
October 25th, 2002

Shivali Srivastava

Candidate for Master of Science in Electrical Engineering
Institute for Signal and Information Processing

Department of Electrical and Computer Engineering
Mississippi State University

Fast Gaussian Evaluations in Large
Vocabulary Continuous Speech

Recognition

Organization of Presentation
* Motivation for fast Gaussian computation (FGC)

* Bucket Box Intersection (BBI) algorithm and issues
related to the BBI algorithm

* Extended BBI (EBBI) algorithm

* Comparison between the EBBI and BBI algorithms

* Comparison between the EBBI algorithm and Gaussian
Clipping (GC) technique

* Experimental results and analysis

* Conclusions and future work

State likelihood computations in the statistical modeling
component of the speech recognition systems contribute
50%-80% to the computational load

The likelihood computation is dominated by a few
(significant) Gaussian components and can be computed
solely from these Gaussian components without a
significant increase in the system WER

Need an efficient way to find the most significant
Gaussians for the likelihood computation

Motiv ation

*

*

*

se of a pre-computed multi-dimensional decision tree
k-d tree) to determine the set of the most significant
aussians

epresents all the Gaussians in the mixture by using the
aussian boxes and uses the Gaussian boxes to build the
-d trees

estrict the likelihood computation to the Gaussians with
oxes that contain the vector

lgorithm parameters — tree depth and relative threshold

BBI Algorithm (I)

* U

(
G

* R
G
k

* R
b

* A

BBI Algorithm (II)

1

L

L

L

L

L

L

L

L

U U
U

U

U

U

U

U

2

3

4

5

6

8

7

j

C

D

E

F

H

I J

K

L

N

O P

Q

R

°
S

x j

2

4
6

8
2

3
6

1

2

3

6

7

8

3

6

7

3

6

1

5

6

1

ABCD

ABEF FECD

AGHF GBEH FIJD IECJ

1 2 3 4 5 6 7 8, , , , , , ,()
EF

GH IJ

KL MN OP QR

1 2 3 4 6 8, , , , ,() 1 3 5 6 7 8, , , , ,()

2 4 6 8, , ,() 1 2 3 6, , ,() 3 6 7 8, , ,() 1 3 5 6, , ,()

Buckets
B

G

M

X

k

A

xk

timization criterion:

Optimization criterion used by the BBI algorithm
requires the selection of a balanced hyperplane that
produces a minimum number of Gaussian splits

In practical applications there may be more than one
collection of hyperplanes that produce the same
(minimum) number of Gaussian splits

ture weight re-normalization:

BBI algorithm restricts the likelihood computation to
the Gaussians that contain the feature vector but it
doesn’t re-normalize the mixture weights

ssues Related to the BBI Algorithm

Op

•

•

Mix

•

I

 modified optimization criterion for the multiple
ima in Gaussian splits includes following steps:

inding the variance of those coordinate axes whose
yperplanes produce a minimum number of
aussian splits

hoosing the hyperplane corresponding to the
oordinate axis with the highest variance

EBBI Algorithm
dified Optimization Criterion (I)
* The
min

* F
h
G

* C
c

A Mo

 Modified Optimization Criterion (II)

j

1

2

6

4

5
* P B1

j

k

1

2

6

3

4

5
* P

A

B

CASE 1
CASE 2

Given the positions and forms of the Gaussians in the
region, Gaussians 2 and 4 can contain the vector
(shown in the figure) with an equal probability

P

A
k

3A1

*

Hyperplanes and give a balanced division and

produce the same (= 2) number of Gaussian splits

A k-d tree obtained by using the hyperplane

produces a higher approximation error

Under the framework of the division hyperplane ,
Gaussians 2 and 4 both contain the vector

A k-d tree obtained by using the hyperplane
produces a lower approximation error

In general, the hyperplane produces a lower
approximation error for all the vectors in the shaded
region

AB A1B1

A1B1

AB

P

AB

AB

 Modified Optimization Criterion (III)

*

*

*

*

*

A

ixture W eight Re-normalization (I)
The log-likelihood of a feature vector in a

k-dimensional space is , where,

 is the weight of the Gaussian and is the pdf

of the Gaussian in a mixture of Gaussians

If a feature vector lies in a bucket containing the
Gaussians and , the log-likelihood of the vector is:

