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Rapid advances in speech recognition theory, as well as computing hardware, have

led to the development of machines that can take human speech as input, decode the

information content of the speech, and respond accordingly. Real-time performance of

such systems is often dominated by the evaluation of likelihoods in the statistical

modeling component of the system. Statistical models are typically implemented using

Gaussian mixture distributions.

The primary objective of this thesis was to develop an extension of the Bucket Box

Intersection algorithm in which the dimension with the optimal number of splits can be

selected when multiple minima are present. The effects of normalization of mixture

weights and Gaussian clipping have also been investigated. We show that the Extended

BBI algorithm (EBBI) reduces run-time by 21% without introducing any approximation

error. EBBI also produced a 12% lower word error rate than Gaussian clipping for the

same computational complexity. These approaches were evaluated on a wide variety of

tasks including conversational speech.
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CHAPTER 1

INTRODUCTION

Speech recognition technology has made a significant progress from the da

isolated word recognition. Five decades of interdisciplinary research in widely diffe

areas, such as, linguistics, psychacoustics, signal processing, computer science,

recognition, and information theory, has greatly advanced the state of the art in sp

recognition systems. Rapid advances in speech recognition theory, as well as com

hardware, have led to the development of machines that can take human speech as

decode the information content of the speech, and respond accordingly [1]. This

greatly increased the range of applications for automatic speech recognition (A

technology. However, these applications require large vocabulary continuous sp

recognition (LVCSR) systems with negligibly small amounts of latency.

The primary evaluation criterion for speech recognition research is the word e

rate (WER). Though the WER on standard evaluation tasks has decreased consi

over the years, the complexity of the evaluation task (and the associated sp

recognition systems) has increased significantly. Task complexity can be measur

terms of perplexity [1]. The perplexity is defined as:

, (1)Perplexity 2
H

=

1



2

n of

rate

 [2]:

f the

The

de one

. For

de an

onds.

t in

ues

ive
whereH is the entropy of the language model in bits [1]. Table 1 provides a compariso

perplexity and WER for a variety of tasks [2]. A relationship between the word error

of the system and the perplexity of a task is approximated by the following equation

(2)

While research has focused on decreasing WER, very few investigations o

trade-off between WER and recognition speed have been performed [3, 4].

recognition speed is defined as the required CPU time measured in seconds to deco

second of input speech [5]. Real time factor is used as the unit for recognition speed

example, a speed of NxRT means that the computer takes N seconds to deco

utterance that is one second long, where the decoding time is measured in CPU sec

The need for real-time LVCSR systems has created a growing interes

developing algorithms for faster recognition. Many such algorithms and techniq

include elimination of and/or approximations for many computationally expens

WER 12.37– 6.42 Perplexity( )log⋅+=
Corpus Vocabulary Size Perplexity WER

TI DIGIT 11 11 ~0.0%

OGI Alphadigit 36 36 8.0%

Resource Management (RM) 1,000 60 4.0%

Air Travel Information Service 1,800 12 4.0%

Wall Street Journal 20,000 200-250 15.0%

Broadcast News >80,000 200-250 20.0%

Conversational Speech >50,000 100-150 30.0%

the
Table 1. The effect of the vocabulary size and perplexity of various tasks on
performance of an ASR system.
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components. These approximate techniques increase the WER of the system. Howe

convert laboratory systems into useful products, we must develop more effic

systems [6]. To spur progress in this direction, the Defense Advanced Research Pr

Agency (DARPA) and the National Institute of Standards and Technology (NIS

conducted evaluations on Broadcast News (Hub 4) that included a test investigatin

performance of the systems running under 10xRT on a single processor [7, 79].

Technologies showed that elimination and approximation of various computat

produced a speedup by a factor of 20 with a relative loss in WER of 18% [8].

In the Rich Transcription Evaluation (RT-02) (also conducted by DARPA a

NIST), Cambridge University’s Hidden Markov Model toolkit (HTK) used a fast

contrast system (cu-htk2) with a simpler architecture. This system didn’t use triphone

quinphone rescoring. On the 2002 evaluation set, this system reduced the run-time

320xRT to 67xRT but increased the WER from 23.9% to 26.7% [9]. A faster versio

the full HTK 2002 system was also developed which ran in less than 10xRT. On the

2002 evaluation set, the performance of this system was only 0.5% (absolute) worse

the cu-htk2 system [9]. A major focus of this thesis is to develop methods to incr

recognition speed without significantly increasing WER.

1.1. A Statistical Approach to Speech Recognition

In statistical terms, the task of an ASR system is to find the most likely wo

sequence, , given the acoustic evidence, [10]. Mathematically, the recogn

chooses a word string , which satisfies [27]:

W A

W
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(3)

By using a Bayesian approach [11], the problem can be simplified to:

(4)

The above formula determines the design of the speech recognizer. The proba

is computed using anacoustic model[11-16], while the estimate of the

probability, , is determined using alanguage model[17]. The recognizer combines

the acoustic and language model probabilities to form the probability of w

sequences (e.g., sentences). The recognizer’s main task is to search over all possib

strings to find the most probable word sequence [10, 11], a process referred

decoding [18-22]. The acoustic front end extracts features from the speech signal w

capture the temporal and spectral characteristics of a signal. A detailed tutorial on ac

front end can be found in [23-26].

In current speech recognition systems, hidden Markov models (HMMs) are

basic building blocks of the acoustic model [10, 23]. Most LVCSR systems mo

phonetic variability using HMMs, and consider the context of a phone as part of

model. For example, a phoneph will be modeled as a context-dependent phone [3

referred to as a triphone, of the forma-ph+b, wherea andb define the left and right

contexts. Typically, LVCSR systems use triphones, though more powerful system

longer acoustic context (e.g., quinphone). An HMM consists of a Markov distribution

33, 34, 35] for transitions across different states, and includes a probability den

Ŵ argmax
W

p W A⁄( )=

Ŵ argmax
W

p A W⁄( )p W( )=

p A W⁄( )

p W( )
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ally
function at each state that models the probability of the output symbols possible a

state. The choice of output probability function is crucial as it must model all of

intrinsic spectral variability in the speech signal [36]. Typically, a mixture of multivaria

Gaussian distributions is used for this output distribution model. Each triphone m

corresponds to an elementary HMM with starting and stopping states. Systems

5-state HMM [37, 38] for each triphone, which includes a dummy start state, a dum

stop state and three information-bearing states.

In the computation of , it is necessary to compute the probability den

that a feature vector was generated by that state. This probability density function, w

is commonly modeled by a mixture of multivariate Gaussian distributions, is assume

depend only on the current feature vector and state, and can be written as [10, 41, 4

(5)

under the assumption that the vector , where the region is mathematic

represented as .

In Equation 5,

•  — the weight for the  Gaussian of the  state

•  — the feature vector

•  — the state of HMM having multiple Gaussians

•  — the mean vector for  Gaussian of the  state

p A W⁄( )

p x s µ Σ,( );( ) wjm
1

2π( )k Σ jm

------------------------------⋅
m 1=

M

∑ 1
2
--- xj µ jm–( )TΣ jm

1–
xj µ jm–( )– 

 exp=

xj Rk∈ Rk

Rk x: ∞– xi ∞< < for i, 1 2 … k, , ,={ }=

wjm m
th

j
h

xj

s µ Σ,( )

µ jm m
th

j
h
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•  — the variance-covariance matrix for  Gaussian of the  state

•  — the number of Gaussians in the state

The distance between the feature vector and the mean of the Gaussian is mo

using a likelihood measure that is computed by taking the log of Equation 5. This dist

metric is known as the Mahalanobis distance [40].

1.2. Resource Requirements

Speech recognition is a resource intensive task. The percentage of the total

time and memory used by various parts of a current state-of-the-art ASR system is s

in Figure 1. The largest percentage of the CPU time is used in acoustic modeling,

the largest percentage of memory is devoted to search. In general, most cu

state-of-the-art LVCSR systems typically spend about 50% to 80% of the total CPU

on the computation of observation probabilities with mixtures of multivaria

Gaussians [28]. This time depends on various factors, which include the size o

Σ jm m
th

j
h

M

e-art
Figure 1. Memory and the CPU time used by various parts of a current state-of-th
speech recognition system.
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vocabulary, the complexity of the acoustic models and the distance measure used

Gaussian evaluations.

The CPU time consumed by the Gaussian evaluations increases with the num

mixtures used to model context-dependent phones. Figure 2 shows that the percen

the CPU time used in Gaussian evaluations increases approximately by a factor of th

the number of mixtures increases from 8 to 64 for the Alphadigits task. Sim

experiments showed that the percentage of the CPU time used for Gaussian compu

increases by a factor of three on the SWITCHBOARD task as the number of Gau

mixture components in a HMM state varies from 12 to 16 [29]. On the same task, the

load for the Gaussian computations for a network decoder increased by a factor of f

the number of Gaussians in a HMM state increases from 2 to 12. Similarly, the u

quinphone or other longer time-span acoustic models considerably increases the a

of time required for the computation of observation probabilities.
time
Figure 2. The effect of an increase in the number of mixture components on the CPU
used by Gaussian evaluations.
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1.3. Fast Gaussian Evaluations

We have established that computations in real systems are dominated by Ga

evaluations. Therefore, in order to reduce the run-time of the system, it is necessa

reduce the time consumed by Gaussian evaluations without increasing the system

We begin with a simple observation: if a feature vector lies on the tail of a distribut

then the likelihood of that distribution producing that feature vector is very small [6]. S

an input vector is known to be an outlier with respect to that Gaussian distribution. T

removing these Gaussians from the computation of log probability for this feature ve

does not produce a significant degradation in the accuracy of the distance computed

This was the motivation for an approach known asGaussian Selection[43, 44].

Using this technique, a speedup in the likelihood computations ranging from 3x to 9x

reported [43]. The most important step in Gaussian selection is to find a method whic

efficiently find the Gaussians which do not make a significant contribution to the ove

mixture probability. Vector quantization (VQ) like approaches were successfully use

find these Gaussians and approximate the log probability computations [45-49].

Another technique that is most commonly used is the Nearest Neigh

Approximation [50-52], which uses the Gaussian with the smallest Mahalanobis dist

to the feature vector at a particular frame for the likelihood computation. The nea

neighbor approach efficiently determines the Gaussian closest to the input vector a

all the Gaussians in the k-dimensional space. Therefore, in this approach we d

compute a sum of Gaussians [39, 50]. The computation can be kept completely i

logarithmic space, thereby reducing the computational complexity.
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Several VQ based approaches require partial computation of a Mahalan

distance for each Gaussian in the mixture distribution and require scanning a

Gaussians to find the most significant Gaussians [46]. This greatly increases

computational load. J. Fritschet al proposed the Bucket Voronoi Intersection (BVI) [53

and Bucket Box Intersection (BBI) [54] algorithms for fast search. These algorithms u

tree-based search to find the most significant Gaussians. In order to build the tre

feature space is partitioned into several cuboids with edges parallel to the coordinate

These cuboids divide the feature space into severalvoronoiregions. These voronoi region

are used to build a tree to search the most significant Gaussian. This thesis is based

latter work.

1.4. Thesis Contributions

The primary objective of this thesis was to investigate the BBI algorithm a

develop an Extended BBI (EBBI) algorithm. Though the BBI algorithm has enjoy

significant success, an extensive study of the algorithm suggested the possibil

improvements. Several issues specific to the BBI algorithm have been addressed

thesis:

• Modifications of the optimization criterion to deal with multiple minima:
Previous implementations of the BBI algorithm [39, 54] did not consider
case when multiple minima in the number of splits occur during t
optimization process. We propose a modified optimization criterion in wh
the dimension with the optimal number of splits can be selected in this ca

• Normalization of mixture weights: The effect of using the normalized
weights during the Gaussian score computations has been studied in a
detail.
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• Gaussian clipping: Generation of a lower-order mixture model from
higher-order model by clipping the Gaussians with small mixture weight
known as Gaussian clipping. Gaussian clipping has been introduced in
thesis to speed up computations. Mixture weights have been renormaliz
insure that each model disregards only a certain percentage of error.

