vely combined 3.3069 dB 3.2312 dB 2.32 %
0.1471 dB 0.1416 dB 3.77 %
25 KFObs accx combined 0.3260 dB 0.2930 dB 10.66 %
0.0607 dB 0.0549 dB 10.09 %
30 KFObs accy combined 0.5937 dB 0.5428 dB 8.95 %
0.0631 dB 0.0626 dB 0.76 %

As evident in the table and plots above for the KF supervised decoder the implementation in this
project matches its reference fairly well (~2 % difference in average SNR for the decoders when
considering all bin widths and kinematic states). Acceleration predictions are least accurate with
9-11% difference in SNR average performance, suggesting a difference in implementation here for
acceleration computation.

4.2.5 KF Unsupervised Decoder Implementation Validation

Now, as evident in figure 4, the decoder implemented here for the KF Unsupervised with static
mapping performs better than the reference implementation by Makin et al., 2018. What is left is to
quantify by how much the expected performance improvement is for this project’s implementation.
The code below will collect bootstrap results for average SNR performances between the two KF
unsupervised with static mapping implementations. It will also get the average difference in SNR
performance among the implementations and compute the percent improvement from the Makin
reference result at the 95% confidence level (p>0.05).

Additionally, since a large increase in SNR performance was observed for this project’s KF unsu-
pervised, it will be plotted against other Makin KF variants under a specific case of 64ms binning
and for each kinematic state. This will give a sense of if the increase in performance pushes this
decoder to a level that is similar to that demonstrated by the KF supervised and KF unsupervised
with dynamic mapping decoders.

[685]: kinAx = ["combined","posx","posy","velx","vely","accx","accy"]
binWidth = ["combined",16,32,64,128]

# plot the 64 ms bin width SNR Average distributions
# between Makin and this Project
fig, ax = plt.subplots(len(kinAx),1, figsize=(12,15))
maxX = 0
minX = 0

# loop for each kinematic axis and bin width and compute bootstrap statistics
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statData = []
for k,i in enumerate(kinAx):

for _,j in enumerate(binWidth):
# bootstrap and collect avgs for Makin's (mk)
# and this projects results (ms)

# this bootstrap is for finding the distribution
# of the Makin KF Static SNR averages
res_mk = mt.bootstrapPrimateDat(dfRef=df_makin, statistic="mean",\

decoder="KF_static", monkey="indy",\
bin_width=j, kinAx=i)

# this bootstrap will find the distribution
# of the average SNR differences between Makin and this project's
# KF Static decoder
res_diff = mt.bootstrapPrimateDat(dfRef=df_makin,dfDat2=df_kfStatic,\

statistic="mean_diff",\
decoder="KF_static",\
monkey="indy", bin_width=j,\
kinAx=i, cLev=0.90)

# compute the average for the baseline (Makin)
res_mk_snr_avg = np.average(res_mk.bootstrap_distribution)

# compute the average difference in decoder implementation
# (this project and baseline)
res_diff_snr_avg = np.average(res_diff.bootstrap_distribution)

# compute the percent increase at 95% level
# to average of Makin et al., 2018's results

# desired p level for avg SNR difference of implementations
desired_p = 0.05
# number of bootstraps
N_bootstrap = len(res_diff.bootstrap_distribution)
hist, bin_edges = np.histogram(res_diff.bootstrap_distribution,1000)
i_p = np.where(np.cumsum(hist)/N_bootstrap >= desired_p)[0][0]
snr_p = bin_edges[i_p] # the snr difference at the desired p level

# actual p level for the snr difference found at a p level targeted
# for the desired
# (most likely the desired p, but could be slightly different)
actual_p = 1-len(np.where(res_diff.bootstrap_distribution >=\

snr_p)[0])/N_bootstrap

# compute the percent increase in this project's KF static decoder
# from Makin's average SNR for the same decoder at the p level.
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perIncSnr_p = snr_p/res_mk_snr_avg*100

# collect statistical results for printing
statData.append([ "KFStat",\

i,\
j,\
f"{res_diff_snr_avg:8.4f} dB",\
f"{res_diff.standard_error:8.5f} dB",\
f"{snr_p:8.4f} dB (p > {actual_p:4.2f})",\
f"{perIncSnr_p:8.2f} % (p > {actual_p:4.2f})"])

# plot the distributions of average SNRs for a 64 ms bin width
if (j == 64):

# this is the bootstrap distribution of SNR averages for
# Makin's KF observed decoder
res_mk_kfObs = mt.bootstrapPrimateDat(dfRef=df_makin,\

statistic="mean",\
decoder="KF_observed",\
monkey="indy",\
bin_width=j, kinAx=i)

# this is the bootstrap distribution of SNR averages for
# Makin's KF unsupervised with dynamic mapping decoder
res_mk_kfDyn = mt.bootstrapPrimateDat(dfRef=df_makin,\

statistic="mean",\
decoder="KF_dynamic",\
monkey="indy",\
bin_width=j, kinAx=i)

# this is the bootstrap distribution of SNR averages for
# this project's KF unsupervised decoder with static mapping
res_ms = mt.bootstrapPrimateDat(dfRef=df_kfStatic,\

statistic="mean",\
decoder="KF_static",\
monkey="indy",\
bin_width=j, kinAx=i)

if (len(kinAx) <= 1):
pAx = ax

else:
pAx = ax[k]

h1 = pAx.hist(res_mk_kfObs.bootstrap_distribution,\
bins=50, color="yellow",\
edgecolor="black",\
label="Makin Avg SNR (KF Observed)")

h2 = pAx.hist(res_mk.bootstrap_distribution, bins=50,\
color="green", edgecolor="black", alpha=0.5,\
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label="Makin Avg SNR")
h3 = pAx.hist(res_ms.bootstrap_distribution, bins=50,\

color="blue", edgecolor="black", alpha=0.4,\
label="Samarco Avg SNR")

h4 = pAx.hist(res_mk_kfDyn.bootstrap_distribution, bins=50,\
color="magenta", edgecolor="black", alpha=0.3,\
label="Makin Avg SNR (KF Dynamic)")

maxX = max([maxX, max(h1[1]), max(h2[1]),\
max(h3[1]), max(h4[1])])

minX = min([minX, min(h1[1]), min(h2[1]),\
min(h3[1]), min(h4[1])])

pAx.set_title('KF Static Results (' + f"{i})")
if (k == (len(kinAx)-1)):

pAx.set_xlabel('SNR (dB)')
pAx.set_ylabel('frequency')

pAx.grid()
pAx.legend()

for i in ax:
i.set_xlim([minX,maxX])
i.set_xticks(np.arange(minX,maxX,0.2))

plt.subplots_adjust(hspace = 0.4)
plt.show()