L wm Pm⋅()log
m 1=

M
∑=

wm mth Pm

mth M

l l p+

L wl Pl⋅()log wl p+ Pl p+⋅()log+=
M
*

*

ixture W eight Re-normalization (II)
Using normalized weights, the log-likelihood is:

If ,

Since or, ,

Use of re-normalized weights results in higher
log-likelihoods, which in turn leads to an improved
system performance

L
′ wl

wl wl p++
---------------------------- Pl⋅

 
 
 

log
wl p+

wl wl p++
---------------------------- Pl p+⋅

 
 
 

log+=

wl wl p++ C= L
′

L 2 Clog⋅–=

C 1≤ Clog 0≤ L
′

L≥
M
*

*

*

*

Selection of a K-d T ree
* There are several options for how we apply a k-d tree to

the HMM model (i) one k-d tree per state, (ii)) a single
large k-d tree shared by all the HMM states, or
(iii)multiple k-d trees with each tree sharing a subset of
the states

* Previous implementations of the BBI algorithm
successfully employed the latter two options

* The EBBI algorithm uses one k-d tree for each HMM
state, because it results in the lowest approximation error
and produces the significant speedups as compared to
the other two options

Industry-standard OGI-Alphadigits database (telephone
database of 6-word strings) used

39-dimensional MFCC features used

64-mixture cross-word triphone models used

K-d trees with a tree depth 6 and an error threshold 0.4
used for the two algorithms

The baseline system produced a 10.1% WER and used
57.9% of the total CPU time for the Gaussian
Computations

EBBI and BBI Algorithms (I)

*

*

*

*

*

EBBI and BBI Algorithms (II)

The EBBI algorithm used the modified optimization
criterion, mixture weight re-normalization and state
level k-d trees

The EBBI algorithm produced a significant
improvement in WER over the BBI algorithm

The EBBI algorithm produced only a 1.8% lower
speedup than the BBI algorithm (not a significant
difference)

Algorithm
% of Total CPU Time used by Gaussian

Evaluations
WER
(%)

EBBI 29.1 10.2

BBI 24.7 11.4
*

*

*

EBBI Algorithm and GC T echnique
Gaussian clipping technique is used to generate
lower-order mixture models from higher-order mixture
models by removing the Gaussians with the lower
mixture weights

For a 50% speedup in the likelihood computation, the
EBBI algorithm produced a 12.3% improvement over
the GC approach

Gaussian
speedup (%)

Technique used WER (%)

25
EBBI 10.3

GC 11.5

50
EBBI 10.7

GC 12.2
*

*

ormance of the EBBI Algorithm
TIDIGITS Database

mall database containing continuous digits
cabulary size of 11)

 relative threshold used by the algorithm was varied
 0.2 to 0.8 in steps of 0.1

 trees with depth between 3 and 5 were used

 system which is not using the EBBI algorithm (a
EBBI system) produced a 0.6% WER

ssian evaluations took 24.4% of the total CPU time
his system
Perf

* A s
(vo

* The
from

* K-d

* The
No

* Gau
in t

TIDIGITS - Gaussian Speedup

For a fixed tree depth, the Gaussian speedup increases
with an increase in the relative threshold

For a fixed threshold, the Gaussian speedup increases
with an increase in the k-d tree depth
*

*

TIDIGITS - WER

For a fixed tree depth, the WER increases with an
increase in the relative threshold

For a fixed threshold, the WER increases with an
increase in the k-d tree depth
*

*

TIDIGITS - Speedup and WER

Best performance — a tree depth of 3 with a relative
threshold of 0.4 produced a 45% speedup in score
computations without degrading the performance of the
system
*

Telephone database of 6-word strings

39-dimensional MFCC features used

HMM system used cross-word context-dependent
triphone models

5-state left-to-right models used

Used to evaluate the algorithm performance as the
function of the number of mixture components — 16, 32
and 64 mixture Gaussians per state used

OGI-AD Database

*

*

*

*

*

The relative threshold was varied from 0.2 to 0.8 and the
k-d tree depth was varied from 3 to 5

System that didn’t use the EBBI algorithm produced a
10.3% WER and it used 31.7% of the total CPU time for
the Gaussian evaluations