• State level trees:A state-level binary tree was used in this thesis to obtain
improvement in speed. In general, there are several possibilities:

(1) Use a single large binary tree shared by all HMM states.

(2) Let several HMM states share a binary tree (phonological tying, suc
that used in phonetic decision trees can be used) [28].

(3) Let each HMM state use one tree.

The optimal choice depends upon the task, available memory (to store t
and other such parameters.

The first approach produces a slightly greater speedup than the third approach

introduces a higher degradation in the performance of the system. The second app

produces the maximum speed up and requires the least memory, but introduces a

increases in the WER. The use of a state-level tree introduces the least approxim

error and results in the significant speedups compared to the first approach. Sinc

objective of this thesis is to develop a technique to speed up score computations

maintaining accuracy, the state-level tree approach has been used.

Hence, we show that Gaussian speedup reduces the total run-time (RT)

LVCSR system. We have developed the Extended BBI algorithm to achieve a maxi

improvement of 21% in the run-time of the system without introducing any approxima

error. This is significant because we are not increasing the WER of the system to ac

this speedup. This is described in more detail in Chapter 4.
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1.5. Structure of the Thesis

In Chapter 2, we provide a detailed mathematical overview of the BBI algorith

This chapter explains the search criterion used by the BBI algorithm and discusse

optimization of this search criterion. Chapter 3 discusses the problems with prev

implementations of the BBI algorithm and proposes an improved BBI algorithm know

Extended BBI. This chapter also includes the experimental results which verify

superiority of the Extended BBI algorithm. In Chapter 4, we present the experime

design and present the experimental results for the proposed algorithm. The experim

results presented in Chapter 3 compare the performance of the BBI and Extended

algorithms. The experimental results presented in Chapter 4 provide an understand

the performance of the Extended BBI algorithm with respect to the variations in algor

parameters and the number of Gaussians in a mixture distribution. In Chapter 5

summarize the major findings in this work and discuss promising future directions.
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CHAPTER 2

BUCKET BOX INTERSECTION

This chapter presents an overview of the Bucket Box Intersection algorithm u

for fast Gaussian evaluations, which includes searching, training, and optimiza

Special emphasis is placed on the optimization criterion used to minimize the se

complexity.

2.1. K-Dimensional Binary Search Tree

We have discussed that the state log-likelihood of an input vector can be evalu

by using the dominant Gaussian components, without significantly increasing the WE

the system. This approach needs an efficient way to select such Gaussian componen

data structure which allows for fast search in the BBI algorithm is known as a k-d

[55], wherek is the dimensionality of the feature space.

A k-d tree is a k-dimensional space partitioning tree. It is an efficient data struc

with respect to storage. The average search time for a k-d tree is , where n

number of records in the file. At every non-terminal node of the tree, the curr

k-dimensional region, , is divided into two half spaces by means of a hyperp

orthogonal to one of thek coordinate axes [58]. The hyperplane is represented as a pa

O nlog( )

R
K

12
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two quantities — , the index to the coordinate axis orthogonal to the plane and

location of the plane on this axis [59]. This is mathematically represented as

The initial region represents the root node. The two regions obtained by splitting the

region are called theleft and right child of the root node and are represented

and . Any feature vector can be

located with respect to the hyperplane by a single scalar comparison of the comp

of a feature vector with the location of the hyperplane . A k-d tree of depthd partitions a

k-dimensional space in  disjoint regions calledbuckets of the tree.

Figure 3 shows an example region in a 2-dimensional space. The re

represents the root node of the k-d tree and contains a hyperplane orthogo

the axis . This hyperplane splits the region into two regions, and

These regions are further divided by the hyperplanes and , both orthogonal t

coordinate axis . Successive splits by hyperplanes through , as shown i

Figure 3, build a k-d tree of depth 4. The resulting k-d tree is shown in Figure 4. A fea

vector in the region can be located in this framework by a seque

of four scalar comparisons, which lead to the bucket .

2.2. Building a K-D Tree for the HMM-Based Recognition System

This section describes the procedure for building a k-d tree for the HMM ba

speech recognition system [39, 53, 54]. Let us consider a single multivariate Gaussia

j h

H j h,( )=

l child x R
K

: xj∈ h≤{ }= r child x R
K

: xj∈ h>{ }=

j
th

h

2
d

abcd

abcd H1

X1 abcd abef ecdf

H2 H3

X2 H4 H15

f v x1 x2,( )= abcd

ukhv
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Figure 3. An example of building a k-d tree in a 2-dimensional region.
1

trix
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y

, a
k-dimensional space with a mean vector and a covariance ma

. Assuming a diagonal covariance matrix, the log-likelihood of th

Gauss ian is :

(6)

The region in ak-dimensional space, where the log-probability given b

Equation 6 is greater than an absolute threshold,T, defines a hyper-ellipsoid with axes

parallel to the coordinate axes [39]. Using this absolute threshold value

µ µ1 µ2 … µk, , ,[ ]=

Σ σ1
2 σ2

2 … σk
2, , ,( )=

P x s µ Σ,( );( )log
1
2
--- 2π( )k σi

2

i 1=

k

∏
 
 
  xi µi–( )2

σi
2

--------------------
i 1=

k

∑+log–=
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multidimensional box can be computed which completely encloses the hyper-ellip

region. This box is known as aGaussian box[54]. These boxes are used to build a k-d tre

Figure 5 represents an example of a Gaussian in a 3-dimensional space a

corresponding hyper-ellipsoid region. Figure 6 represents a Gaussian box which inc

the hyper-ellipsoid region of Gaussian. The values , , and are the lower

upper projection boundaries of the Gaussian box along  and  coordinates.

The projection boundaries can be calculated for each coordinate axis by usin

specified threshold value [54]. SubstitutingT for the log probability in Equation 6 yields,

. (7)

xL xU yL yU

X Y

T
1
2
--- 2π( )k σi

2

i 1=

k

∏
 
 
  xi µi–( )2

σi
2

--------------------
i 1=

k

∑+log–=
Figure 4. A k-d tree of depth 4 corresponding to the regions divided by the hyperpl
H1 throughH15 in Figure 3.
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Figure 5. A single multivariate Gaussian in a 3-dimensional space. The surface
results from intersecting the Gaussian with a plane can be represented
hyper-ellipsoid region of the Gaussian.
Y

+
for Gaussian

Hyper-ellipsoid Region

X

yL

yU

Gaussian Box

xL xU
Figure 6. A Gaussian box corresponding to the hyper-ellipsoid region in Figure 5.
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Solving Equation 7 for gives the lower and upper projection boundaries

Gaussian box for the coordinate axis  as follows:

. (8)

2.3. Optimization of a K-D Tree

Let us consider a k-d tree of depthd with Gaussians in the initial root region

Given that the feature vector belongs to the root region, the cost of the se

is . Under the k-d tree framework, if , the cost of the sear

for the bucket is . Thus, the cost of the search using the

tree framework reduces from to . If is the probability that the feature vector

in the bucket and is the number of Gaussians whose boxes intersect with

bucket, the average cost of the search for the  bucket can be written as [60, 61].

(9)

The expected cost of search for the tree is:

(10)

The objective of the k-d tree optimization is to minimize the expected cos

search. This results in a global optimization criterion (GOC) [60], which involves

xi

i

xi µi 2σi
2

T
1
2
--- 2π( )k σi

2

i 1=

k

∏
 
 
 

log+–±=

N

f v

SC root( ) N= f v Bucketi∈

Bucketi SC Bucketi( ) Ni=

N Ni pi

i
th

Ni

i
th

Avg Sc Bucketi( )( ) pi Ni⋅=

Exp SC( ) pi Ni⋅
i 1=
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variables and . Since these variables are functions of the division hyperplane a

non-terminal node of the tree, the GOC requires a joint optimization of the choice o

division hyperplane at each non-terminal node of the k-d tree. This is an extrem

complex and practically unfeasible criterion. Thus, it becomes necessary to loc

optimize the tree to achieve the minimum expected search time. This can be achiev

independently minimizing the expected search at each node. This results in a

optimization criterion (LOC) [61].

Let us consider a bounded region with Gaussians that have a non-e

intersection. Let and be the probabilities that a feature vector lies in the

respectively. Let and be the number of Gaussians whose boxes ha

non-empty intersection with the left and right regions respectively. The variables ,

and are functions of the division hyperplane [59] parameters and .

ideal division, producing the best possible partition to achieve the minimum se

complexity, is the one which reduces the search complexity to half [62]. Thus, for an

division, and . In other words, for an optima

division,  [63].

If and are the number of Gaussians whose boxes are entirely in

left and right regions respectively and is the number of Gaussians whose boxe

split by the hyperplane, then and , with th

pi Ni

Rb NRb

pl pr l region

r region Nl Nr

pl pr

Nl Nr j0 0, h0 0,

pl pr 1 2⁄= = Nl Nr NRb
2⁄= =

Nl h( ) Nr h( )– 0=

Nleft Nright

Nsplit

Nl Nleft Nsplit+= Nr Nright Nsplit+=
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condition [63]. A hyperplane for which ,will

give minimum values of  and .

The functional dependence of the variables and on the division hyperp

is determined by the distribution of the feature vectors in the initial region and

Gaussian boxes which intersect with that region [59]. The root region contains

Gaussians. The projections of these Gaussians on the coordinate axis gives

projection boundaries along that axis. Let us assume that are

locations of the projection boundaries along the coordinate axis in a sorted order.

hyperplane position is such that , where is a small positive value

, then and . If we slowly vary the hyperplane

posit ion along the axis from to , the values of and change

follows [63, 64]:

• When the hyperplane crosses a lower projection boundary, a new Gaussia
included in the left region and no Gaussian gets excluded from the right reg
Thus,  increases by 1 and  remains unaltered.

• When the hyperplane crosses an upper projection boundary, one Gaussia
excluded from the right region and no new Gaussian gets included in the
region. Thus,  remains unaltered but  decreases by 1.

• If the position of varies between two adjacent projection boundaries,

number of Gaussians in both the regions remain same. Thus, the values

and  remain constant.

Nleft Nright Nsplit+ + NRb
= Nsplit 0=

Nl Nr

pl pr

NRb

j0 0, 2 NRb
⋅

l1 l2 … l2 NRb
⋅, , ,( )

h0 0, L j ∆+= ∆

h0 0, l1≤ Nl h0 0,( ) 0= Nr h0 0,( ) NRb
=

L j U j Nl Nr

Nl Nr

Nl Nr

h0 0,

Nl

Nr
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Figure 7. A study of the number of Gaussians in the left and right regions with respe
the hyperplane position along the coordinate axisj0,0.
Let us consider the example given in Figure 7. A hyperplane is moved a

the axis from the lowest boundary towards the highest boundary . There are

different positions of the hyperplane along the axis. Figure 8 shows the behavior o

and as a function of . The projection boundaries in Figure 7 are indicate

, with . It can be observed that when the hyperplane position

such that , the values of and are equal. Such a hyperplane resu

h0 0,

L j U j

Nl

Nr h0 0,

1 2 … 2 NRb
⋅, , ,( ) NRb

8=

h0 0, l8 l9,( )∈ Nl Nr
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a balanced division along axis. Similarly, the balanced division hyperplane can als

found along the  coordinate axis.