# put statistical results in a df
dfKfStat_res = pd.DataFrame(statData, columns=[ "Decoder",\

"KinState",\
"Bin (ms)",\
"SNR Avg Increase",\
"STDerr SNR Avg Increase",\
"SNR Increase > (p)",\
"%Inc SNR from Makin Avg (p)"])
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Figure 7. This plot shows a comparison for the avg SNR bootstrap distributions for the different
Makin et al., 2018 KF decoders and this Project’s KF unsupervised decoder with static mapping
(Samarco) on the same dataset for a 64 ms bin size. The green and blue plot show the distribu-
tions for both implementations of the same type, or KF unsupervised decoder with static mapping.
As evident here, this project’s implementation of a KF unsupervised decoder with static mapping
outperforms the baseline result and appears to have performances close to the other KF decoders
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(supervised and unsupervised with dynamic [KF] mapping to actual kinematic states).

KF Unsupervised Performance Increase at the 95% Confidence Level
[718]: f, ax = plt.subplots(1,sharex=True, figsize=(6,4))

minR = 0
maxR = 0
for k in np.unique(dfKfStat_res["KinState"]):

if (k != "combined"):
df_dec_kAx = dfKfStat_res.iloc[np.where(dfKfStat_res["KinState"] ==␣

↪k)[0]]

snr_change_str = df_dec_kAx["%Inc SNR from Makin Avg (p)"].
↪to_string(index=False).split(" % (p > 0.05)\n")

snr_change_str[-1] = snr_change_str[-1].split(" % (p > 0.05)")[0]
snr_change_per = [float(s) for s in snr_change_str[1:]] # skip␣

↪"combined" or 0-th index

minR = min([minR, round(min(snr_change_per))])
maxR = max([maxR, round(max(snr_change_per))])

ax.plot(df_dec_kAx["Bin (ms)"].iloc[1:], (snr_change_per), '.-', ms=8,␣
↪label=k)

ax.set_xticks(np.unique(df_dec_kAx["Bin (ms)"].iloc[1:]).astype("int"))
ax.grid(which="minor")
ax.grid(which="major")
ax.set_yticks(np.linspace(round(minR,-1),round(maxR,-1)+20,20))
ax.set_ylim([minR-2,maxR+2])
ax.set_xlabel("Bin Width (ms)", fontsize=14);
ax.set_title("Custom KF Static\n % Change SNR Avg from O'Doherty 2020 Results␣

↪File\n(p > 0.05)")

ax.set_ylabel("SNR Avg % Change", fontsize=14)
ax.legend(frameon=False, ncols=6, bbox_to_anchor=(1.1, -0.18))
plt.subplots_adjust(wspace=0.21)
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Figure 8. This plot shows the percent increase in the avg SNR for this project’s KF static decoder
when compared to the reference decoder by Makin et al., 2018. The plot reports the SNR average
performance gain at the 95% confidence level (p>0.05) for all kinematics and bin widths tested.

As can be seen in the results plots above, the KF static decoder implemented in this project per-
forms greater than the Makin et al., 2018 implementation on the same dataset when considering
any kinematic state for any of the bin widths used in this project (𝑝 > 0.05). Also, the 64ms
distribution plots (figure 7) indicate that the KF static implementation in this project may outper-
form or perform similarly to Makin’s KF supervised and KF unsupervised with dynamic mapping
implementation for velocity and acceleration.

4.3 Get Multi-Unit Results
Like figure 4, a scatter plot is plotted here as well. This scatter plot is made up of points that have
coordinates (SU SNR, MU SNR) to gauge the difference between using MU and SU on the decoders
among all session results processed for the “Indy” monkey at all bin width and all kinematics.

[36]: # neural signal decoders implemented in this project
decoders = ["regression", "KF_observed", "KF_static"]

# plot for each decoder, a scatter plot distinguished by
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# bin width, and kinematic axis (hence the 2, below)
f, ax = plt.subplots(2,len(decoders), sharex=True, sharey=True,\

figsize=(10,6))

# set the axes ranges for the plots (snr)
lowerR = -1
upperR = 8
for i,j in enumerate(decoders):

if (j == "regression"):
df_merge = mt.mergeResults(df_regress,df_regressMU)

elif (j == "KF_observed"):
df_merge = mt.mergeResults(df_kfObs,df_kfObsMU)

elif (j == "KF_static"):
df_merge = mt.mergeResults(df_kfStatic,df_kfStaticMU)

# two distinguishable criteria for decoding on sessions
for k in range(2):

if (k == 0):
# get the unique kinematic axes
filt_criteria="kinematic_axis"

elif (k == 1):
# get the unique bin widths
filt_criteria="bin_width"

# get the unique objects for filter criteria
filter = np.unique(df_merge[filt_criteria])

# plot by filter criteria
for l,m in enumerate(filter):

iFilt = np.where(df_merge[filt_criteria] == m)[0]

# only look at indy
jFilt = np.where(df_merge["monkey"].iloc[iFilt] == "indy")[0]
ax[k][i].plot(df_merge["snr_ref"].iloc[iFilt].iloc[jFilt],\

df_merge["snr"].iloc[iFilt].iloc[jFilt], '.',\
ms=2, label=m)

# plot a 1 for 1 reference line
# (if results coordinates land on this, they match)
refLine = np.linspace(lowerR,upperR)
ax[k][i].plot(refLine, refLine, '--', lw=2, color="black")

# place axis and title labels
if (k == 0):

ax[k][i].set_title(j)

if (i == 0):
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ax[k][i].set_ylabel(filt_criteria + '\n\nMU SNR')

if (k == 1):
ax[k][i].set_xlabel("SU SNR")

# configure plot axes
ax[k][i].set_xlim(lowerR, upperR)
ax[k][i].set_ylim(lowerR, upperR)
ax[k][i].set_aspect('equal', adjustable='box')
ax[k][i].legend(frameon=False,markerscale=4)
ax[k][i].grid()

# adjust plots to fit tightly
f.tight_layout()

Figure 9. This plot shows a comparison for the SNR computed for each session, bin width, and
kinematic axis combination for the “indy” monkey for the three decoders implemented in this project.
The SU data looks to be superior across plots.

