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Rapid advances in speech recognition theory, as well as computing hardware, have
led to the development of machines that can take human speech as input, decode the
information content of the speech, and respond accordingly. Real-time performance of
such systems is often dominated by the evaluation of likelihoods in the statistical
modeling component of the system. Statistical models are typically implemented using
Gaussian mixture distributions.

The primary objective of this thesis was to develop an extension of the Bucket Box
Intersection algorithm in which the dimension with the optimal number of splits can be
selected when multiple minima are present. The effects of normalization of mixture
weights and Gaussian clipping have also been investigated. We show that the Extended
BBI algorithm (EBBI) reduces run-time by 21% without introducing any approximation
error. EBBI also produced a 12% lower word error rate than Gaussian clipping for the
same computational complexity. These approaches were evaluated on a wide variety of

tasks including conversational speech.
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CHAPTER 1

INTRODUCTION

Speech recognition technology has made a significant progress from the days of
isolated word recognition. Five decades of interdisciplinary research in widely different
areas, such as, linguistics, psychacoustics, signal processing, computer science, pattern
recognition, and information theory, has greatly advanced the state of the art in speech
recognition systems. Rapid advances in speech recognition theory, as well as computing
hardware, have led to the development of machines that can take human speech as input,
decode the information content of the speech, and respond accordingly [1]. This has
greatly increased the range of applications for automatic speech recognition (ASR)
technology. However, these applications require large vocabulary continuous speech
recognition (LVCSR) systems with negligibly small amounts of latency.

The primary evaluation criterion for speech recognition research is the word error
rate (WER). Though the WER on standard evaluation tasks has decreased consistently
over the years, the complexity of the evaluation task (and the associated speech
recognition systems) has increased significantly. Task complexity can be measured in

terms of perplexity [1]. The perplexity is defined as:

Perplexity = 2H, (1)



whereH is the entropy of the language model in bits [1]. Table 1 provides a comparison of
perplexity and WER for a variety of tasks [2]. A relationship between the word error rate
of the system and the perplexity of a task is approximated by the following equation [2]:

WER = —12.37+ 6.42[og(Perplexity) (2)

While research has focused on decreasing WER, very few investigations of the
trade-off between WER and recognition speed have been performed [3, 4]. The
recognition speed is defined as the required CPU time measured in seconds to decode one
second of input speech [5]. Real time factor is used as the unit for recognition speed. For
example, a speed of NXRT means that the computer takes N seconds to decode an
utterance that is one second long, where the decoding time is measured in CPU seconds.

The need for real-time LVCSR systems has created a growing interest in
developing algorithms for faster recognition. Many such algorithms and techniques

include elimination of and/or approximations for many computationally expensive

Corpus Vocabulary Size Perplexity WER
TI DIGIT 11 11 ~0.0%
OGI Alphadigit 36 36 8.0%
Resource Management (RM) 1,000 60 4.0%
Air Travel Information Service 1,800 12 4.0%
Wall Street Journal 20,000 200-250 15.0%
Broadcast News >80,000 200-250 20.0%
Conversational Speech >50,000 100-150 30.0%

Table 1. The effect of the vocabulary size and perplexity of various tasks on the
performance of an ASR system.



components. These approximate technigues increase the WER of the system. However, to
convert laboratory systems into useful products, we must develop more efficient
systems [6]. To spur progress in this direction, the Defense Advanced Research Projects
Agency (DARPA) and the National Institute of Standards and Technology (NIST)
conducted evaluations on Broadcast News (Hub 4) that included a test investigating the
performance of the systems running under 10xRT on a single processor [7, 79]. BBN
Technologies showed that elimination and approximation of various computations
produced a speedup by a factor of 20 with a relative loss in WER of 18% [8].

In the Rich Transcription Evaluation (RT-02) (also conducted by DARPA and
NIST), Cambridge University’s Hidden Markov Model toolkit (HTK) used a faster
contrast system (cu-htk2) with a simpler architecture. This system didn’t use triphone and
qguinphone rescoring. On the 2002 evaluation set, this system reduced the run-time from
320xRT to 67xRT but increased the WER from 23.9% to 26.7% [9]. A faster version of
the full HTK 2002 system was also developed which ran in less than 10xRT. On the same
2002 evaluation set, the performance of this system was only 0.5% (absolute) worse than
the cu-htk2 system [9]. A major focus of this thesis is to develop methods to increase

recognition speed without significantly increasing WER.