For each coordinate axis in a k-dimensional region, there exists a projec

boundary that results in a balanced division. Let , , be the numbe

Gaussians having non-empty intersections with the left and right regions, obtained

j
th

k
th

Nopti
i 1 2 … k, , ,=
Figure 8. Behavior of the variablesNl andNr with respect to the hyperplaneh0,0. Note that
the projection boundaries of the Gaussians are shown to be evenly distrib
along the horizontal axis in this figure.
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result of a balanced division along the axis. The optimal hyperplane will be the

which results in the least value of  over all coordinate axis [65].

Thus, the optimization process can be summarized as follows [59, 60]:

• For a bounded region in a -dimensional space, the balanced divisio

chosen for each coordinate axis;

• From these balanced divisions, the partition, for which correspond
point is closest to the point, is chosen. Th

proximity measure is a Euclidean distance. In other words, the final opti
partition is chosen as the one which results in the least number of splits.

The balanced hyperplane for a coordinate axis in a k-dimensional region ca

obtained as follows:

• Label the projection boundaries of the Gaussians in the region with an
for the lower and upper projection boundaries respectively along
coordinate axis;

• Place the hyperplane at a position so that the number of lower projec
boundaries ( ) in the left region is equal to the number of upper project

boundaries ( ) in the right region.

2.4. Approximation Error Introduced by the K-D Tree

In a k-d tree framework, the evaluation of a Gaussian is restricted to a Gaus

box with threshold . This introduces an approximation error in the computatio

the observation probability [39, 59, 60]. The approximation error is bounded by

threshold , such that . In the BBI algorithm, the Gaussian boxes with thresho

are used. Also, only those Gaussians are used in the computation of observ

probabilities whose boxes contain the feature vector. If is the number of Gaussia

j
th

Nopti

Rb k

Nopti
Nopti

,( ) NRb
2⁄ NRb

2⁄,( )

L U

L

U

T EA

T EA T≤ T
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an HMM state and , , is the mixture coefficient for Gaussia

then the mixture coefficients satisfy the constraints and . T

approximation error introduced by each Gaussian is . Thus, the overall approxim

error can be written as [54]. Using the constraints mentioned above,

overall approximation error is . Since , the overall approximation error is l

than or equal to the threshold . The Gaussian speedup and approximation error d

on tree parameters, namely error threshold  and tree depth

We have discussed the BBI algorithm in this chapter. In the next chapter, we

discuss the issues related to the previous implementations of the BBI algorithm

suggest solutions for these issues. These modifications will lead to the Extended B

Box Intersection algorithm proposed in this thesis.

wm m 1 2 … M, , ,= mth

wm 0≥ wm
m 1=

M

∑ 1=

EA

wm EA⋅
m 1=

M

∑

EA EA T≤

T

T d
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CHAPTER 3

EXTENDED BUCKET BOX INTERSECTION ALGORITHM

This chapter demonstrates various drawbacks of the BBI algorithm. The Exte

BBI algorithm, proposed in this thesis, gives solutions for many of these problems.

performance of the two algorithms are compared and discussed in detail.

3.1. A Modified Optimization Criterion for Multiple Minima

The BBI algorithm requires the selection of a balanced hyperplane that produ

minimum number of Gaussian splits [60]. In practical applications there may be more

one collection of splits which produce the same (minimum) number of Gaussians. T

hyperplanes may yield the same speedup but may not yield an optimal approxim

error. The BBI algorithm doesn’t consider this scenario. The Extended BBI algori

proposes a modified optimization criterion to allow for multiple minima. In this algorith

the following steps are used to obtain the optimal division hyperplane:

• Find the variance of those coordinate axes whose hyperplanes produ
minimum number of Gaussian splits;

• Choose the hyperplane corresponding to the coordinate axis with the hig
variance.

To explain this, let us consider the example shown in Figure 9. In this example

coordinate axis has a higher variance. Thus, according to the Extended BBI algorj
24
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Figure 9. An example of multiple minima in the number of Gaussian splits. Cas
contains a hyperplaneA1B1 orthogonal to the axis with a lower variance an
case 2 contains a hyperplaneAB orthogonal to the axis with a higher variance
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the hyperplane orthogonal to this coordinate axis will yield an optimal result in the cas

multiple minima. Using the optimization criterion proposed by the BBI algorithm, t

balanced hyperplanes and , orthogonal to the coordinate axis an

respectively, are found. Both the hyperplanes result in the same number of Gaussian

. The hyperplane splits the region in such a way that the box

corresponding to the Gaussians numbered 2 and 4 do not lie in same node of the

Let us consider a feature vector lying in the region shown in Figure 9. Given

positions and forms of the Gaussians in the region, Gaussians 2 and 4 can conta

vector with equal probability. Under the framework of the division hyperplane

the vector lies in Gaussian no. 2 only, which is contradictory to the fact that it lie

both the Gaussian boxes with equal probability. The k-d tree obtained using this div

hyperplane will produce a higher approximation error.

Now consider the hyperplane . It splits the region into two balanced regi

such that the nodes associated with both the regions contain Gaussians 2 and 4. Un

hyperplane, the feature vector lies in the left region and Gaussians 2 and 4 both co

the vector. Thus, the hyperplane produces an optimal division for the vector .

k-d tree obtained using this hyperplane will produce a lower approximation er

Generally speaking, all the vectors lying in the shaded region between Gaussians 2

lie in both the Gaussians with equal probability. For all these vectors, hyperplane

produces a lower approximation error. Thus the hyperplane orthogonal to the axis wi

highest variance is the optimal hyperplane.

AB A1B1 j k

Nsplit 2= A1B1

P

P A1B1

P

AB

P

AB P

AB
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Let us consider another example shown in Figure 10. The coordinate axis

higher variance than the axis . In order to obtain a k-d tree, a balanced hyperpla

found for both coordinate axes. In case 1, the balanced hyperplane is orthogonal

axis having a lower variance. This hyperplane produces a division in which Gauss

lies only in the right child of the node. Thus, this hyperplane yields an unbalan

distribution for Gaussian 2. In an unbalanced distribution, a Gaussian that has a

probability to be the most significant Gaussian for a feature vector in that region, lie

only one region. In this case there is a 50% probability that this Gaussian will not be

in approximate score computation. This is because the Gaussians lying in only one r
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Figure 10. An example of multiple minima in the number of Gaussian split. Case 1
separating hyperplanes which are orthogonal to the axis with a lower varia
while case 2 uses the hyperplane which is orthogonal to the axis with a hi
variance.
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are used for the score computation. Thus, a hyperplane, which gives an unbala

distribution for the Gaussians in a region, gives a higher approximation error. In case

balanced hyperplane is orthogonal to the axis which has a higher variance. W

observe that this hyperplane produces a balanced division for the Gaussian box 2 in

regions. This hyperplane will result in a lower approximation error.

According to the optimization criterion used in case 1, a 2-dimensional fea

vector lies in the bucket containing Gaussian box 1. Given the positions and form

the Gaussians in the region, it can be observed that the Gaussian associated with th

can not be considered a significant Gaussian for the vector . Thus, the optimiz

criterion proposed by the BBI algorithm will produce a larger approximation error. Un

the division produced by the balanced hyperplanes used in case 2, the vector lies

Gaussian no. 3. This Gaussian can be considered as a significant Gaussian for the ve

since it has a minimum Euclidean distance from the vector . Thus, the resulting k-d

will produce a lower approximation error. The above discussion suggests tha

optimization criterion proposed by the Extended BBI algorithm gives a lower WER.

To compare the performance of the optimization criterion used by the

algorithms, experiments were carried out using the OGI Alphadigits database [67]

used 64-mixture cross-word triphone models. No fast Gaussian evaluation techn

were used in the baseline system. This system gave a 10.1% WER and used 57.9%

total CPU time for the Gaussian Computations. Performance of the BBI and the Exte

BBI algorithms is shown in Table 2. The performance of both algorithms is evaluate

A k

P

P

P

P

P
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Algorithm
Tree Depth

(d)
Threshold

(T)
WER
(%)

Extended BBI 6 0.4 10.4

BBI 6 0.4 11.4

s
I

f

y

Table 2. The performance of the Alphadigit
system using the BBI and Extended BB
algorithms.
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The Extended BBI algorithm gave a WER of 10.4%. On the other hand, the

algorithm gave a WER of 11.4%. Thus, the Extended BBI algorithm introduce

significantly lower approximation error as compared to the BBI algorithm. In t

example, the optimization criterion used by the Extended BBI algorithm gave an ov

improvement of 10% in WER with the same amount of speedup in Gaussian evalua

This improvement is statistically significant according to the Matched Pa

Sentence-Segment Word Error (MAPSSWE) test from NIST [80].

3.2. Mixture Weight Re-Normalization

The BBI algorithm finds the most significant Gaussians [54] for the evaluation

the mixture and uses only those Gaussians for the score computation. In this cas

required to re-normalize the mixture weights. But the BBI algorithm doesn’t re-norma

the mixture weights [39, 54]. Further discussion will explain the re-normalizati

technique and its effects on the performance of the algorithm.

Let us consider that , , is the weight of the Gaussi

in a mixture of Gaussians. Let us also consider that a feature vector lies in a b

wm m 1 2 … l … M, , , , ,= mth

M x
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containing Gaussians and . We restrict the mixture evaluation of the vector

Gaussians and only. For re-normalization of mixture weights, we modify

we igh ts to and , such tha t , and

. The modified mixture weights satisfy the constrain

. Let us consider that the multivariate Gaussian has a mean ve

and a diagonal variance , where is

k-dimensional mean vector representing the mean of the Gaussian and

k-dimensional vector representing the diagonal covariance matrix of the Gaus

The log-likelihood of a feature vector  in such a k-dimensional space can be written

, (11)

where,

. (12)

Considering the example discussed earlier, the log-likelihood of the feature ve

using the BBI algorithm can be written as,

. (13)

Using re-normalization of mixture weights, the log-likelihood can be written as,

l l p+ x

l l p+

wl
N wl p+

N wl
N wl wl wl p++( )⁄=

wl p+
N

wl p+ wl wl p++( )⁄=

wl
N wl p+

N+ 1=

µ µ1 µ2 … µM, , ,[ ]= Σ σ1
2 σ2

2 … σM
2, , ,[ ]= µm

mth σm
2

mth

x

L wm Pm⋅( )log
m 1=

M

∑=
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1

2π( )k σim
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∏
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xim µim–

σim
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If  then the Equation 14 can be written as,

, (15)

or,

. (16)

As , . Thus, the log-likelihood using the normalized weights

obtained by subtracting a number that is less than or equal to zero, which is the sa

adding a number which is greater than or equal to zero. This suggests that the u

re-normalized weights results in higher log-likelihoods, which should in turn lead to

improved system performance. Such a system produces the same amount of spee

that obtained by a system using non-normalized mixture weights. The Extended

algorithm uses re-normalized mixture weights for the score computations.

To verify the effect of re-normalization, experiments were run on the O

Alphadigits database using 64-mixture cross-word triphone models. Performance fo

BBI and the Extended BBI algorithms is shown in Table 3. The baseline system ga

WER of 10.1%. The BBI algorithm gave a WER of 11.4%. The Extended BBI algorit

gave a WER of 11.1%. Thus, the BBI algorithm introduced a 13% relative approxima

error whereas the Extended BBI algorithm introduced only a 10% relative increase i

WER. Thus, the approximation error introduced by the Extended BBI algorithm is sm

than that introduced by the BBI algorithm.