4.3.1 Multi-Unit vs. Single Unit Quantification

The code that follows collects quantitative results for SU and MU comparison for all permutations
of kinematic axis, bin width, and decoder (implemented in this project) for the “indy” session
data. The results collected are found from generating 100,000 sample bootstrap distribution on the
custom decoders and are as follows:
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• SU SNR Average performance
• MU SNR Average performance
• The average SNR change resulting in going from SU to MU data for a decoder
• The average SNR change resulting in going from SU to MU data for a decoder at the p >

~0.15 level
• Percent change in average SNR when going from SU to MU from the average SNR for SU at

the p > ~0.15 level

[612]: kinAx = ["combined","posx","posy","velx","vely","accx","accy"]
binWidth = ["combined",16,32,64,128]
decoder = ["regression", "KF_observed", "KF_static"]

# loop and print results for each decoder, for all permutations of
# bin width and kinematic state for the "indy" monkey
statData = []
for _,i in enumerate(decoder):

if (i == "regression"):
d = "regress"
dfRef = df_regress.copy() # SU results
dfComp= df_regressMU.copy() # MU results

elif (i == "KF_observed"):
d = "KFObs"
dfRef = df_kfObs.copy()
dfComp= df_kfObsMU.copy()

elif (i == "KF_static"):
d = "KFStat"
dfRef = df_kfStatic.copy()
dfComp= df_kfStaticMU.copy()

for _,j in enumerate(kinAx):
for _,k in enumerate(binWidth):

# this bootstrapping is the distribution of
# average SNR for the SU data
res_ref = mt.bootstrapPrimateDat(dfRef=dfRef, statistic="mean",\

decoder=i, monkey="indy",\
bin_width=k, kinAx=j)

# this bootstrapping is the distribution of
# average SNR for the MU data
res_mu = mt.bootstrapPrimateDat(dfRef=dfComp, statistic="mean",\

decoder=i, monkey="indy",\
bin_width=k, kinAx=j)

# this bootstrapping is the distribution of
# difference in average SNR between the SU and MU data
res_diff = mt.bootstrapPrimateDat(dfRef=dfRef, dfDat2=dfComp,\

statistic="mean_diff",\

58



decoder=i, monkey="indy",\
bin_width=k, kinAx=j,\
cLev=0.90)

# get average SNR for SU, MU, and their difference
res_ref_snr_avg = np.average(res_ref.bootstrap_distribution)
res_mu_snr_avg = np.average(res_mu.bootstrap_distribution)
res_diff_snr_avg = np.average(res_diff.bootstrap_distribution)

# percent change (SU->MU) from 1-p level to average
# of SU performance
desired_p = 0.15
N_bootstrap = len(res_diff.bootstrap_distribution)
hist, bin_edges = np.histogram(res_diff.bootstrap_distribution,\

1000)
i_p = np.where(np.cumsum(hist)/N_bootstrap >= desired_p)[0][0]

# the snr difference at the desired p level
snr_p = bin_edges[i_p]

# actual p level for the snr difference found at
# a p level targeted for the desired
# (most likely the desired p, but could be slightly different)
actual_p = 1-len(np.where(res_diff.bootstrap_distribution >=\

snr_p)[0])/N_bootstrap

# compute the percent increase in this project's
# KF static decoder from Makin's average SNR
# for the same decoder at the p level.
perIncSnr_p = snr_p/res_ref_snr_avg*100

# collect statistical results for printing
statData.append([ d,\

j,\
k,\
f"{res_ref_snr_avg:8.4f} dB",\
f"{res_mu_snr_avg:8.4f} dB",\
f"{res_diff_snr_avg:8.4f} dB",\
f"{snr_p:8.4f} dB(p > {actual_p:4.2f})",\
f"{perIncSnr_p:8.2f} %(p > {actual_p:4.2f})"])

# put statistical results in a df
dfmu_res = pd.DataFrame(statData, columns=["Decoder",\

"KinState",\
"Bin (ms)",\
"SU SNR Avg",\
"MU SNR Avg",\

59



"SNR Avg Change (SU->MU)",\
"SNR Change > (p)",\
"%Change SNR from SU Avg (p)"])

MU SNR Avg % Change from SU Avg at 85% Confidence Level
[613]: f, ax = plt.subplots(1,3, sharex=True, figsize=(13,4))

for i,j in enumerate(["regress", "KFObs", "KFStat"]):
# get dfmu_res by decoder
df_dec = dfmu_res.iloc[np.where(dfmu_res["Decoder"] == j)[0]]

# drop combined kinematic axes and bin width results
df_dec.drop(index=df_dec.iloc[np.where(df_dec["Bin (ms)"] ==␣

↪"combined")[0]].index.tolist(), inplace=True)
df_dec.drop(index=df_dec.iloc[np.where(df_dec["KinState"] ==␣

↪"combined")[0]].index.tolist(), inplace=True)

minR = 0
maxR = 0
for k in np.unique(df_dec["KinState"]):

df_dec_kAx = df_dec.iloc[np.where(df_dec["KinState"] == k)[0]]

snr_change_str = df_dec_kAx["%Change SNR from SU Avg (p)"].
↪to_string(index=False).split(" %(p > 0.15)\n")

snr_change_str[-1] = snr_change_str[-1].split(" %(p > 0.15)")[0]
snr_change_per = [float(s) for s in snr_change_str]

minR = min([minR, round(min(snr_change_per))])
maxR = max([maxR, round(max(snr_change_per))])

ax[i].plot(df_dec_kAx["Bin (ms)"], (snr_change_per), '.-', ms=8,␣
↪label=k)

if (minR < -60):
minR = -60

if (maxR > 100):
maxR = 100

ax[i].set_xticks(np.unique(df_dec_kAx["Bin (ms)"]).astype("int"))
ax[i].grid(which="minor")
ax[i].grid(which="major")
ax[i].set_yticks(np.linspace(round(minR,-1),round(maxR,-1),16))
ax[i].set_ylim([minR-2,maxR+2])
ax[i].set_xlabel("Bin Width (ms)", fontsize=14);
ax[i].set_title(j + "\nSU to MU % Change SNR Avg\n(p > 0.15)")
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ax[0].set_ylabel("SNR Avg % Change", fontsize=14)
ax[-1].legend(frameon=False, ncols=6, bbox_to_anchor=(0.2, -0.18))
plt.subplots_adjust(wspace=0.21)

Figure 10. This plot shows the percent change in the avg SNR for all decoders implemented when
decoding single-unit neural data vs. multi-unit neural data. The plot reports this SNR average
change at a 85% confidence level (p>0.15) for all kinematics and bin widths tested.

4.4 Get Results for Dropping Spikes
The code below will plot scatter plots for the case of dropping 5%, 15%, 25%, and 50% of spikes
from the neural observational data. The x-coordinate for the data points will be the reference, or
the case for no spikes dropped.