For a depth of 5, as the threshold increased from 0.2 to
0.8, the Gaussian speedup increased from 39% to 79%
and the WER increased from 10.4% to 15.6%

For a relative threshold of 0.5, as the tree depth
increased from 3 to 5, the Gaussian speedup increased
from 46% to 58% and the WER increased from 10.9%
to 11.2%

AD - 16 Mixture Components (I)

*

*

*

*

Best performance — a tree depth of 5 and a threshold of
0.3 produced a 41% speedup with only a 2% relative
degradation in WER

AD - 16 Mixture Components (II)
*

The relative threshold was varied from 0.3 to 0.8 and the
k-d tree depth was varied from 3 to 6

System that didn’t use the EBBI algorithm produced a
10.3% WER and it used 43.1% of the total CPU time for
the Gaussian evaluations

The CPU time used by the Gaussian evaluations is 36%
higher than the CPU time used by the Gaussian
evaluations in the system using 16-mixture components

AD - 32 Mixture Components (I)

*

*

*

Best performance — a tree depth of 6 and a threshold of
0.3 produced a 48% speedup without degrading the
performance of the system

AD - 32 Mixture Components (II)
*

Effect of Mixture Components
The algorithm becomes more attractive as the number of
Gaussians increases

A 48% speedup is obtained,

* without any approximation error when 32-mixture
components were used

* with a 4% relative approximation error when
16-mixture components were used

In general, the algorithm produces the same amount of
speedup with a significantly lower increase in WER for
the systems with higher mixture components
*

*

*

SWB Database
HMM system used cross-word context-dependent
triphone models

39-dimensional MFCC features used

The relative threshold was varied from 0.3 to 0.8 and the
k-d tree depth was varied from 3 to 5

System that didn’t use the EBBI algorithm produced a
41.1% WER and it used 9.9% of the total CPU time for
the Gaussian evaluations

The EBBI algorithm doubled the speed of the score
computation with only a 3.4% relative increase in the
WER
*

*

*

*

*

Conc lusions
Compared to the BBI algorithm, the EBBI algorithm
produced a significantly lower WER (11.4% vs. 10.2%)
with only a 1.8% reduction in speedup

Compared to the GC technique, the EBBI algorithm
produced a significantly lower WER (12.2% vs. 10.7%)
for a 50% speedup in the likelihood computation

Algorithm performance for various databases
* TIDIGITS — a 45% speedup without any

degradation in the system performance
* AD — a 48% speedup without any degradation

in the system performance
* SWB — a 50% speedup with only a 3.4%

relative increase in the system WER
*

*

*

Future W ork
Need to study the performance of the algorithm under
various possible hyperplanes resulting in a balanced
distribution for a coordinate axis

* the k-d trees obtained by using different hyperplanes
may result in a different set of most significant
Gaussians

Include the mixture weights in computing the Gaussian
boxes

* may improve the algorithm performance without
an additional computational cost during recognition
*

*

Bentley, “Multidimensional Binary Search Trees Used for Associative Searching,”
mmunications of the ACM, vol. 18, no. 5, pp. 509-517, September 1975.

Ramasubramanian and K. Paliwal, “A generalized Optimization of the K-d Tree for

st Nearest Neighbor Search,” Proceedings of 4th IEEE Region 10 International
nference on TENCON, pp. 565-568, November 1989.

Fritsch, and I. Rogina, “The Bucket Box Intersection (BBI) Algorithm for fast
proximative evaluation of Diagonal Mixture Gaussians,” Proceedings of Interna-
nal Conference on Acoustics, Speech, and Signal Processing, vol. 1, pp. 837-840,
96.

Fritsch, I. Rogina, T. Sloboda, A. Waibel, “Speeding Up The Score Computation
HMM Speech Recognizers With The Bucket Voronoi Intersection Algorithm,” Pro-
eding of the EUROSPEECH, vol 2, pp. 1091-1094, Madrid, Spain, 1995.