L
wl

wl wl p++
------------------------ Pl⋅ 

 log
wl p+

wl wl p++
------------------------ Pl p+⋅ 

 log+=

wl wl p++ C=

L
wl

C
----- Pl⋅ 

 log
wl p+

C
------------ Pl p+⋅ 

 log+=

L wl Pl⋅( )log wl p+ Pl p+⋅( ) 2 Clog⋅–log+=
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Algorithm
Tree Depth

(d)
Threshold

(T)
WER
(%)

Extended BBI 6 0.4 11.1

BBI 6 0.4 11.4

BBI
ure
The improvement gained by the mixture weight re-normalization is not statistic

significant according to the MAPSSWE test. This is because the mixture we

re-normalization results in a small increase in the log-likelihood. The average increa

log-likelihood is given as,

. (17)

If the parameters of the BBI algorithm are selected such that the algorithm res

the score computation of a vector to only 25% of Gaussians representing the state, th

of the mixture weights used for score computations will approximately be equal to 01.

Thus the average increase in log-likelihood will be . Since, t

increase in the log-likelihood is small, the resulted improvement in WER of the sys

using re-normalized weights is small.

1.The value of will be 0.25 in this case, if all the Gaussians representing the state have sam
mixture weight.

∆L m wm
m 1=

M

∑
 
 
 

log⋅
 
 
 

–

m bucket∈

=

∆L

∆L 4. 0.25( )log–≈ 5.56=
Table 3. The performance of the Alphadigits system using the BBI and Extended
algorithms, where the Extended BBI algorithm is using re-normalized mixt
weights.
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3.3. Selection of a K-D Tree

There are several options for how we apply the k-d tree to the HMM model:

k-d tree per state, one k-d tree shared by all states, or multiple k-d trees with eac

sharing a subset of the states. The optimal choice depends on the task, available m

and other factors. Previous implementations of the BBI algorithm have success

employed the latter two approaches [39, 54]. Use of one k-d tree for all the states yie

very high speedup and requires small amounts of memory. However, the m

disadvantage is that it results in a very large approximation error. Similarly, when mul

trees are used, the speedup in Gaussian evaluations can be increased by using tre

and similar techniques [13, 15]. But such implementations also result in a la

approximation error. The Extended BBI algorithm presented here uses one k-d tre

HMM state. The use of one k-d tree per state results in a smaller reduction in CPU

However, it delivers a smaller approximation error. Thus, it results in a lower WER.

In order to compare the performance of the system under these k-d tree cho

the experiments were run using the OGI Alphadigits database with 64-mixture cross-

triphone models. The WER of the two systems is given in Table 4. The BBI algori

gave a WER of 13.6% whereas the Extended BBI algorithm gave a WER of 10.9%. T

the BBI algorithm introduced a 35% relative increase in WER whereas the Extended

algorithm introduced only an 8% increase. However, for the Extended BBI algorit

Gaussian evaluations used 29.1% of the total CPU time, while for the BBI algorit

Gaussian evaluations used only 24.7% of the total CPU time. Hence, the Extende
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Algorithm
Tree Depth

(d)
Threshold

(T)
% of Total CPU Time used by

Gaussian Evaluations
WER
(%)

Extended BBI 6 0.4 29.1 10.9

BBI 6 0.4 24.7 13.6

BBI
hile
Table 4. The performance of the Alphadigits system using the BBI and Extended
algorithms. The BBI system is using a single large tree shared by all states w
the Extended BBI system is using one k-d tree per state.
Algorithm
Tree Depth

(d)
Threshold

(T)
WER
(%)

Extended BBI 6 0.4 10.2

BBI 6 0.4 11.4

nded
nd

BBI
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Table 5. The performance of the BBI and Extended BBI algorithms, where the Exte
BBI algorithm is using state level k-d trees, a modified optimization criterion a
mixture weight re-normalization.
algorithm is a slightly less efficient. The reduction in WER obtained by the Extended

algorithm is statistically significant according to the MAPSSWE test.

Thus far we have studied the improvements in WER of a system utilizing

Extended BBI algorithm with a modified optimization criterion, mixture weig

re-normalization, and state-level k-d trees. Next, we evaluated the performance o

Extended BBI algorithm using these algorithms in combination. The same experim

setup was used for this experiment. Performance for the BBI and the Extended

algorithms is shown in Table 5. The BBI algorithm gave a 11.4% WER whereas

Extended BBI algorithm gave a 10.2% WER. The Extended BBI algorithm gave a 1

relative improvement over the BBI algorithm. This improvement is statistically signific

according to the MAPSSWE test.
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In this chapter, we have compared the performance of the Extended BBI algor

and the BBI algorithm on a limited task to calibrate the impact of our propo

enhancements. In the next chapter, we will evaluate the performance of the Extende

algorithm across a wide variety of experimental conditions.
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CHAPTER 4

EXPERIMENTS

The last three chapters provided a theoretical background for the Extended

algorithm. In this chapter, we present the performance of the proposed algorith

various industry-standard databases.

4.1. Experimental Databases

This section discusses the databases that have been used in this thesis to m

the performance of the Extended BBI algorithm.

TIDIGITS

We have used TIDIGITS database for the initial evaluation of the algorithm [3

TIDIGITS is a small database containing continuous digits. The vocabulary size o

database is 11 words, and contains the digits “0-9” and “oh”. Many state-of-the

systems produce a WER of 0.2% on the TIDIGITS task [39].

The experiments for this task used 16-mixture components. These experim

used 5-state left-to-right models containing a start and a stop state [23]. The input fea

used FFT-derived MFCC (Mel-frequency Cepstrum Coefficients) [25]. Without using
36
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Extended BBI algorithm, the system produced a WER of 0.6%. Also, Gauss

evaluations took 24.4% of the total CPU time in this system.

Alphadigits

The OGI Alphadigits corpus is a database of digits sequences that are six

strings of letters and numbers [67, 68]. It has a vocabulary of 36 words [69]. T

experiments used standard 39-dimensional MFCC feature vectors. To compar

performance of the algorithm as a function of the number of mixture Gaussians, 1

and 64-mixture components were used.

Without using the Extended BBI algorithm, the system produced a WER of 10

for 16-mixture and 32-mixture components and a WER of 10.1% for 64-mixt

components. In this system, Gaussian evaluations took 31.7% of the total CPU tim

16-mixture, 43.2% of the total CPU time for 32-mixture and 57.9% of the total CPU t

for 64-mixture components.

SWITCHBOARD

SWITCHBOARD (SWB) is a large vocabulary database, which is commonly u

to evaluate the performance of the LVCSR systems [70]. The database was collect

Texas Instruments (TI) in 1990. It contains over 2,000 two-sided conversations.

database presents many challenges to the LVCSR systems [71, 72].

The experiments for this task used 12-mixture components. The input fea

vectors used standard FFT-derived cepstral coefficients with cepstral mean subtra

The decoding performed an acoustic rescoring of input lattices. The language m
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scores were taken from the input lattices. Without using the Extended BBI algorithm

system produced a WER of 41.1%. In this system, Gaussian evaluations took only 9.

the total CPU time.

4.2. Measurement of Performance

The performance of the algorithm is measured by the speedup in mix

component evaluations and the approximation error. The speedup in Gaussian eval

is computed as follows:

(18)

where,

• - percentage of the total CPU time used by the Gauss

evaluations in the baseline system,

• - percentage of the total CPU time used by the Gauss

evaluations in the system using fast Gaussian algorithm.

4.3. Profiling Tool

To compute the percentage of CPU time used by Gaussian evaluations, we

used the gprof [73] utility. Appendix A provides the motivation to use this utility and a

establishes its accuracy. The gprof utility produces a dynamic call graph and a profil

(gmon.out by default) for a program. Using the call graph and the profile file, a flat pr

is obtained that gives the statistics containing the total execution time (as a percenta

total time) of each function and the number of times the function is called during

complete execution of the program.

% Gaussian Speedup
T CPU( )Baseline T CPU( )FGC–( )

T CPU( )Baseline
------------------------------------------------------------------------------- 100×=

T CPU( )Baseline

T CPU( )FGC
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4.4. Effects of Algorithm Parameters on the Algorithm Performance

The Extended BBI algorithm has two parameters — the k-d tree depth and an

threshold. The Gaussian speedup and the approximation error depend on bo

parameters.

Effect of Tree Depth on Speedup and Approximation Error

An increase in the tree depth increases the number of separating hyperplane

the number of buckets in the leaf node of the tree [54]. As the number of buc

increases, a k-d tree with a lower number of Gaussians in each bucket may be create

This results in a reduced number of significant Gaussians for the Gaussian evalua

Thus, a higher tree depth produces a higher Gaussian speedup. Also, a reduced num

Gaussians for score computations produces a higher approximation error [54]. The

an increase in the tree depth increases the approximation error.

Effect of Threshold on Speedup and Approximation Error

The Gaussian threshold defines the size of the Gaussian boxes used to build t

tree. As the threshold increases, the size of the Gaussian boxes decreases. Th

produce a reduced overlap between Gaussian boxes. This gives a k-d tree with a rel

smaller number of Gaussians in each bucket of the tree and produces a higher sp

This also reduces the computational load of the Gaussian evaluations. Thus, as the n

of Gaussians used for the score computations decreases, the approximation

introduced by the algorithm increases [39].
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The error threshold for the Gaussian boxes is chosen such that it is smaller tha

maximum value of the Gaussians. This is known as an “absolute” threshold becaus

an absolute value with respect to the maxima of the Gaussian. In practical ASR sys

the mixture of Gaussians contains Gaussian mixture components with different ma

In some systems, the maxima may differ by more than an order of magnitude. Gaus

with lower mixture weights represent lower probability regions of the mixture. If the e

threshold is chosen such that it is smaller than the maxima of the Gaussian wit

highest probability, but greater than the maxima of the Gaussians with lower probabil

it will result in an inaccurate modeling of the Gaussians with lower probabilities. To av

this problem we use arelative threshold.

4.5. Relative Threshold

A threshold chosen based on a certain percentage of each maximum for

Gaussian mixture component is known as a relative threshold [54]. A relative thresho

0.5 indicates that each Gaussian is cut at 50% of its maximum value. In this case, ev

Gaussians with very smaller maxima can participate in k-d tree generation. This resu

a lower approximation error. Thus, the performance of the algorithm using a rela

threshold is better than that obtained using an absolute threshold.

The relative threshold, , is bounded, such that, . In the case

relative threshold, only the exponential part of the Gaussian equation will contribute t

projection boundary, and we can write:

TR 0 TR 1≤ ≤
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. (19)

Solving Equation 19 for the coordinate axis gives the projection boundaries of

Gaussian box along this axis as follows:

. (20)

4.6. Experimental Results and Analysis

The parameters of the Extended BBI algorithm should be chosen to achie

significant speedup with minimal approximation error. This is done by analyzing

performance of the algorithm using various combinations of parameters and findin

parameter pair which gives best results. A publicly available speech-to-text system

has been used in this thesis to evaluate the performance of the proposed algo

TIDIGITS

TIDIGITS [32] was used for the initial evaluation of the Extended BBI algorith

The relative threshold used by the algorithm was varied from 0.2 to 0.8 in steps of 0.1

trees with depth between 3 and 5 were used. Table 6 gives the performance of the s

which is not using the Extended BBI algorithm (No EBBI System) and the performanc

the system which is using the Extended BBI algorithm.