[742]: # neural signal decoders implemented in this project
decoders = ["regression", "KF_observed", "KF_static"]

# percentage of neural spikes dropped for decoder testing
dropSpksPer = [5, 15, 25, 50]

# plot for each decoder, a scatter plot distinguished by
# percentage of dropped spikes
f, ax = plt.subplots(1,len(decoders), figsize=(12,6))

# set the axes ranges for the plots (snr)
lowerR = -1
upperR = 8
for i,j in enumerate(decoders):

for k,l in enumerate(dropSpksPer):
if (j == "regression"):
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if (l == 5):
df_merge = mt.mergeResults(df_regress,df_regressD05)

elif (l == 15):
df_merge = mt.mergeResults(df_regress,df_regressD15)

elif (l == 25):
df_merge = mt.mergeResults(df_regress,df_regressD25)

elif (l == 50):
df_merge = mt.mergeResults(df_regress,df_regressD50)

elif (j == "KF_observed"):
if (l == 5):

df_merge = mt.mergeResults(df_kfObs,df_kfObsD05)
elif (l == 15):

df_merge = mt.mergeResults(df_kfObs,df_kfObsD15)
elif (l == 25):

df_merge = mt.mergeResults(df_kfObs,df_kfObsD25)
elif (l == 50):

df_merge = mt.mergeResults(df_kfObs,df_kfObsD50)
elif (j == "KF_static"):

if (l == 5):
df_merge = mt.mergeResults(df_kfStatic,df_kfStaticD05)

elif (l == 15):
df_merge = mt.mergeResults(df_kfStatic,df_kfStaticD15)

elif (l == 25):
df_merge = mt.mergeResults(df_kfStatic,df_kfStaticD25)

elif (l == 50):
df_merge = mt.mergeResults(df_kfStatic,df_kfStaticD50)

jFilt = np.where(df_merge["monkey"] == "indy")[0] # only look at indy

ax[i].plot(df_merge["snr_ref"].iloc[jFilt], df_merge["snr"].
↪iloc[jFilt],\

'.', ms=2, label=f"Drop {l}%")

# plot a 1 for 1 reference line
# (if results coordinates land on this, they match)
refLine = np.linspace(lowerR,upperR)
ax[i].plot(refLine, refLine, '--', lw=2, color="black")

# place axis and title labels
ax[i].set_title(j)
ax[i].set_ylabel('SU Spike Drop SNR')
ax[i].set_xlabel("SU 0% Spike Drop SNR")

# configure plot axes
ax[i].set_xlim(lowerR, upperR)
ax[i].set_ylim(lowerR, upperR)
ax[i].set_aspect('equal', adjustable='box')
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ax[i].legend(frameon=False,markerscale=4)
ax[i].grid()

# adjust plots to fit tightly
f.tight_layout()

Figure 11. This plot shows a comparison for the SNR computed for each decoder implemented in this
project for the “Indy” sessions when different percentage of spikes for the neural data are dropped.
For all decoders, dropping 50% of spikes appears to drop off substantially from the baseline (no
spikes dropped). The KF Supervised SNR results for 5-15% of spikes dropped appear to be around
the baseline. For the KF Static decoder, the results for 5-15% of spikes dropped appear to vary
much about the baseline. The results for the 5 % of spikes dropped case appear to even cross the
baseline upward, which would suggest better performance.

4.4.1 Spike Dropping Performance Quantification

The code that follows collects quantitative results for the neural data being dropped at random
for a 0 %, 5 %, 15 %, 25 %, and 50 % case. The performances are quantified for all permutations
of kinematic axis, bin width, and decoder (implemented in this project) for the “indy” session
data. The results collected are found from generating 100,000 sample bootstrap distribution on the
custom decoders and are as follows:

• SU SNR Average performance for the case with 0 % of dropped neural spike data
• Percent change in average SNR from the baseline (0 % drop) for dropping 5 % of dropped

neural spike data (at the p > 0.05 level).
• Percent change in average SNR from the baseline (0 % drop) for dropping 15 % of dropped

neural spike data (at the p > 0.05 level).
• Percent change in average SNR from the baseline (0 % drop) for dropping 25 % of dropped

neural spike data (at the p > 0.05 level).
• Percent change in average SNR from the baseline (0 % drop) for dropping 50 % of dropped

neural spike data (at the p > 0.05 level).

[743]: kinAx = ["combined","posx","posy","velx","vely","accx","accy"]
binWidth = ["combined",16,32,64,128]
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decoder = ["regression", "KF_observed", "KF_static"]

# loop and print results for each decoder, for all permutations of
# bin width and kinematic state for the "indy" monkey
data = []
for _,i in enumerate(decoder):

if (i == "regression"):
d = "regress"
dfRef = df_regress.copy() # 0 % dropped spikes
dfComp1= df_regressD05.copy() # 5 % dropped spikes
dfComp2= df_regressD15.copy() # 15 % dropped spikes
dfComp3= df_regressD25.copy() # 25 % dropped spikes
dfComp4= df_regressD50.copy() # 50 % dropped spikes

elif (i == "KF_observed"):
d = "KFObs"
dfRef = df_kfObs.copy()
dfComp1= df_kfObsD05.copy()
dfComp2= df_kfObsD15.copy()
dfComp3= df_kfObsD25.copy()
dfComp4= df_kfObsD50.copy()

elif (i == "KF_static"):
d = "KFStat"
dfRef = df_kfStatic.copy()
dfComp1= df_kfStaticD05.copy()
dfComp2= df_kfStaticD15.copy()
dfComp3= df_kfStaticD25.copy()
dfComp4= df_kfStaticD50.copy()

for _,j in enumerate(kinAx):
for _,k in enumerate(binWidth):

# this bootstrapping is the distribution of average SNR for the SU␣
↪data with 0 % spikes dropped

res_ref = mt.bootstrapPrimateDat(dfRef=dfRef, statistic="mean",\
decoder=i, monkey="indy",\
bin_width=k, kinAx=j)

# this bootstrapping is the distribution of average SNR for the SU␣
↪data with 5 % spikes dropped

res_diff05 = mt.bootstrapPrimateDat(dfRef=dfRef, dfDat2=dfComp1,\
statistic="mean_diff", decoder=i,\
monkey="indy", bin_width=k,␣

↪kinAx=j, cLev=0.90)

