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State likelihood computations in the statistical modeling
component of the speech recognition systems contribute
50%-80% to the computational load

The likelihood computation is dominated by a few
(significant) Gaussian components and can be computed
solely from these Gaussian components without a
significant increase in the system WER

Need an efficient way to find the most significant
Gaussians for the likelihood computation

Motiv ation
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se of a pre-computed multi-dimensional decision tree
k-d tree) to determine the set of the most significant
aussians

epresents all the Gaussians in the mixture by using the
aussian boxes and uses the Gaussian boxes to build the
-d trees

estrict the likelihood computation to the Gaussians with
oxes that contain the vector

lgorithm parameters — tree depth and relative threshold

BBI Algorithm (I)
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BBI Algorithm (II)
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timization criterion:

Optimization criterion used by the BBI algorithm
requires the selection of a balanced hyperplane that
produces a minimum number of Gaussian splits

In practical applications there may be more than one
collection of hyperplanes that produce the same
(minimum) number of Gaussian splits

ture weight re-normalization:

BBI algorithm restricts the likelihood computation to
the Gaussians that contain the feature vector but it
doesn’t re-normalize the mixture weights

ssues Related to the BBI Algorithm
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 modified optimization criterion for the multiple
ima in Gaussian splits includes following steps:

inding the variance of those coordinate axes whose
yperplanes produce a minimum number of
aussian splits

hoosing the hyperplane corresponding to the
oordinate axis with the highest variance

EBBI Algorithm
dified Optimization Criterion (I)
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 Modified Optimization Criterion (II)
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Given the positions and forms of the Gaussians in the
region, Gaussians 2 and 4 can contain the vector
(shown in the figure) with an equal probability
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Hyperplanes  and  give a balanced division and

produce the same (= 2) number of Gaussian splits

A k-d tree obtained by using the hyperplane

produces a higher approximation error

Under the framework of the division hyperplane ,
Gaussians 2 and 4 both contain the vector

A k-d tree obtained by using the hyperplane
produces a lower approximation error

In general, the hyperplane  produces a lower
approximation error for all the vectors in the shaded
region
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 Modified Optimization Criterion (III)
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ixture W eight Re-normalization (I)
The log-likelihood of a feature vector in a

k-dimensional space is , where,

 is the weight of the  Gaussian and  is the pdf

of the  Gaussian in a mixture of  Gaussians

If a feature vector lies in a bucket containing the
Gaussians and , the log-likelihood of the vector is:
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ixture W eight Re-normalization (II)
Using normalized weights, the log-likelihood is:

If ,

Since  or, ,

Use of re-normalized weights results in higher
log-likelihoods, which in turn leads to an improved
system performance
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Selection of a K-d T ree
* There are several options for how we apply a k-d tree to

the HMM model (i) one k-d tree per state, (ii)) a single
large k-d tree shared by all the HMM states, or
(iii)multiple k-d trees with each tree sharing a subset of
the states

* Previous implementations of the BBI algorithm
successfully employed the latter two options

* The EBBI algorithm uses one k-d tree for each HMM
state, because it results in the lowest approximation error
and produces the significant speedups as compared to
the other two options



Industry-standard OGI-Alphadigits database (telephone
database of 6-word strings) used

39-dimensional MFCC features used

64-mixture cross-word triphone models used

K-d trees with a tree depth 6 and an error threshold 0.4
used for the two algorithms

The baseline system produced a 10.1% WER and used
57.9% of the total CPU time for the Gaussian
Computations

EBBI and BBI Algorithms (I)
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EBBI and BBI Algorithms (II)

The EBBI algorithm used the modified optimization
criterion, mixture weight re-normalization and state
level k-d trees

The EBBI algorithm produced a significant
improvement in WER over the BBI algorithm

The EBBI algorithm produced only a 1.8% lower
speedup than the BBI algorithm (not a significant
difference)

Algorithm
% of Total CPU Time used by Gaussian

Evaluations
WER
(%)

EBBI 29.1 10.2

BBI 24.7 11.4
*

*
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EBBI Algorithm and GC T echnique
Gaussian clipping technique is used to generate
lower-order mixture models from higher-order mixture
models by removing the Gaussians with the lower
mixture weights

For a 50% speedup in the likelihood computation, the
EBBI algorithm produced a 12.3% improvement over
the GC approach

Gaussian
speedup (%)

Technique used WER (%)