We can observe that for a threshold of 0.2, the Gaussian speedup increased

32.4% to 41.2% as the tree depth increased from 3 to 5. For these values of paramete

WER of the recognition system remained at 0.6%. This suggests that the prop

TR 1
2
---

xi µi–( )2

σi
2

--------------------
i 1=

k

∑–
 
 
 

exp=

i

xi µi 2 σi
2

TR( )log⋅ ⋅–±=
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Tree
Depth

Relative
Threshold

% of Total CPU Time Taken by
Gaussian Score Evaluations

Gaussian Speedup
(%)

WER
(%)

No EBBI System 24.38 - 0.6

3 0.2 16.47 32.44 0.6

4 0.2 15.27 37.37 0.6

5 0.2 14.36 41.10 0.6

3 0.3 14.81 39.25 0.6

4 0.3 13.56 44.38 0.6

5 0.3 12.41 49.10 0.7

3 0.4 13.41 45.00 0.6

4 0.4 11.80 51.60 0.7

5 0.4 10.74 55.95 0.7

3 0.5 12.20 49.96 0.7

4 0.5 10.21 58.12 0.7

5 0.5 9.04 62.92 0.8

3 0.6 10.83 55.58 0.8

4 0.6 8.91 63.45 0.8

5 0.6 7.49 69.28 0.9

3 0.7 9.52 60.95 0.8

4 0.7 8.14 66.61 0.9

5 0.7 6.59 72.97 1.0

3 0.8 8.39 65.59 1.0

4 0.8 6.23 74.45 1.2

5 0.8 4.77 80.43 1.6
algorithm produced a 41.2% speedup without adding any additional approximation e

Further, it can be seen that a depth of 3 with a relative threshold of 0.4 produced a

speedup in score computations without degrading the performance of the system. A
Table 6. Performance of the TIDIGITS system using the Extended BBI algorithm.
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tree depth of 4 and a relative threshold of 0.5 produced a 58% speedup with only a

relative increase in the WER of the system. Thus, the algorithm produces a signif

amount of speedup without increasing the WER of the system. Figure 11 gives

speedup in Gaussian evaluation as a function of relative threshold. The plots s

represent tree depths of 3, 4 and 5. From these results, we can observe

• For a given tree depth, the speedup in Gaussian evaluations increases w
increase in the relative threshold;

• For a given threshold, the speedup in mixture component evaluation incre
with an increase in the k-d tree depth.
sian
ith
Figure 11. The effect of variations in relative threshold on the speedup in Gaus
evaluations for a TIDIGIT system with a constant k-d tree depth. K-d trees w
depth 3, 4 and 5 were used.
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Next, we will analyze the effect of the algorithm parameters on the WER of

system. The plots shown in Figure 12 give the variation in WER of the system

function of threshold and tree depth. These results suggest that:

• For a constant tree depth, the WER increases with an increase in the re
threshold;

• For a constant relative threshold, the WER of the system increases wit
increase in the tree depth.

It can be observed that the WER remained unchanged for lower values of

depths and thresholds. Figure 13 gives a clear understanding of the algor
IT
Figure 12. The effect of variations in the relative threshold on the WER of a TIDIG
system with a constant k-d tree depth.
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performance. This figure shows the Gaussian speedup and WER of the TIDIGITS sy

as a function of the algorithm parameters. The WER is shown along the vertical axis

the Gaussian speedup is plotted along the horizontal axis. The relative threshold

increased from 0.2 to 0.8 along the horizontal axis. Different colors in the plot corresp

to different k-d tree depths. It can be observed that the maximum speedup tha

obtained without any degradation in recognition performance was 45%. A higher spe

in Gaussian evaluations is obtained at the cost of a small increase in WER.
ssian
Figure 13. The effect of k-d tree depth and relative threshold on the WER and Gau
speedup for the TIDIGITS system using the Extended BBI algorithm.
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Alphadigits

The OGI Alphadigits task [75] was used to obtain the performance of

algorithm as a function of the number of mixture components. For this, 16, 32 an

mixture components were used. For the Alphadigits system with 16-mixture compon

the relative threshold was varied from 0.2 to 0.8 at steps of 0.1. The k-d tree depth

varied from 3 to 5. Using the Extended BBI algorithm, the speedup in Gauss

evaluations and the WER of the system were obtained. The results are listed in Ta

Gaussian evaluations took 31.7% of the total CPU time in the system, which is not u

the Extended BBI algorithm. This system produced a WER of 10.3%. We can observ

for a constant threshold, the percentage speedup in Gaussian evaluations increases

increase in the tree depth. But, this speedup is obtained at a cost of an increased WE

a threshold of 0.2, as the tree depth increased from 3 to 5, Gaussian speedup inc

from 31% to 39% without any increase in the WER of the system.

The variation in percentage speedup is shown as a function of algori

parameters in Figure 14. The relative threshold is plotted along the horizontal axis an

Gaussian speedup is plotted along the vertical axis. The plots shown represent tree

of 3, 4 and 5. It can be observed that for a fixed tree depth, Gaussian speedup inc

with an increase in the relative threshold. For a depth of 5, as the threshold increased

0.2 to 0.8, the speedup in Gaussian evaluations increased from 39% to 79%.

threshold of 0.5, as the tree depth increased from 3 to 5, the Gaussian speedup inc

from 46% to 58%.
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Tree
Depth

Relative
Threshold

% of Total CPU Time Taken by
Gaussian Score Evaluations

Gaussian Speedup
(%)

WER
(%)

No EBBI System 31.70 - 10.3

3 0.2 21.86 31.04 10.4

4 0.2 20.02 36.84 10.4

5 0.2 19.38 38.89 10.4

3 0.3 21.19 30.91 10.5

4 0.3 19.94 37.10 10.5

5 0.3 18.68 41.07 10.5

3 0.4 19.63 38.08 10.6

4 0.4 17.89 43.56 10.8

5 0.4 16.20 48.90 10.7

3 0.5 17.13 45.96 10.9

4 0.5  15.00 52.68 11.1

5 0.5 13.33 57.95 11.2

3 0.6 14.97 52.78 11.4

4 0.6 13.04 57.73 11.5

5 0.6 10.96 65.42 12.0

3 0.7 12.85 59.46 12.0

4 0.7 11.11 64.95 12.6

5 0.7 8.64 72.74 13.4

3 0.8 11.04 65.17 13.5

4 0.8 8.54 73.06 14.6

5 0.8 6.61 79.15 15.6

The
The variation in WER is shown as a function of the algorithm parameters

Figure 15. The plots indicate that for a fixed tree depth, the WER of the recogni

system increases as the threshold increases. When the threshold is varied from 0.2
Table 7. Performance of the Alphadigits system using the Extended BBI algorithm.
system used 16-mixture components.
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the variation in WER is small. But the variation in WER is significantly larger when

threshold is varied from 0.5 to 0.8. We can also observe that for a fixed value o

relative threshold, WER increases with an increase in tree depth. For a relative thre

of 0.7, when the tree depth increased from 3 to 5, the relative increase in WER incre

from 16% to 30%.

Figure 16 gives the simultaneous effect of the algorithm parameters on

Gaussian speedup and the WER of the system. The relative threshold is varied from

0.8 along the horizontal axis. The tree depth is fixed for each plot. It can be observe
Figure 14. The variation in Gaussian speedup as a function of the relative threshold
Alphadigits system with 16-mixture components. The plots correspond to
tree depths of 3, 4 and 5.
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the Gaussian speedup as well as the WER increases with an increase in threshold

depth. The Extended BBI algorithm with a tree depth of 5 and a threshold of 0.3 prod

a 41% speedup with only a 2% relative degradation in WER. A higher speedup is obt

at the cost of a significantly higher increase in WER. Thus, a tree depth of 5 and a re

threshold of 0.3 can be considered as optimal values of the algorithm parameters fo

task.

Next, we will consider the Alphadigits system [76] with 32-mixture componen

The percentage of the total CPU time used for the evaluation of the mixture compo
Figure 15. The effect of variations in relative threshold on the WER of an Alphadi
system with 16-mixture components for a constant tree depth.
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was 43% in this system, which is 36% higher than the CPU time used by the Gau

evaluations in the system using 16-mixture components. K-d trees of depth 3, 4, 5

were used in the experiments. The relative threshold was varied from 0.3 to 0.

different test runs. The performance of the algorithm using different values of

algorithm parameters is shown in Table 8.

Figure 17 shows a variation in the Gaussian speedup as a function of the re

threshold. It can be observed that for a fixed tree depth, Gaussian speedup increase

an increase in the threshold. Also, for a fixed threshold value, a higher speedup is ob
Figure 16. The effect of variations in tree depth and relative threshold on the WER
Gaussian speedup for an Alphadigits system using 16-mixture cross-w
triphone models.
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Tree
Depth

Relative
Threshold

% of Total CPU Time Taken by
Gaussian Score Evaluations

Gaussian Speedup
(%)

WER
(%)

No EBBI System 43.17 - 10.3

3 0.3 29.99 30.53 10.3

4 0.3 26.65 38.26 10.3

5 0.3 24.41 43.46 10.3

6 0.3 22.33 48.27 10.3

3 0.4 26.92 37.64 10.4

4 0.4 23.99 44.43 10.4

5 0.4 21.64 49.87 10.5

6 0.4 19.03 55.92 10.6

3 0.5 24.43 43.41 10.6

4 0.5 21.76 49.59 10.7

5 0.5 19.04 55.90 10.8

6 0.5 16.45 61.89 10.9

3 0.6 22.39 48.13 10.9

4 0.6 20.12 53.40 11.2

5 0.6 16.99 60.64 11.4

6 0.6 14.90 65.49 11.7

3 0.7 21.70 49.73 11.4

4 0.7 17.93 58.47 11.7

5 0.7 14.77 65.79 12.2

6 0.7 11.37 73.66 12.8

3 0.8 19.05 55.87 12.4

4 0.8 14.60 66.18 13.0

5 0.8 10.89 74.77 14.2

6 0.8  7.98 81.51 15.1

ystem
Table 8. Percentage speedup in Gaussian evaluation and WER for an Alphadigits s
with 32-mixture components.
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Figure 17. Variations in the Gaussian speedup as a function of the relative threshol
k-d tree depth for an Alphadigits system using 32-mixture cross-word triph
models.
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as the tree depth increases. For a threshold of 0.3, as the tree depth varied from 3 to

Gaussian speedup increased from 30% to 48%. Similarly, for a tree depth of 3, a

threshold increased form 0.3 to 0.8, the Gaussian speedup increased from 30% to

The variation in WER is shown as a function of algorithm parameters in Figure

It can be observed that the approximation error introduced by the Extended BBI algo

increases as the tree depth or relative threshold increases. For a threshold of 0.4, as

depth increased from 3 to 6, the WER increased from 10.4% to 10.6%. In other word
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Figure 18. The effect of the algorithm parameters on the WER of an Alphadigits sy
using 32-mixture components.
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relative approximation error introduced by the algorithm increased from 0.9% to 3% w

the tree depth increased from 3 to 6 at a threshold of 0.4. Also, for a tree depth of 6, a

threshold increased from 0.3 to 0.8, the WER increased from 10.3% to 15.1%. Thu

Extended BBI algorithm with a tree depth 6 and a threshold 0.3 did not introduce

additional error in the recognition system, while the algorithm with a tree depth 6 a

th resho ld 0 .8 in t roduced a 46% re la t ive approx imat ion er ro

Figure 19 shows simultaneous variations in the speedup and WER of the syst

a function of the tree depth and relative threshold. In this figure, the relative threshold
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Figure 19. The simultaneous effect of the algorithm parameters on the Gaussian sp
and WER of the Alphadigits system using 32-mixture components. Differ
points on the plots give the Gaussian speedup and WER for a value of the
depth and threshold.
ond

old of
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increased from 0.3 to 0.8 along the horizontal axis. Different colors in the plot corresp

to different k-d tree depths. It can be observed that for a tree depth of 6 and a thresh

0.3, the Extended BBI algorithm produced a maximum Gaussian speedup of 48% wi

any increase in WER. In other words, for these values of parameters, the spe

evaluating the mixture components is almost doubled without introducing any additi

error in the system.