# this bootstrapping is the distribution of average SNR for the SU␣
↪data with 15 % spikes dropped

res_diff15 = mt.bootstrapPrimateDat(dfRef=dfRef, dfDat2=dfComp2,\
statistic="mean_diff", decoder=i,\
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monkey="indy", bin_width=k,␣
↪kinAx=j, cLev=0.90)

# this bootstrapping is the distribution of average SNR for the SU␣
↪data with 25 % spikes dropped

res_diff25 = mt.bootstrapPrimateDat(dfRef=dfRef, dfDat2=dfComp3,\
statistic="mean_diff", decoder=i,\
monkey="indy", bin_width=k,␣

↪kinAx=j, cLev=0.90)

# this bootstrapping is the distribution of average SNR for the SU␣
↪data with 50 % spikes dropped

res_diff50 = mt.bootstrapPrimateDat(dfRef=dfRef, dfDat2=dfComp4,\
statistic="mean_diff", decoder=i,\
monkey="indy", bin_width=k,␣

↪kinAx=j, cLev=0.90)

# get average SNR from the different spike drop SNR distributions
res_ref_snr_avg = np.average(res_ref.bootstrap_distribution)
res_diff05_snr_avg = np.average(res_diff05.bootstrap_distribution)
res_diff15_snr_avg = np.average(res_diff15.bootstrap_distribution)
res_diff25_snr_avg = np.average(res_diff25.bootstrap_distribution)
res_diff50_snr_avg = np.average(res_diff50.bootstrap_distribution)

# percent change from 1-p level to average for baseline
desired_p = 0.05 # desire 95 % confidence level
N_bootstrap = len(res_diff05.bootstrap_distribution) # number of␣

↪bootstrap sample stats

## 5 % drop case (SNR change from average of the case with 0 %␣
↪dropped spikes)

hist, bin_edges = np.histogram(res_diff05.
↪bootstrap_distribution,1000)

i_p = np.where(np.cumsum(hist)/N_bootstrap >= desired_p)[0][0]
snr_p = bin_edges[i_p]
actual_p05 = 1-len(np.where(res_diff05.bootstrap_distribution >=␣

↪snr_p)[0])/N_bootstrap
perIncSnr05_p = snr_p/res_ref_snr_avg*100

## 15 % drop case (SNR change from average of the case with 0 %␣
↪dropped spikes)

hist, bin_edges = np.histogram(res_diff15.
↪bootstrap_distribution,1000)

i_p = np.where(np.cumsum(hist)/N_bootstrap >= desired_p)[0][0]
snr_p = bin_edges[i_p]
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actual_p15 = 1-len(np.where(res_diff15.bootstrap_distribution >=␣
↪snr_p)[0])/N_bootstrap

perIncSnr15_p = snr_p/res_ref_snr_avg*100

## 25 % drop case (SNR change from average of the case with 0 %␣
↪dropped spikes)

hist, bin_edges = np.histogram(res_diff25.
↪bootstrap_distribution,1000)

i_p = np.where(np.cumsum(hist)/N_bootstrap >= desired_p)[0][0]
snr_p = bin_edges[i_p]
actual_p25 = 1-len(np.where(res_diff25.bootstrap_distribution >=␣

↪snr_p)[0])/N_bootstrap
perIncSnr25_p = snr_p/res_ref_snr_avg*100

## 50 % drop case (SNR change from average of the case with 0 %␣
↪dropped spikes)

hist, bin_edges = np.histogram(res_diff50.
↪bootstrap_distribution,1000)

i_p = np.where(np.cumsum(hist)/N_bootstrap >= desired_p)[0][0]
snr_p = bin_edges[i_p]
actual_p50 = 1-len(np.where(res_diff50.bootstrap_distribution >=␣

↪snr_p)[0])/N_bootstrap
perIncSnr50_p = snr_p/res_ref_snr_avg*100

# collect statistical results for printing
data.append([d,\

j,\
k,\
f"{res_ref_snr_avg:8.4f} dB",\
f"{perIncSnr05_p:8.2f}%<br>(p > {actual_p05:4.2f})",\
f"{perIncSnr15_p:8.2f}%<br>(p > {actual_p15:4.2f})",\
f"{perIncSnr25_p:8.2f}%<br>(p > {actual_p25:4.2f})",\
f"{perIncSnr50_p:8.2f}%<br>(p > {actual_p50:4.2f})"])

# put statistical results in a dfSpikeD_res
dfSpikeD_res = pd.DataFrame(data, columns=["Decoder",\

"KinState",\
"Bin (ms)",\
"SNR Avg",\
"SNR Change<br>( 5% drop)<br>(@ p Level)",\
"SNR Change<br>(15% drop)<br>(@ p Level)",\
"SNR Change<br>(25% drop)<br>(@ p Level)",\
"SNR Change<br>(50% drop)<br>(@ p Level)"])

# print the dataframe with vertical headers
# mt.format_vertical_headers(dfSpikeD_res)
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# with pd.option_context('display.max_rows', None, 'display.max_columns', None):
↪ # more options can be specified also

# display(dfSpikeD_res)

Spike Dropping Avg % Change from 0% Spikes Dropped at 95% Confidence Level
[751]: f, ax = plt.subplots(1,3, sharey=True, figsize=(13,5))

cm = plt.get_cmap('gist_rainbow')

for i,j in enumerate(["regress", "KFObs", "KFStat"]):
# get dfSpikeD_res by decoder
df_dec = dfSpikeD_res.iloc[np.where(dfSpikeD_res["Decoder"] == j)[0]]

# drop combined kinematic axes and bin width results
df_dec.drop(index=df_dec.iloc[np.where(df_dec["Bin (ms)"] ==␣

↪"combined")[0]].index.tolist(), inplace=True)
df_dec.drop(index=df_dec.iloc[np.where(df_dec["KinState"] !=␣