25
EBBI 10.3

GC 11.5

50
EBBI 10.7

GC 12.2
*

*



ormance of the EBBI Algorithm
TIDIGITS Database

mall database containing continuous digits
cabulary size of 11)

 relative threshold used by the algorithm was varied
 0.2 to 0.8 in steps of 0.1

 trees with depth between 3 and 5 were used

 system which is not using the EBBI algorithm (a
EBBI system) produced a 0.6% WER

ssian evaluations took 24.4% of the total CPU time
his system
Perf

* A s
(vo

* The
from

* K-d

* The
No 

* Gau
in t



TIDIGITS - Gaussian Speedup

For a fixed tree depth, the Gaussian speedup increases
with an increase in the relative threshold

For a fixed threshold, the Gaussian speedup increases
with an increase in the k-d tree depth
*

*



TIDIGITS - WER

For a fixed tree depth, the WER increases with an
increase in the relative threshold

For a fixed threshold, the WER increases with an
increase in the k-d tree depth
*

*



TIDIGITS - Speedup and WER

Best performance — a tree depth of 3 with a relative
threshold of 0.4 produced a 45% speedup in score
computations without degrading the performance of the
system
*



Telephone database of 6-word strings

39-dimensional MFCC features used

HMM system used cross-word context-dependent
triphone models

5-state left-to-right models used

Used to evaluate the algorithm performance as the
function of the number of mixture components — 16, 32
and 64 mixture Gaussians per state used

OGI-AD Database
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The relative threshold was varied from 0.2 to 0.8 and the
k-d tree depth was varied from 3 to 5

System that didn’t use the EBBI algorithm produced a
10.3% WER and it used 31.7% of the total CPU time for
the Gaussian evaluations

For a depth of 5, as the threshold increased from 0.2 to
0.8, the Gaussian speedup increased from 39% to 79%
and the WER increased from 10.4% to 15.6%

For a relative threshold of 0.5, as the tree depth
increased from 3 to 5, the Gaussian speedup increased
from 46% to 58% and the WER increased from 10.9%
to 11.2%

AD - 16 Mixture Components (I)
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Best performance — a tree depth of 5 and a threshold of
0.3 produced a 41% speedup with only a 2% relative
degradation in WER

AD - 16 Mixture Components (II)
*



The relative threshold was varied from 0.3 to 0.8 and the
k-d tree depth was varied from 3 to 6

System that didn’t use the EBBI algorithm produced a
10.3% WER and it used 43.1% of the total CPU time for
the Gaussian evaluations

The CPU time used by the Gaussian evaluations is 36%
higher than the CPU time used by the Gaussian
evaluations in the system using 16-mixture components

AD - 32 Mixture Components (I)
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Best performance — a tree depth of 6 and a threshold of
0.3 produced a 48% speedup without degrading the
performance of the system

AD - 32 Mixture Components (II)
*



Effect of Mixture Components
The algorithm becomes more attractive as the number of
Gaussians increases

A 48% speedup is obtained,

* without any approximation error when 32-mixture
components were used

* with a 4% relative approximation error when
16-mixture components were used

In general, the algorithm produces the same amount of
speedup with a significantly lower increase in WER for
the systems with higher mixture components
*

*

*



SWB Database
HMM system used cross-word context-dependent
triphone models

39-dimensional MFCC features used

The relative threshold was varied from 0.3 to 0.8 and the
k-d tree depth was varied from 3 to 5

System that didn’t use the EBBI algorithm produced a
41.1% WER and it used 9.9% of the total CPU time for
the Gaussian evaluations

The EBBI algorithm doubled the speed of the score
computation with only a 3.4% relative increase in the
WER
*

*

*
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Conc lusions
Compared to the BBI algorithm, the EBBI algorithm
produced a significantly lower WER (11.4% vs. 10.2%)
with only a 1.8% reduction in speedup

Compared to the GC technique, the EBBI algorithm
produced a significantly lower WER (12.2% vs. 10.7%)
for a 50% speedup in the likelihood computation

Algorithm performance for various databases
*  TIDIGITS — a 45% speedup without any

degradation in the system performance
*  AD — a 48% speedup without any degradation

in the system performance
*  SWB — a 50% speedup with only a 3.4%

relative increase in the system WER
*

*

*



Future W ork
Need to study the performance of the algorithm under
various possible hyperplanes resulting in a balanced
distribution for a coordinate axis

* the k-d trees obtained by using different hyperplanes
may result in a different set of most significant
Gaussians

Include the mixture weights in computing the Gaussian
boxes

*  may improve the algorithm performance without
an additional computational cost during recognition
*

*
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