55

edup

ure

solute

tree

ror in

ithm

in the

the

ents,

5, 6

The

n of

y the

sian

ithm

hat the

lative

onent

to 0.8.

sian
We have seen that the algorithm produced approximately 50% Gaussian spe

without introducing any approximation error for the Alphadigits system with 32-mixt

components. But, the same amount of speedup was obtained at a cost of 0.4% ab

approximation error for the Alphadigits system with 16-mixture components. Also, a

depth of 5 with a threshold of 0.3 produced a 43% speedup without any additional er

the Alphadigits system with 32-mixture components. However, the same algor

parameters resulted in a 41% speedup with 0.2% absolute approximation error

Alphadigits system with 16-mixture components. Thus, we can conclude that

Extended BBI algorithm is more attractive as the number of Gaussians increases.

To gain a better understanding of the effect of the number of mixture compon

we used the Alphadigits system with 64-mixture components [77]. K-d trees of depth

and 7 were used with a relative threshold varying from 0.3 to 0.8 at steps of 0.1.

performance of the algorithm is shown in Table 9. The execution time for the evaluatio

the mixture components in this system was 57.9% of the total CPU time used b

recognition system, which is 83% higher than the time consumed by the Gaus

evaluations in the system using 16-mixture components. The effect of the algor

parameters on the Gaussian speedup is shown in Figure 20. It can be observed t

speedup in mixture component evaluations increases with an increase in the re

threshold or k-d tree depth. For a k-d tree depth of 7, the speedup in mixture comp

evaluations increased from 52% to 84% as the relative threshold increased from 0.3

Also, for a fixed threshold of 0.8, as the k-d tree depth varied from 5 to 7, the Gaus

speedup increased from 71.5% to 84%.
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Tree
Depth

Relative
Threshold

% of Total CPU Time Taken by
Gaussian Score Evaluations

Gaussian Speedup
(%)

WER
(%)

No EBBI System 57.88 - 10.1

5 0.3 36.00 37.80 10.2

6 0.3 32.33 44.14 10.2

7 0.3 27.90 51.80 10.3

5 0.4 32.78 43.37 10.2

6 0.4 29.14 49.65 10.2

7 0.4 24.83 57.10 10.3

5 0.5 28.66 50.48 10.6

6 0.5 25.16 56.53 10.6

7 0.5 21.77 62.39 10.7

5 0.6 25.65 55.88 11.0

6 0.6 21.62 62.65 11.2

7 0.6 18.02 68.87 11.5

5 0.7 20.98 63.75 11.6

6 0.7 16.84 70.91 12.1

7 0.7 12.96 77.61 12.4

5 0.8 16.50 71.49 12.8

6 0.8 12.57 78.28 13.6

7 0.8 9.06 84.35 14.4

The
The variation in WER is shown as a function of the algorithm parameters

Figure 21. It can be seen that for a threshold of 0.8, as the tree depth increased from

the Gaussian speedup increased from 12.8% to 14.4%. For a tree depth of 7,

threshold increased from 0.3 to 0.8, WER increased from 10.2% to 14.4%. Gau
Table 9. Performance of the Alphadigits system using the Extended BBI algorithm.
system used 64-mixture components.
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speedup and WER are simultaneously plotted against algorithm parameters in Figu

We can observe that for a tree depth of 6 and a threshold of 0.4, the speed of Gau

evaluations is almost doubled with only 0.1% absolute or 0.9% relative increase in W

Since this is the maximum amount of speedup obtained with the smallest approxim

error, these parameters can be considered to be the optimal algorithm parameters.

We can conclude that for the systems with higher mixture components, the s

amount of speedup can be obtained with a significantly lower increase in WER. Tab

gives the relative approximation error introduced by the algorithm to obtain a 60% a
Figure 20. The effect of the algorithm parameters on the speedup in Gaussian evalu
for an Alphadigits system using 64-mixture components.
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80% Gaussian speedup for the Alphadigits system with 16, 32 and 64 mix

components. In the Alphadigits system with 16-mixture components, the Extended

algorithm introduced a 16.5% relative approximation error to yield a speedup of 60%

the other hand, the algorithm produced the same amount of speedup with only abo

approximation error when the Alphadigits system with 64-mixture components was u
Figure 21. Variations in WER as a function of the algorithm parameters for an Alphad
system using 64-mixture components.
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Figure 22. The effect of algorithm parameters on the Gaussian speedup and WER
Alphadigits system using 64-mixture components.
Speedup in Gaussian
Evaluations

(%)

Relative Approximation Error Introduced by
Extended BBI Algorithm

(%)

16-mixture 32-mixture 64-mixture

60 16.50 4.85 2.97

80 51.45 46.60 32.67

in a
ture
Table 10. The approximation error introduced by the Extended BBI algorithm to obta
certain Gaussian speedup for the Alphadigits system with varying mix
components.
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SWITCHBOARD

SWITCHBOARD is a more complex task than the TIDIGITS and the O

Alphadigits tasks [78]. A set of experiments, with an error threshold varying from 0.

0.8 and the tree depth varying from 3 to 5, were run. The performance of the algorith

given in Table 11. It can be observed that the time consumed by the evaluation of mi

Gaussians decreases as the tree depth or relative threshold increases. Als

approximation error introduced by fast and approximative computations increases w

increase in tree depth or relative threshold.

The effect of the algorithm parameters on the Gaussian speedup is show

Figure 23. Different colors in the plot correspond to different k-d tree depths. Figur

shows the variations in WER of the system as a function of the algorithm parameter

the relative threshold increases, the speedup in Gaussian evaluations increases at a

a higher WER. This behavior is consistent with the behavior of the algorithm on the o

tasks. For the SWB task, the Extended BBI algorithm doubled the speed of s

computation with only a 3.4% relative increase in the WER. Figure 25 gives

simultaneous effect of the algorithm parameters on the Gaussian speedup and WER

system. We can observe that a speedup of 42% in mixture component evaluation

obtained with only a 1.2% relative increase in the WER.

4.7. Gaussian Clipping and Extended BBI Algorithm

Another technique that has been used in this thesis to speed up the evaluat

the mixture Gaussians is known as Gaussian clipping. It is used to generate lower
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epth

Tree
Depth

Relative
Threshold

% of Total CPU Time Taken by
Gaussian Score Evaluations

Gaussian Speedup
(%)

WER
(%)

No EBBI System 9.92 - 41.1

3 0.3 8.04 18.95 41.3

4 0.3 7.88 20.56 41.3

5 0.3 7.70 22.38 41.3

3 0.4 7.28 26.61 41.4

4 0.4 7.05 28.93 41.4

5 0.4 6.78 31.65 41.4

3 0.5 6.61 33.37 41.5

4 0.5 6.15 38.00 41.5

5 0.5 5.75 42.04 41.6

3 0.6 5.93 40.22 42.0

4 0.6 5.29 46.67 42.2

5 0.6 4.89 50.70 42.5

3 0.7 5.06 48.99 42.6

4 0.7 4.34 56.25 43.1

5 0.7 3.77 61.99 43.8

3 0.8 4.32 56.45 43.5

4 0.8 3.50 64.72 44.4

5 0.8 2.89 70.87 45.6
Table 11. The performance of the Extended BBI algorithm as a function of the tree d
and relative threshold for an SWB task.
low

with

sians
mixture models from higher-order mixture models by removing Gaussians with

mixture weights. Mixture weights were re-normalized in this technique. For a system

64-mixture components, this technique gave a speedup of 50% by using 32 Gaus

components with higher mixture weights.
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Figure 23. The speedup in Gaussian evaluations as a function of the relative thresho
k-d tree depth for an SWB system.
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The experiments were run to compare the performance of the Gaussian clip

and the Extended BBI algorithm. Table 12 shows the performance of the follow

systems on the OGI Alphadigits task:

• No FGC — A recognition system with a lower number of mixture compone
(8 and 12 in this case) and no fast Gaussian computation techniques;

• Extended BBI (16-mixture) — A recognition system using the Extended B
algorithm to extract 8 and 12 mixture components from 16 mixtu
components;

• Gaussian Clipping (16-mixture) — A recognition system using the Gauss
clipping technique to extract 8 and 12 mixture components from 16 mixt
components.
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From the results shown in Table 12, it can be observed that the “No FGC” sys

using 8-mixture components produced a WER of 11.6%. When the Gaussian clip

approach is used to extract 8 Gaussian components, the system gave a WER of 1

Thus, the Gaussian clipping technique results in a degradation of system perform

When the Extended BBI algorithm was used to extract 8 Gaussians, a WER of 10.7%

obtained. This suggests that the performance of the system using the Extende

algorithm is 8% better than the “No FGC” system, and 12.3% better than the Gau

clipping system.
Figure 24. The effect of the algorithm parameters on the WER for an SWB system.
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Figure 25. The effect of the algorithm parameters on the Gaussian speedup and WE
an SWB task.
Number of Mixtures Technique Used
WER
(%)

8-mixture
No FGC 11.6

Extended BBI (16-mix) 10.7

Gaussian Clipping (16-mix) 12.2

12-mixture
No FGC 10.7

Extended BBI (16-mix) 10.3

Gaussian Clipping (16-mix) 11.5

sian
Table 12. A comparison of performance for several variants of the fast Gaus
computational approach.
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The experimental results gives us enough evidence to conclude that the Exte

BBI algorithm is superior to the Gaussian clipping technique. We can also conclude

the performance of the system using the Extended BBI algorithm is better than the sy

using fewer mixture components and no Gaussian speedup techniques.
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CHAPTER 5

CONCLUSIONS AND FUTURE DIRECTIONS

This thesis investigated major drawbacks of the BBI algorithm and propose

improvement of the algorithm known as the Extended BBI algorithm. The algorithm

been applied to current state-of-the-art LVSCR system and it was shown

experimentation that the Extended BBI algorithm is superior to the BBI algorithm

Gaussian clipping technique.

5.1. Thesis Contributions

Extended BBI Algorithm and BBI Algorithm

We found that the optimization criterion used by the BBI algorithm failed

provide an optimal hyperplane in the case of multiple minima. The Extended

algorithm proposed a modified optimization criterion which provided optimal splits

case of multiple minima. The optimization criterion used by the Extended BBI algori

produced a 10% lower WER than the optimization criterion used by the BBI algorit

Re-normalization of mixture weights used in the Extended BBI algorithm reduced

WER by 3%. The proposed algorithm produced a 12% lower WER than the

algorithm, without reducing Gaussian speedup.
66
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Gaussian Clipping and Extended BBI Algorithm

The Extended BBI algorithm has also been compared to the Gaussian clip

technique for speeding up mixture component evaluations. Experimental results sh

that the Extended BBI algorithm produced a 12% lower WER than the Gaussian clip

technique. Both algorithms were evaluated for the case of a 50% speedup in mi

component evaluations on the Alphadigits task using 16-mixture components.

5.2. Summary of Experiments

We evaluated the performance of the Extended BBI algorithm on small as we

large vocabulary tasks. For small vocabulary, TIDIGITS and OGI Alphadigits tasks w

used. For the large vocabulary task, we used the SWB conversational speech corpu

performance of the algorithm was also evaluated for a range of mixture component o

For TIDIGITS, the Extended BBI algorithm produced a speedup of 45% with

any increase in WER. On the same task, a speedup of approximately 58% was ob

with only a 0.1% absolute increase in WER. For the Alphadigits system using 32-mix

components, the Extended BBI algorithm produced a speedup of 48%. Thus

algorithm allows twice the number of mixture components to be used. This results

reduced WER since error rates generally decrease as the number of mixture comp

are increased. For example, the Alphadigits system using 32-mixture components g

10.3% WER and the Alphadigits system using 64-mixture components gives a 10

WER. For the SWITCHBOARD task, the Extended BBI algorithm achieved a speedu

42% with a 1.2% relative increase in WER of the system.
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5.3. Future Work

We have verified that the modified optimization criterion used by the Exten

BBI algorithm yields a significant improvement over the BBI algorithm. However, we s

need to address some issues related to the optimization criterion.