↪"combined")[0]].index.tolist(), inplace=True)

minR = 0
maxR = 0
c = 0
snr_change_D05_per = []
snr_change_D15_per = []
snr_change_D25_per = []
snr_change_D50_per = []
for k in np.unique(df_dec["Bin (ms)"]):

df_dec_bin = df_dec.iloc[np.where(df_dec["Bin (ms)"] == k)[0]]

snr_change_str = df_dec_bin["SNR Change<br>( 5% drop)<br>(@ p Level)"].
↪to_string(index=False).split("%<br>(p > 0.05)\n")

snr_change_str[-1] = snr_change_str[-1].split("%<br>(p > 0.05)")[0]
snr_change_D05_per.append([float(s) for s in snr_change_str][0])

snr_change_str = df_dec_bin["SNR Change<br>(15% drop)<br>(@ p Level)"].
↪to_string(index=False).split("%<br>(p > 0.05)\n")

snr_change_str[-1] = snr_change_str[-1].split("%<br>(p > 0.05)")[0]
snr_change_D15_per.append([float(s) for s in snr_change_str][0])

snr_change_str = df_dec_bin["SNR Change<br>(25% drop)<br>(@ p Level)"].
↪to_string(index=False).split("%<br>(p > 0.05)\n")

snr_change_str[-1] = snr_change_str[-1].split("%<br>(p > 0.05)")[0]
snr_change_D25_per.append([float(s) for s in snr_change_str][0])

snr_change_str = df_dec_bin["SNR Change<br>(50% drop)<br>(@ p Level)"].
↪to_string(index=False).split("%<br>(p > 0.05)\n")
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snr_change_str[-1] = snr_change_str[-1].split("%<br>(p > 0.05)")[0]
snr_change_D50_per.append([float(s) for s in snr_change_str][0])

minR = min([minR,␣
↪round(min(snr_change_D05_per)),round(min(snr_change_D15_per)),\

␣
↪round(min(snr_change_D25_per)),round(min(snr_change_D50_per))])

maxR = max([maxR,␣
↪round(max(snr_change_D05_per)),round(max(snr_change_D15_per)),\

␣
↪round(max(snr_change_D25_per)),round(max(snr_change_D50_per))])

ax[i].plot(np.unique(df_dec["Bin (ms)"]), (snr_change_D05_per), '.-',␣
↪ms=10, label="Drop 5%")

ax[i].plot(np.unique(df_dec["Bin (ms)"]), (snr_change_D15_per), '*-',␣
↪ms=10, label="Drop 15%")

ax[i].plot(np.unique(df_dec["Bin (ms)"]), (snr_change_D25_per), 'x-',␣
↪ms=10, label="Drop 25%")

ax[i].plot(np.unique(df_dec["Bin (ms)"]), (snr_change_D50_per), '^-',␣
↪ms=10, label="Drop 50%")

c += 1

if (minR < -60):
minR = -60

if (maxR > 100):
maxR = 100

ax[i].set_xticks(np.unique(df_dec["Bin (ms)"]).astype("int"))
ax[i].grid(which="minor")
ax[i].grid(which="major")
ax[i].set_yticks(np.arange(-63,3+3,3))
# ax[i].set_ylim([minR-2,maxR+2])
ax[i].set_xlabel("Bin Width (ms)", fontsize=14);
ax[i].set_title(j + "\n% Change SNR Avg from 0% Spike Drop\n(p > 0.05; all␣

↪kinematic axes)")

ax[0].set_ylabel("SNR Avg % Change", fontsize=14)
ax[-1].legend(frameon=False, ncols=6, bbox_to_anchor=(0.2, -0.18))
plt.subplots_adjust(wspace=0.05)
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Figure 12. The plots in this figure show avg SNR performance from a baseline (0% of dropped
spikes) for the case of 5%, 15%, 25%, and 50% of dropped (removed) spikes from single-unit neural
data passed into each decoder. Each individual line considers all kinematic states combined for
spikes processed at different bin widths. These results show the difference in avg SNR performance
at the 95% confidence level (p>0.05) obtained from bootstrapping for 100,000 results.

From the plots output from the code above, a few observations: one, the drop off in performance
for the linear regression decoder is also linear and matches, for the most part, the drop in spike
% (e.g. 15 % random drop in spikes results in 15 % of drop in SNR performance); second, the
KF Supervised has a drop in performance of only ~2-3 %, ~7-9 % and ~12-14 % when presented
with SU neural data that has 5 %, 15 %, and 25 % respectively of spikes randomly dropped from
it when considering any bin size with combined kinematic axis results (p > 0.05); finally, the KF
static decoder demonstrates an improvement, or approximately no affect, in SNR when dropping 5
% of neural spikes for any bin size and considering all kinematic results combined (p > 0.05). Also,
the KF unsupervised decoder demonstrates 5-6 % drop in performance when considering randomly
dropping 25 % of neural spike data when considering results for bin widths 16ms and 32ms and
kinematic axes combined.

5 Conclusion
This project’s goal was to create a Python library for neural signal decoding. This project imple-
mented three neural decoders: linear regression; KF supervised; and KF unsupervised with static
mapping to the states of interest. In linear regression, a least squares approximation was performed
to learn coefficients for a model that linearly transforms the neural spike data to the states of inter-
est. In the KF supervised, the parameters for a linear-Gaussian dynamical system (LGDS) model
are learned from ground truth data, or the states of interest, then a standard KF is applied on
the neural observational data to generate estimates for the states of interest and minimize their
uncertainty over time. The KF unsupervised decoder does not have access to ground truth data
at time of training and so an expectation maximization algorithm is applied to train the LGDS
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model as a system of latent states and neural data. The EM algorithm in KF unsupervised is
initialized with Factor Analysis and it makes use of a KF with a Rauch-Tung-Striebel Smoother in
its expectation step. Following training, the KF unsupervised applies a standard KF to estimate
latent states given observational neural data. A static linear transformation can then be applied
to map the latent states back to the states of interest.

The linear regression neural signal decoder implemented here matched closely to published results
for the same decoder applied on a published dataset— demonstrating a performance difference of
< 2 % in average SNR when considering all possible kinematic axes and binning (with < 1 %
in standard error for a bootstrap distribution of averages). For the same consideration, the KF
supervised also demonstrated results that matched closely with published results on the published
dataset (≈ 2 % difference in SNR average with < 1 % in standard error in bootstrap distribution).
The KF unsupervised with static mapping decoder implemented did not match the reference de-
coder’s published results but proved to outperform it. When considering all possible kinematic
axes and binning, the custom implementation of the KF unsupervised demonstrated an increase
> 59 % than its reference decoder’s average SNR performance (p > 0.05).

In testing MU data on the decoders, it generally underperformed the SU data by an SNR amount
> 10 % (and much greater at times) for all decoders. Though, when considering 128 ms bin
sizes and acceleration estimation, MU data caused only a drop by < 4 % and < 1 % in SNR for
the acceleration x and y axes respectively for the KF supervised decoder (p > 0.15); regression
demonstrated an increase of > 27 % and > 82 % in SNR for the same axes and consideration (p >
0.15).