References

1. J.

Co

2. V.

Fa
Co

3. J.
ap
tio
19

4. J.
Of
ce

	* State likelihood computations in the statistical modeling component of the speech recognition s...
	* The likelihood computation is dominated by a few (significant) Gaussian components and can be c...
	* Need an efficient way to find the most significant Gaussians for the likelihood computation
	Motivation
	BBI Algorithm (I)
	BBI Algorithm (II)
	Issues Related to the BBI Algorithm
	EBBI Algorithm A Modified Optimization Criterion (I)
	A Modified Optimization Criterion (II)
	A Modified Optimization Criterion (III)
	Mixture Weight Re-normalization (I) Mixture Weight Re-normalization (II)
	EBBI and BBI Algorithms (I)
	EBBI and BBI Algorithms (II)
	EBBI Algorithm and GC Technique
	Performance of the EBBI Algorithm TIDIGITS Database
	TIDIGITS - Gaussian Speedup
	TIDIGITS - WER
	TIDIGITS - Speedup and WER
	OGI-AD Database
	AD - 16 Mixture Components (I)
	AD - 16 Mixture Components (II)
	AD - 32 Mixture Components (I)
	AD - 32 Mixture Components (II)
	Effect of Mixture Components
	SWB Database
	Conclusions
	Future Work
	References
	Organization of Presentation
	Fast Gaussian Evaluations in Large Vocabulary Continuous Speech Recognition
	* Use of a pre-computed multi-dimensional decision tree (k-d tree) to determine the set of the mo...
	* Represents all the Gaussians in the mixture by using the Gaussian boxes and uses the Gaussian b...
	* Restrict the likelihood computation to the Gaussians with boxes that contain the vector
	* Algorithm parameters — tree depth and relative threshold
	* Given the positions and forms of the Gaussians in the region, Gaussians 2 and 4 can contain the...
	Optimization criterion:
	• Optimization criterion used by the BBI algorithm requires the selection of a balanced hyperplan...
	• In practical applications there may be more than one collection of hyperplanes that produce the...

	Mixture weight re-normalization:
	• BBI algorithm restricts the likelihood computation to the Gaussians that contain the feature ve...
	* The modified optimization criterion for the multiple minima in Gaussian splits includes followi...
	* Finding the variance of those coordinate axes whose
	hyperplanes produce a minimum number of
	Gaussian splits
	* Choosing the hyperplane corresponding to the
	coordinate axis with the highest variance
	* Using normalized weights, the log-likelihood is:
	* If ,
	* Since or, ,
	* Use of re-normalized weights results in higher log-likelihoods, which in turn leads to an impro...
	* Hyperplanes and give a balanced division and produce the same (= 2) number of Gaussian splits
	* A k-d tree obtained by using the hyperplane produces a higher approximation error
	* Under the framework of the division hyperplane , Gaussians 2 and 4 both contain the vector
	* A k-d tree obtained by using the hyperplane produces a lower approximation error
	* In general, the hyperplane produces a lower approximation error for all the vectors in the shad...
	* Industry-standard OGI-Alphadigits database (telephone database of 6-word strings) used
	* 39-dimensional MFCC features used
	* 64-mixture cross-word triphone models used
	* K-d trees with a tree depth 6 and an error threshold 0.4 used for the two algorithms
	* The baseline system produced a 10.1% WER and used 57.9% of the total CPU time for the Gaussian ...
	* The EBBI algorithm used the modified optimization criterion, mixture weight re-normalization an...
	* The EBBI algorithm produced a significant improvement in WER over the BBI algorithm
	* The EBBI algorithm produced only a 1.8% lower speedup than the BBI algorithm (not a significant...
	* For a fixed tree depth, the WER increases with an increase in the relative threshold
	* For a fixed threshold, the WER increases with an increase in the k-d tree depth
	* For a fixed tree depth, the Gaussian speedup increases with an increase in the relative threshold
	* For a fixed threshold, the Gaussian speedup increases with an increase in the k-d tree depth
	* Motivation for fast Gaussian computation (FGC)
	* Bucket Box Intersection (BBI) algorithm and issues related to the BBI algorithm
	* Extended BBI (EBBI) algorithm
	* Comparison between the EBBI and BBI algorithms
	* Comparison between the EBBI algorithm and Gaussian Clipping (GC) technique
	* Experimental results and analysis
	* Conclusions and future work