The optimization criterion used by the Extended BBI algorithm focuses

building a balanced binary tree by obtaining a separating hyperplane perpendicular t

of the coordinate axis. In real applications this optimization criterion results in more

one such hyperplanes. The Extended BBI algorithm computes the mean of the positi

two such extreme hyperplanes and uses the hyperplane at the mean as division hype

It is important to study the performance of the Extended BBI algorithm under sev

balanced hyperplanes. This is because the k-d trees obtained by using diff

hyperplanes may result in a different set of most significant Gaussians.

The Extended BBI algorithm did not consider mixture weights in computing

Gaussian boxes. This is because the mixture weights do not significantly chang

Gaussians with large likelihoods. The mixture weights can be included in the comput

of the Gaussian boxes, and this should provide an improvement in performance witho

additional computational cost during recognition.



ech

l,

ws
p,

, R.
to

and
l

rge

er,
lts,”

er,
t

REFERENCES

[1] F. Jelinek, R. Mercer and S. Roukos, “Principles of Lexical Modeling for Spe
Recognition,”Advances in Speech Signal Processing, pp. 651-699, Marcel Dakker
Inc., New York, New York, USA, 1992.

[2] J. Picone, “LVCSR Systems: Challenging the Limits of Computing,”http://
www.isip.msstate.edu/conferences/srstw01/program/session_10/lvcsr/index.htm
Mississippi State, Mississippi, USA, May 2001.

[3] J. Odell, P. Woodland and T. Hain, “The CUHTK-Entropic 10xRT Broadcast Ne
Transcription System,”Proceedings of DARPA Broadcast News Worksho
Herndon, Virginia, USA, Feb. 1999.

[4] S. Matsoukas, L. Nguyen, J. Davenport, J. Billa, F. Richardson, M. Siu, D. Liu
Schwartz and J. Makhoul, “The 1998 BBN BYBLOS Primary System applied
English and Spanish Broadcast News Transcription,”Proceedings of DARPA
Broadcast News Workshop,Herndon, Virginia, USA, Feb. 1999.

[5] G.F. Chollet and C. Gagnoulet, “On the Evaluation of Speech Recognizers
Databases Using a Reference System,”Proceedings of the IEEE Internationa
Conference on Acoustics, Speech, and Signal Processing, pp. 2026-2029, Paris,
France, 1982.

[6] M. Gales, K. Knill and S. Young, “State-Based Gaussian Selection in La
Vocabulary Continuous Speech Recognition Using HMM's,”IEEE Transactions on
Speech and Audio Processing, Vol. 7, No. 2, pp. 152-161, March 1999.

[7] P. Woodland, T. Hain, G. Moore, T.R. Niesler, D. Povey, A. Tuerk and E. Whittak
“The 1998 HTK Broadcast News Transcription System: Development and Resu
Proceedings of DARPA Broadcast News Workshop,Herndon, Virginia, USA, Feb.
1999.

[8] P. Woodland, T. Hain, G. Moore, T. Niesler, D. Povey, A. Tuerk and E. Whittak
“The 1998 BBN Byblos 10X Real Time System,”Proceedings of DARPA Broadcas
News Workshop,Herndon, Virginia, USA, Feb. 1999.
69



70

b5
hop

n,”

ker

te,

ls

s in

ch

rge
[9] P. Woodland, T. Hain, G. Evermann and D. Povey, “CU-HTK March 2001 Hu
System,” 2001 Large Vocabulary Conversational Speech Recognition Works,
Baltimore, Maryland, May 2001.

[10] F. Jelinek,Statistical Methods for Speech Recognition, MIT Press, Cambridge,
Massachusetts, USA, 1997.

[11] L. Rabiner and B. Juang,Fundamentals of Speech Recognition, Prentice Hall,
Englewood Cliffs, New Jersey, USA, 1993.

[12] A. Robinson, “An Application of Recurrent Nets to Phone Probability Estimatio
IEEE Transactions on Neural Networks, vol. 5, no. 2, pp. 298-305, March 1994.

[13] J. Picone, “Continuous Speech Recognition Using Hidden Markov Models,”IEEE
Acoustics, Speech, and Signal Processing Magazine, vol. 7, no. 3, pp. 26-41, July
1990.

[14] B. Necioglu, M. Ostendorf and J. Rohlicek, “A Bayesian Approach to Spea
Adaptation for the Stochastic Segment Model,”Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal Processing, vol. I, pp.
437-440, San Francisco, California, March 1992.

[15] X. Huang, H. W. Hon, M. Hwang and K. Lee, “A Comparative Study of Discre
Semi-Continuous and Continuous Hidden Markov Models,”Computer Speech and
Language, vol. 7, no. 4, pp. 359-368, October 1993.

[16] J. Deller, J. Proakis and J. Hansen,Discrete-Time Processing of Speech Signa,
Macmillan Publishing, New York, USA, 1993.

[17] H. Ney, U. Essen and R. Kneser, “On Structuring Probabilistic Dependencie
Stochastic Language Modeling,”Computer Speech and Language, vol. 8, no. 1, pp.
1-38, January 1994.

[18] D. Paul, “An Essential A* Stack Decoder Algorithm for Continuous Spee
Recognition with a Stochastic Language Model,”Proceedings of the IEEE
International Conference on Acoustics, Speech, and Signal Processing, San
Francisco, California, USA, March 1992.

[19] N. Deshmukh, A. Ganapathiraju and J. Picone, “Hierarchical Search for La
Vocabulary Conversational Speech Recognition,”IEEE Signal Processing
Magazine, vol. 16, no. 5, pp. 84-107, September 1999.



71

for
e

rch

,

blic
ch

ech
ics,

ns,”
ii/

sed

ch
l

[20] J. Odell, V. Valtchev, P. Woodland and S. Young, “A One Pass Decoder Design
Large Vocabulary Recognition,”Proceedings of ARPA Human Languag
Technology Workshop,pp. 405-410, Princeton, New Jersey, USA, March 1994.

[21] H. Murveit, J. Butzberger, V. Digalakis and M. Weintraub, “Progressive-Sea
Algorithms for Large Vocabulary Speech Recognition,”Proceedings of the DARPA
Human Language Technology Workshop, Cambridge, Massachusetts, USA
March 1993.

[22] N. Deshmukh, A. Ganapathiraju, J. Hamaker and J. Picone, “An Efficient Pu
Domain LVCSR Decoder,”Proceedings of the Hub-5 Conversational Spee
Recognition (LVCSR) Workshop, Linthicum Heights, Maryland, USA,
September 1998.

[23] J. Picone, “Signal Modeling Techniques in Speech Recognition,”Proceedings of the
IEEE, vol. 81, no. 9, pp. 1215-1247, September 1993.

[24] H. Hermansky, “Perceptual Linear Predictive (PLP) Analysis of Speech,”Journal
of the Acoustical Society of America, vol. 87, no. 4, pp. 1738-1752, April 1990.

[25] S. Furui, “Cepstral Analysis Technique for Automatic Speaker Verification,”IEEE
Transactions on Acoustics, Speech, and Signal Processing, vol. 29, no. 2, pp.
254-272, April 1981.

[26] R. Bahl et al, “Large Vocabulary Natural Language Continuous Spe
Recognition,” Proceedings of the IEEE International Conference on Acoust
Speech, and Signal Processing, pp. 465-467, Glasgow, Scotland, May 1989.

[27] Intel Developer Services, “An Overview of Speech Technology and Applicatio
http://developer.intel.com/software/idap/resources/technical_collateral/pentium
speech.htm, September 1998.

[28] M. Padmanabhan, E. Jan, L. Bahl and M. Picheny, “Decision-tree ba
feature-space quantization for fast gaussian computation,”Proceedings of the IEEE
Automatic Speech Recognition and Understanding Workshop, pp. 325-330, Santa
Barbara, California, USA, December 1997.

[29] J. Godfrey, E. Holliman, and J. McDaniel, “SWITCHBOARD: Telephone Spee
Corpus for Research and Development,”Proceedings of the Internationa
Conference on Acoustics, Speech and Signal Processing, vol. 1, pp. 517-520, San
Francisco, California, USA, March 1992.



72

bust
uous
s,

l

in
y

ite

g
e

del

/

ech

tic
io
[30] L. Bahl, P. deSouza, P. Gopalakrishnan, D. Nahamoo and M. Picheny, “Ro
Methods for using Context-Dependent Features and Models in a Contin
Speech Recognizer,”Proceedings of International Conference on Acoustic
Speech, and Signal Processing,vol. 1, pp. 533-536, Adelaide, Australia, Apri
1994.

[31] J. Odell, The Use of Context in Large Vocabulary Speech Recognition, Ph. D.
Thesis, Cambridge University, UK, 1997.

[32] R. Leonard, “A Database for Speaker-Independent Digit Recognition,”Proceedings
of International Conference on Acoustics, Speech, and Signal Processing, 1984.

[33] A. Poritz, “Hidden Markov Models: A Guided Tour,”Proceedings of International
Conference on Acoustics, Speech, and Signal Processing,vol. 1, pp. 7-13, New
York City, New York, USA, April 1998.

[34] L. Rabiner, “A Tutorial on Hidden Markov Models and Selected Applications
Speech Recognition,”Proceedins of the IEEE,vol. 37, no. 2, pp. 257-286, Februar
1989.

[35] L. Baum and T. Petrie, “Statistical Inference for Probabilistic Functions of Fin
State Markov Chains,”Annals of mathematical statistics,vol. 37, pp. 1559-1563,
1966.

[36] P. Woodland and D. Cole, “Optimizing Hidden Markov Models usin
Discriminative Output Distributions,”Proceedings of the International Conferenc
on Acoustics, Speech and Signal Processing, April 1991.

[37] L. Bahl, P. Brown, P. deSouza and R. Mercer, “Estimating Hidden Markov Mo
Parameters so as to Maximize Speech Recognition Accuracy,”IEEE Transactions
on Speech and Audio Processing, vol. 1, no. 1, part II, pp. 77-83, January 1993.

[38] J. Picone, “Fundamentals of Speech Recognition,”http://www.isip.msstate.edu
publications/courses/isip_0000/, April 1998.

[39] M. Woszczyna,Fast Speaker Independent Large Vocabulary Continuous Spe
Recognition, Ph.D. dissertation, Karlsruhe, Germany, February 1998.

[40] K. Fukunaga,Introduction to Statistical Pattern Recognition, Academic Press, San
Diego, CA, USA, 1990.

[41] M. Ostendorf, “From HMMs to Segment Models: A Unified View of Stochas
Modeling for Speech Recognition,”IEEE Transactions on Speech and Aud
Processing, vol. 4, no. 5, part II, pp. 360-378, September 1996.



73

he
ech

ity
and

an

sing

in

ng,”
,

g

f the
n

hbor
ics,
[42] S. Levinson, L. Rabiner and M. Sondhi, “An Introduction to the Application of t
Theory of Probabilistic Functions of a Markov Process to Automatic Spe
Recognition,”Bell System Technical Journal, vol. 62, no. 4, pp. 1035-1074, 1983.