In testing how well neural decoders handle spike dropping: the regression decoder, in most cases,
dropped off in SNR performance linearly and at the same percentage as the percentage of spikes
dropped from the observational data; the KF supervised dropped off in SNR performance at ~2-3
%, ~7-9 % and ~12-14 % when 5 %, 15 %, and 25 % of SU neural spikes were randomly removed
respectively and when considering any bin size and all kinematic axis results combined (p > 0.05);
the KF unsupervised decoder implemented here demonstrated improvement, or no affect, in SNR
when randomly dropping 5 % of neural spikes (considering any binning for all kinematics combined)
and exhibited a degradation of < 5 % when 25 % of spikes were dropped (considering the results
for all bin widths and kinematic axes combined).

All in all, this project was initiated with the goal to produce a neural signal decoding library in
Python that is sufficiently documented. The hope is that the library implemented here, with its
ability to reproduce results from published data on a published dataset, would prove convenient
and allow researchers to extend functionalities and contribute freely. Lastly, in considering future
efforts: adding the rEFH decoder to this library; figuring out why the results for the “loco” sessions
do not match that reported in the results file accompanying the dataset used here; and making a
comparison among decoders in their ability to transfer learning could all be beneficial to explore.
The rEFH decoders from Makin et al., 2018 demonstrated superior performance (in SNR) to other
decoders in that paper for their main experiment (binning at 64 ms). The dataset that this library
is built from features 2 subjects, 47 different experimental sessions, and contains data collected
over a span of 329 days, which makes this interesting when considering it for exploration of transfer
learning. For example, how will parameters learned from one subject or from days back transfer
over to a new experimental session?
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6 Appendix
6.1 Derivation of Posterior Distribution Parameters for Factor Analysis
The expectation and variance for the posterior in factor analysis can be found using the properties
for conditional properties of bi-variate normal distributions. Specifically, the properties that states
the conditional mean and variance of two Random Variables (RV) (say 𝑋𝑋𝑋 and 𝑌𝑌𝑌 ) can be found
respectively as:

𝐸[𝑋𝑋𝑋|𝑌𝑌𝑌 ] = 𝐸[𝑋𝑋𝑋] + 𝜌𝜌𝜌𝜎𝜎𝜎𝑋
𝜎𝜎𝜎𝑌

(𝑌𝑌𝑌 − 𝐸[𝑌𝑌𝑌 ]) (A1)

𝐶𝑜𝑣[𝑋𝑋𝑋|𝑌𝑌𝑌 ] = 𝜎𝜎𝜎𝑋(𝐼𝐼𝐼 − 𝜌𝜌𝜌2) (A2)

where,

𝜎𝜎𝜎 is the standard deviation for the RV specified in the subscript following the symbol;

𝜌𝜌𝜌 is the correlation coefficient that specifies the statistical relationship between the RV’s 𝑋𝑋𝑋 and 𝑌𝑌𝑌
and is defined as 𝜌𝜌𝜌 = 𝐶𝑜𝑣[𝑋𝑋𝑋,𝑌𝑌𝑌 ]

𝜎𝜎𝜎𝑋𝜎𝜎𝜎𝑌
### Derivation of Posterior Expectation for Factor Analysis

Now, find the expected expression for the posterior in FA, 𝐸[𝑧𝑧𝑧𝑚|𝑟𝑟𝑟𝑚]. Note: the subscript 𝑚 will be
dropped going forward for brevity and since all samples are assumed independent and identically
distributed (IID):

First, plug the latent state and observational data for 𝑋𝑋𝑋 and 𝑌𝑌𝑌 respectively into Equation (A1):

𝐸[𝑧𝑧𝑧|𝑟𝑟𝑟] = 𝐸[𝑧𝑧𝑧] + 𝜌𝜌𝜌𝜎𝜎𝜎𝑧
𝜎𝜎𝜎𝑟

(𝑟𝑟𝑟 − 𝐸[𝑟𝑟𝑟])

In factor analysis, the prior distribution is assumed 𝑝(𝑧𝑧𝑧) 𝑁(0, 𝐼𝑁) and so the expectation 𝐸[𝑧𝑧𝑧] and
standard deviation 𝜎𝜎𝜎𝑧 can be set to 0 and 𝐼𝑁𝐼𝑁𝐼𝑁 , respectively. The expectation of the observed data
is 𝜇𝜇𝜇 so that can be updated in the equation as well. Also, plug in the definition for 𝜌𝜌𝜌:

⇒ 𝐸[𝑧𝑧𝑧|𝑟𝑟𝑟] = 𝐶𝑜𝑣[𝑧𝑧𝑧,𝑟𝑟𝑟]
𝜎𝜎𝜎𝑧𝜎𝜎𝜎𝑟

1
𝜎𝜎𝜎𝑟

(𝑟𝑟𝑟 − 𝜇𝜇𝜇) = 𝐶𝑜𝑣[𝑧𝑧𝑧, 𝑟𝑟𝑟]
𝜎𝜎𝜎𝑟𝜎𝜎𝜎𝑟′ (𝑟𝑟𝑟 − 𝜇𝜇𝜇) = 𝐶𝑜𝑣[𝑧𝑧𝑧,𝑟𝑟𝑟]

𝐶𝑜𝑣[𝑟𝑟𝑟, 𝑟𝑟𝑟] (𝑟𝑟𝑟 − 𝜇𝜇𝜇)

Using the definition of covariance that says 𝐶𝑜𝑣[𝑋𝑋𝑋,𝑌𝑌𝑌 ] = 𝐸[𝑋𝑋𝑋𝑌𝑌𝑌 ′] − 𝐸[𝑋𝑋𝑋]𝐸[𝑌𝑌𝑌 ]′, the above becomes:

⇒ 𝐸[𝑧𝑧𝑧|𝑟𝑟𝑟] = 𝐸[𝑧𝑧𝑧𝑟𝑟𝑟′] − 𝐸[𝑧𝑧𝑧]𝐸[𝑟𝑟𝑟]′
𝐸[𝑟𝑟𝑟𝑟𝑟𝑟′] − 𝐸[𝑟𝑟𝑟]𝐸[𝑟𝑟𝑟]′ (𝑟𝑟𝑟 − 𝜇𝜇𝜇) = 𝐸[𝑧𝑧𝑧𝑟𝑟𝑟′]

𝐸[𝑟𝑟𝑟𝑟𝑟𝑟′] − 𝜇𝜇𝜇𝜇𝜇𝜇′ (𝑟𝑟𝑟 − 𝜇𝜇𝜇)

(since 𝐸[𝑧𝑧𝑧] = 0 and 𝐸[𝑟𝑟𝑟] = 𝜇𝜇𝜇).