	Selection of a K-d Tree
	* There are several options for how we apply a k-d tree to the HMM model (i) one k-d tree per sta...
	* Previous implementations of the BBI algorithm successfully employed the latter two options
	* The EBBI algorithm uses one k-d tree for each HMM state, because it results in the lowest appro...
	* Best performance — a tree depth of 3 with a relative threshold of 0.4 produced a 45% speedup in...
	* Telephone database of 6-word strings
	* 39-dimensional MFCC features used
	* HMM system used cross-word context-dependent triphone models
	* 5-state left-to-right models used
	* Used to evaluate the algorithm performance as the function of the number of mixture components ...
	* The relative threshold was varied from 0.2 to 0.8 and the k-d tree depth was varied from 3 to 5
	* System that didn’t use the EBBI algorithm produced a 10.3% WER and it used 31.7% of the total C...
	* For a depth of 5, as the threshold increased from 0.2 to 0.8, the Gaussian speedup increased fr...
	* For a relative threshold of 0.5, as the tree depth increased from 3 to 5, the Gaussian speedup ...
	* Best performance — a tree depth of 5 and a threshold of 0.3 produced a 41% speedup with only a ...
	* The relative threshold was varied from 0.3 to 0.8 and the k-d tree depth was varied from 3 to 6
	* System that didn’t use the EBBI algorithm produced a 10.3% WER and it used 43.1% of the total C...
	* The CPU time used by the Gaussian evaluations is 36% higher than the CPU time used by the Gauss...
	* Best performance — a tree depth of 6 and a threshold of 0.3 produced a 48% speedup without degr...
	* HMM system used cross-word context-dependent triphone models
	* 39-dimensional MFCC features used
	* The relative threshold was varied from 0.3 to 0.8 and the k-d tree depth was varied from 3 to 5
	* System that didn’t use the EBBI algorithm produced a 41.1% WER and it used 9.9% of the total CP...
	* The EBBI algorithm doubled the speed of the score computation with only a 3.4% relative increas...
	October 25th, 2002
	Shivali Srivastava
	Candidate for Master of Science in Electrical Engineering
	Institute for Signal and Information Processing
	Department of Electrical and Computer Engineering
	Mississippi State University
	* The log-likelihood of a feature vector in a k-dimensional space is , where, is the weight of th...
	* If a feature vector lies in a bucket containing the Gaussians and , the log-likelihood of the v...
	* Gaussian clipping technique is used to generate lower�order mixture models from higher-order mi...
	* For a 50% speedup in the likelihood computation, the EBBI algorithm produced a 12.3% improvemen...
	1. J. Bentley, “Multidimensional Binary Search Trees Used for Associative Searching,” Communicati...
	2. V. Ramasubramanian and K. Paliwal, “A generalized Optimization of the K-d Tree for Fast Neares...
	3. J. Fritsch, and I. Rogina, “The Bucket Box Intersection (BBI) Algorithm for fast approximative...
	4. J. Fritsch, I. Rogina, T. Sloboda, A. Waibel, “Speeding Up The Score Computation Of HMM Speech...

	* Compared to the BBI algorithm, the EBBI algorithm produced a significantly lower WER (11.4% vs....
	* Compared to the GC technique, the EBBI algorithm produced a significantly lower WER (12.2% vs. ...
	* Algorithm performance for various databases
	* TIDIGITS — a 45% speedup without any
	degradation in the system performance
	* AD — a 48% speedup without any degradation
	in the system performance
	* SWB — a 50% speedup with only a 3.4%
	relative increase in the system WER
	* Need to study the performance of the algorithm under various possible hyperplanes resulting in ...
	* the k-d trees obtained by using different hyperplanes
	may result in a different set of most significant
	Gaussians
	* Include the mixture weights in computing the Gaussian boxes
	* may improve the algorithm performance without
	an additional computational cost during recognition
	* The algorithm becomes more attractive as the number of Gaussians increases
	* A 48% speedup is obtained,
	* without any approximation error when 32-mixture
	components were used
	* with a 4% relative approximation error when
	16- mixture components were used
	* In general, the algorithm produces the same amount of speedup with a significantly lower increa...
	* A small database containing continuous digits (vocabulary size of 11)
	* The relative threshold used by the algorithm was varied from 0.2 to 0.8 in steps of 0.1
	* K-d trees with depth between 3 and 5 were used
	* The system which is not using the EBBI algorithm (a No EBBI system) produced a 0.6% WER
	* Gaussian evaluations took 24.4% of the total CPU time in this system