[43] E. Bocchieri, “Vector quantization for efficient computation of continuous dens
likelihoods,” Proceedings of International Conference on Acoustics, Speech,
Signal Processing, vol. 2, pp. 692-695, Minneapolis, USA, 1993.

[44] H. Murveit, P. Monaco, V. Digalakis and J. Butzberger, “Techniques to achieve
accurate real-time large-vocabulary speech recognition system,”Proceedings of the
ARPA Workshop on Human Language Technology,pp. 368-373, Austin, Texas,
USA, March 1995.

[45] S. Arya, “Algorithms for Fast Vector Quantization,”Proceedings of the IEEE Data
Compression Conference, pp.381-390, Snowbird, Utah, USA, March 1993.

[46] W. Equitz, “A New Vector Quantization Clustering Algorithm,”Proceedings of the
IEEE International Conference on Acoustics, Speech, and Signal Processing, vol.
37, no. 10, pp. 1568-1575, New Paltz, New York, USA, October 1989.

[47] W. Equitz, “Fast Algorithms for Vector Quantization Picture Coding,”Proceedings
of the IEEE International Conference on Acoustics, Speech, and Signal Proces,
pp. 725-728, 1987.

[48] J. Friedman, J. Bentley and R. Finkel, “An Algorithm for Finding Best Matches
Logarithmic Expected Time,”ACM Transactions on Mathematical Software,vol. 3,
no. 3, pp. 209-226, September 1977.

[49] J. Makhoul, S. Roucos and H. Gish, “Vector Quantization in Speech Codi
Proceedings of the IEEE, vol. 73, no. 11, pp. 1551-1588, New York, USA
November 1985.

[50] C. Bei and R. Gray, “An Improvement of the Minimum Distortion Encodin
Algorithm for Vector Quantization,”IEEE Transactions on Communications,vol.
33, pp. 1132-1133, October 1985.

[51] L. Fissore, P. Laface, P. Massafra, and F. Ravera, “Analysis and Improvement o
Partial Distance Search Algorithm,”Proceedings of International Conference o
Acoustics, Speech, and Signal Processing, vol. 2, pp. 315-318, 1993.

[52] D. Cheng and A. Gersho, “A fast codebook search algorithm for nearest-neig
pattern matching,”Proceedings of the IEEE International Conference on Acoust
Speech, and Signal Processing, vol. 1, pp. 265-268, Tokyo, April 1986.



74

tion
,”

st

ng,”

n,”
ignal

,

ree

ast
s,

the

igh
[53] J. Fritsch, I. Rogina, T. Sloboda, A. Waibel, “Speeding Up The Score Computa
Of HMM Speech Recognizers With The Bucket Voronoi Intersection Algorithm
Proceeding of the EUROSPEECH, vol 2, pp. 1091-1094, Madrid, Spain, 1995.

[54] J. Fritsch, and I. Rogina, “The Bucket Box Intersection (BBI) Algorithm for fa
approximative evaluation of Diagonal Mixture Gaussians,”Proceedings of
International Conference on Acoustics, Speech, and Signal Processing, vol. 1, pp.
837-840, 1996.

[55] J. Bentley, “Multidimensional Binary Search Trees Used for Associative Searchi
Communications of the ACM, vol. 18, no. 9, pp. 509-517, September 1975.

[56] J. Baker,Stochastic Modeling for Automatic Speech Understanding, Academic
Press, New York, USA, 1975.

[57] A. Lowry, S. Hossain and W. Millar, “Binary Search Trees for Vector Quantizatio
Proceedings of the IEEE International Conference on Acoustics, Speech, and S
Processing, pp. 2205-2208, Dallas, Texas, USA, May 1987.

[58] J. Bentley, “Multidimensional Binary Search Trees in Database Applications,”IEEE
Transactions on Software Engineering,vol. 5, no. 4, pp. 333-340, New York, USA
July 1979.

[59] V. Ramasubramanian and K. Paliwal, “A generalized Optimization of the K-d T

for Fast Nearest Neighbor Search,”Proceedings of 4th IEEE Region 10 International
Conference on TENCON, pp. 565-568, November 1989.

[60] V. Ramasubramanian and K. Paliwal, “An Optimized K-d Tree Algorithm for F
Vector Quantization of Speech,”Signal Processing IV: Theories and Application
pp. 875-878, North Holland, 1988.

[61] K. Paliwal and V. Ramasubramanian, “Effect of Ordering the Codebook on
Efficiency of the Partial Distance Search for Vector QUantization,”IEEE
Transactions on Communications, vol. 37, pp. 538-540, May 1989.

[62] H. Zhao et al, “Multidimensional Searching Trees with Minimum Attribute,”JSSST
Computer Software, vol. 19, no.1, pp.22-28, Ooita-ken, Japan, 2002.

[63] S. Nene and S. Nayar, “A Simple Algorithm for Nearest Neighbor Search in H
Dimensions,”IEEE Transactions on Pattern Analysis and Machine Intelligence,vol.
19, no. 9, pp. 989-1003, September 1997.



75

s,”

k-d

/
itute,

ch
l

l

digit
e
,

[64] L. Devroye et al, “Squarish k-d trees,”Society for Industrial and Applied
Mathematics (SIAM) Journal on Computing, vol. 30, no. 5, pp. 1678-1700, 2000.

[65] I. Al-Furaih, “Parallel Construction of Multidimensional Binary Search Tree
IEEE Transactions on Parallel and Distributed Systems, vol. 11, no. 2, pp. 136-148,
February 2000.

[66] P. Chanzy, L. Devroye, C. Zamora-Cura, “Analysis of range search for random
trees,”Acta Informatica, vol. 37, no. 3, pp. 355-383, 2001.

[67] R. Cole et. al., “Alphadigit Corpus,” http://www.cse.ogi.edu/CSLU/corpora
alphadigit, Center for Spoken Language Understanding, Oregon Graduate Inst
1997.

[68] Center for Spoken Language Understanding (CSLU), “Alphadigit v1.1,”http://
cslu.cse.ogi.edu/corpora/alphadigit/, September 1996.

[69] D. Deterding, et. al., “Vowel Recognition”, available athttp://www.ics.uci.edu/pub/
machine-learning-databases/undocumented/connectionist-bench/vowel/, August
2000.

[70] J. Godfrey, E. Holliman, and J. McDaniel, “SWITCHBOARD: Telephone Spee
Corpus for Research and Development,”Proceedings of the Internationa
Conference on Acoustics, Speech and Signal Processing, vol. 1, pp. 517-520, San
Francisco, California, USA, March 1992.

[71] J. Godfrey and E. Holliman, “SWITCHBOARD-1 Release 2,” available athttp://
www.ldc.upenn.edu/Catalog/LDC97S62.html, September 1993.

[72] E. Shriberg, “Disfluencies in SWITCHBOARD,”Proceedings of the Internationa
Conference on Spoken Language Processing, Vol. Addendum, pp. 11-14,
Philadelphia, PA, October 1996.

[73] J. Fenlason and R. Stallman, “The GNU Profiler,” available athttp://www.gnu.org/
manual/gprof-2.9.1/html_mono/gprof.html, November 1998.

[74] N. Deshmukh, et. al., “A Public Domain Speech-to-Text System,”Proceedings of.
Eurospeech,vol. 5, Budapest, Hungary, September 1999.

[75] J. Hamaker, A. Ganapathiraju, J. Picone and J. Godfrey, “Advances in Alpha
Recognition Using Syllables,”Proceedings of the IEEE International Conferenc
on Acoustics, Speech and Signal Processing, pp. 421-424, Seattle, Washington
USA, May 1998.



76

igit
k/

ess of

hop

ech
n
.

at

ml
[76] J. Hamaker, et al, “A Proposal for a Standard Partitioning of the OGI AlphaD
Corpus,” available at http://isip.msstate.edu/projects/lvcsr/recognition_tas
alphadigits/data ogi_alphadigits/trans_eval.text.

[77] P. Loizou and A. Spanias, “High-Performance Alphabet Recognition,”IEEE
Transactions on Speech and Audio Processing, pp. 430-445, November 1996.

[78] E. Shriberg, “Phonetic Consequences of Speech Disfluency,”Symposium on The
Phonetics of Spontaneous Speech — Proceedings of the International Congr
Phonetic Sciences,vol. 1, pp. 619-622, San Francisco, CA, 1999.

[79] P. Woodland, T. Hain, G. Evermann and D. Povey, “CU- HTK March 2001 Hub5
System,” 2001 Large Vocabulary Conversational Speech Recognition Works,
Baltimore, Maryland, May 2001.

[80] L. Gillick and S. Cox, “Some Statistical Issues in the Comparison of Spe
Recognition Algorithms,”Proceedings of the IEEE International Conference o
Acoustics, Speech, and Signal Processing, vol. 1, pp. 532-535, Glasgow, May 1999

[81] Sun Microsystems, “Profiling Programs with prof, gprof, and tcov,” available
http://docs.sun.com/source/816-2458/OtherTools.html#pgfId-997973, February
2002.

[82] Rational Software Corporation, “Using Rational Quantify,” available athttp://
amwdb.u-strasbg.fr/docs/purify/html/installing_and_gettingstarted/4-quantify.ht,
January 2001.

[83] Rice Computer Science, “Performance Profiling,” available athttp://
www.owlnet.rice.edu/~comp320/2003/notes/tut10-profiling/, August 2002.



is of

ed for

ding

h

The

ns a

e prof

time

nce

use

NIX

have

the

ction
APPENDIX A

This appendix describes various profiling tools and provides a detailed analys

the gprof tool that is used in this thesis. There are several industry-standard tools us

performance profiling. Two simple UNIX tools aretimeandtop. But neither of these can

show the resource usage of the individual modules or functions. Other industry-lea

tools aretcov, Quantify, prof andgprof [81]. The tcov tool counts the number of time eac

function is executed but it does not give the execution time for each of the functions.

Quantify tool uses an Object Code Insertion (OCI) technology to count the instructio

program executes and to compute how many cycles they require to execute [82]. Th

and gprof tools provide the run-time (in CPU seconds) of a program and divide this

among all functions. The gprof utility provides more features than the prof utility. Si

we need a tool to find the time used by the individual functions of a program, we can

the Quantify and gprof tools for profiling. In this thesis, we have used Intel-based U

systems and Quantify is only available for Sun Sparc architectures. Therefore, we

used the gprof utility.

The output of gprof is a file containing two tables, theflat profile and thecall

graph. The flat profile gives the total execution times and call counts for each of

functions in the program. The call graph shows how much time was spent in each fun
77
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and its children. In order to understand the accuracy of gprof, we ran the recognize

small set of utterances and used the gprof utility to find the execution time of the Gau

computations. We ran the recognizer several times using different load conditions o

same machine. Table 13 gives the results of 10 test runs. Using these results, the

execution time is found to be 16.68 seconds and the standard deviation is found to b

which gives a 2.5 digits of accuracy.

We can observe that there is a small difference in the execution time of

Gaussian evaluations between different test runs. This is because the run-time fi

provided by gprof are based on a sampling process [83]. The rule of thumb is th

run-time figure is accurate if it is considerably larger than the sampling period. By def

the gprof uses a sampling period of 0.01 seconds. Since the run-time of the recogn

considerably larger than the sampling period, the run-time figures obtained in this t

are accurate. In case of smaller run-time figures, we can get a higher accurac

combining the data from several test runs, using the-s option of gprof [73].
Run
Number

Execution Time of Gaussian
Computations (Seconds)

Run
Number

Execution Time of Gaussian
Computations (Seconds)

1 16.77 6 16.79

2 16.23 7 16.91

3 16.79 8 16.85

4 16.56 9 16.59

5 16.48 10 16.80
Table 13. Execution time of the Gaussian computations for several test runs.
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