Plugging in the FA LGDS model for the observation data, 𝑟𝑟𝑟:

⇒ 𝐸[𝑧𝑧𝑧|𝑟𝑟𝑟] = 𝐸[𝑧𝑧𝑧(𝐿𝐿𝐿𝑧𝑧𝑧 + 𝜇𝜇𝜇 + 𝜖)′]
𝐸[(𝐿𝐿𝐿𝑧𝑧𝑧 + 𝜇𝜇𝜇 + 𝜖)(𝐿𝐿𝐿𝑧𝑧𝑧 + 𝜇𝜇𝜇 + 𝜖)′] − 𝜇𝜇𝜇𝜇𝜇𝜇′ (𝑟𝑟𝑟 − 𝜇𝜇𝜇)

Expanding multiplication:
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⇒ 𝐸[𝑧𝑧𝑧|𝑟𝑟𝑟] = 𝐸[𝑧𝑧𝑧𝑧𝑧𝑧′𝐿𝐿𝐿′] + 𝐸[𝑧𝑧𝑧𝜇𝜇𝜇′] + 𝐸[𝑧𝑧𝑧𝜖′]
𝐸[𝐿𝐿𝐿𝑧𝑧𝑧𝑧𝑧𝑧′𝐿𝐿𝐿′] + 𝐸[𝐿𝐿𝐿𝑧𝑧𝑧𝜇𝜇𝜇′] + 𝐸[𝐿𝐿𝐿𝑧𝑧𝑧𝜖′] + 𝐸[𝜇𝜇𝜇𝑧𝑧𝑧′𝐿𝐿𝐿′] + 𝐸[𝜇𝜇𝜇𝜇𝜇𝜇′] + 𝐸[𝜇𝜇𝜇𝜖′] + 𝐸[𝜖𝑧𝑧𝑧′𝐿𝐿𝐿′] + 𝐸[𝜖𝜇𝜇𝜇′] + 𝐸[𝜖𝜖′] − 𝜇𝜇𝜇𝜇𝜇𝜇′ (𝑟𝑟𝑟−𝜇𝜇𝜇)

⇒ 𝐸[𝑧𝑧𝑧|𝑟𝑟𝑟] = 𝐸[𝑧𝑧𝑧𝑧𝑧𝑧′𝐿𝐿𝐿′]
𝐸[𝐿𝐿𝐿𝑧𝑧𝑧𝑧𝑧𝑧′𝐿𝐿𝐿′] + 𝐸[𝜇𝜇𝜇𝜇𝜇𝜇′] + 𝐸[𝜖𝜖′] − 𝜇𝜇𝜇𝜇𝜇𝜇′ (𝑟𝑟𝑟 − 𝜇𝜇𝜇)

(which is a result of removing the Expectations that are 0 (include just 𝑧𝑧𝑧 or just 𝜖 and a possible
constant or both the product of 𝑧𝑧𝑧 and 𝜖)). Moving constants out of the expectations:

⇒ 𝐸[𝑧𝑧𝑧|𝑟𝑟𝑟] = 𝐸[𝑧𝑧𝑧𝑧𝑧𝑧′]𝐿𝐿𝐿′

𝐿𝐿𝐿𝐸[𝑧𝑧𝑧𝑧𝑧𝑧′]𝐿𝐿𝐿′ + 𝜇𝜇𝜇𝜇𝜇𝜇′ + 𝐸[𝜖𝜖′] − 𝜇𝜇𝜇𝜇𝜇𝜇′ (𝑟𝑟𝑟 − 𝜇𝜇𝜇)

and since 𝐸[𝑧𝑧𝑧𝑧𝑧𝑧′] = 𝐼𝑁𝐼𝑁𝐼𝑁 and 𝐸[𝜖𝜖′] = ΨΨΨ:

⇒ 𝐸[𝑧𝑧𝑧|𝑟𝑟𝑟] = 𝐿𝐿𝐿′

𝐿𝐿𝐿𝐿𝐿𝐿′ + ΨΨΨ(𝑟𝑟𝑟 − 𝜇𝜇𝜇) = 𝐿𝐿𝐿′(𝐿𝐿𝐿𝐿𝐿𝐿′ + ΨΨΨ)−1(𝑟𝑟𝑟 − 𝜇𝜇𝜇) or 𝛽𝛽𝛽(𝑟𝑟𝑟 − 𝜇𝜇𝜇)

6.1.1 Derivation of Posterior Variance for Factor Analysis

Next, for the derivation of the variance for the posterior, plug in the definition for 𝜌𝜌𝜌 and replace 𝑋𝑋𝑋
and 𝑌𝑌𝑌 with the latent state and observational data respectively for Equation (A2):

𝐶𝑜𝑣[𝑧𝑧𝑧|𝑟𝑟𝑟] = 𝜎𝜎𝜎𝑧(𝐼𝑁𝐼𝑁𝐼𝑁 − 𝐶𝑜𝑣[𝑧𝑧𝑧, 𝑟𝑟𝑟]
𝜎𝜎𝜎𝑧𝜎𝜎𝜎𝑟

𝐶𝑜𝑣[𝑧𝑧𝑧, 𝑟𝑟𝑟]′
𝜎𝜎𝜎′𝑟𝜎𝜎𝜎′𝑧

) = (𝐼𝑁𝐼𝑁𝐼𝑁 − 𝐶𝑜𝑣[𝑧𝑧𝑧, 𝑟𝑟𝑟]𝐶𝑜𝑣[𝑧𝑧𝑧,𝑟𝑟𝑟]′
𝜎𝜎𝜎𝑟𝜎𝜎𝜎′𝑟

) = (𝐼𝑁𝐼𝑁𝐼𝑁 − 𝐶𝑜𝑣[𝑧𝑧𝑧,𝑟𝑟𝑟]𝐶𝑜𝑣[𝑧𝑧𝑧, 𝑟𝑟𝑟]′
𝐶𝑜𝑣[𝑟𝑟𝑟, 𝑟𝑟𝑟] )

which, as was seen in the Derivation of Posterior Expectation, 𝐶𝑜𝑣[𝑧𝑧𝑧,𝑟𝑟𝑟]
𝐶𝑜𝑣[𝑟𝑟𝑟,𝑟𝑟𝑟] = 𝛽𝛽𝛽 and 𝐶𝑜𝑣[𝑧𝑧𝑧,𝑟𝑟𝑟] = 𝐿𝐿𝐿′, so:

⇒ 𝐶𝑜𝑣[𝑧𝑧𝑧|𝑟𝑟𝑟] = (𝐼𝑁𝐼𝑁𝐼𝑁 − 𝛽𝛽𝛽𝐿𝐿𝐿)
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