1.1. A Statistical Approach to Speech Recognition

In statistical terms, the task of an ASR system is to find the most likely word
sequenceW , given the acoustic evidenge, [10]. Mathematically, the recognizer

chooses a word string/ , which satisfies [27]:



W = argmaxp(W/ A (3)
W

By using a Bayesian approach [11], the problem can be simplified to:

A

W = argmaxp(A/ Wp(W) @)

The above formula determines the design of the speech recognizer. The probability
p(A/ W) is computed using aacoustic mode[11-16], while the estimate of the

probability, p(W) , is determined usinglanguage mod€]l17]. The recognizer combines

the acoustic and language model probabilities to form the probability of word
sequences (e.g., sentences). The recognizer’'s main task is to search over all possible word
strings to find the most probable word sequence [10, 11], a process referred to as
decoding [18-22]. The acoustic front end extracts features from the speech signal which
capture the temporal and spectral characteristics of a signal. A detailed tutorial on acoustic
front end can be found in [23-26].

In current speech recognition systems, hidden Markov models (HMMs) are the
basic building blocks of the acoustic model [10, 23]. Most LVCSR systems model
phonetic variability using HMMs, and consider the context of a phone as part of the
model. For example, a phomd will be modeled as a context-dependent phone [31],
referred to as a triphone, of the formaph+b, wherea andb define the left and right
contexts. Typically, LVCSR systems use triphones, though more powerful systems use
longer acoustic context (e.g., quinphone). An HMM consists of a Markov distribution [19,

33, 34, 35] for transitions across different states, and includes a probability density



function at each state that models the probability of the output symbols possible at that
state. The choice of output probability function is crucial as it must model all of the
intrinsic spectral variability in the speech signal [36]. Typically, a mixture of multivariate
Gaussian distributions is used for this output distribution model. Each triphone model
corresponds to an elementary HMM with starting and stopping states. Systems use a
5-state HMM [37, 38] for each triphone, which includes a dummy start state, a dummy
stop state and three information-bearing states.

In the computation op(A/ W) , itis necessary to compute the probability density
that a feature vector was generated by that state. This probability density function, which
is commonly modeled by a mixture of multivariate Gaussian distributions, is assumed to

depend only on the current feature vector and state, and can be written as [10, 41, 42]:

M
PSS T)) = Y Wiy B exp 5% — ) Ty~ 1) )

m=1 J(210) |Z |
under the assumption that the vectqtJ R, , where the reipn is mathematically

represented &8, = {x: —0<x; <o, fori=1,2 ..., k}

In Equation 5,

. wjm—theweightforthemth Gaussian oftﬁ{é state

* X — the feature vector

* s(Y, ) — the state of HMM having multiple Gaussians

* Wy — the mean vector fan  Gaussian of ﬁﬁe state



. . . h . .
* I, — the variance-covariance matrix fior Gaussian ofjfhe state

¢ M — the number of Gaussians in the state
The distance between the feature vector and the mean of the Gaussian is modeled
using a likelihood measure that is computed by taking the log of Equation 5. This distance

metric is known as the Mahalanobis distance [40].
1.2. Resource Requirements

Speech recognition is a resource intensive task. The percentage of the total CPU
time and memory used by various parts of a current state-of-the-art ASR system is shown
in Figure 1. The largest percentage of the CPU time is used in acoustic modeling, while
the largest percentage of memory is devoted to search. In general, most current
state-of-the-art LVCSR systems typically spend about 50% to 80% of the total CPU time
on the computation of observation probabilities with mixtures of multivariate

Gaussians [28]. This time depends on various factors, which include the size of the

Megabytes of Memory Percentage of CPU

Feature Acoustic Language Feature

% Language ; _
Extraction Modeling _ s deling Modeling Extraction
(-1 M} 15% 10&

(10M) (30M)

Figure 1. Memory and the CPU time used by various parts of a current state-of-the-art
speech recognition system.



vocabulary, the complexity of the acoustic models and the distance measure used during
Gaussian evaluations.

The CPU time consumed by the Gaussian evaluations increases with the number of
mixtures used to model context-dependent phones. Figure 2 shows that the percentage of
the CPU time used in Gaussian evaluations increases approximately by a factor of three as
the number of mixtures increases from 8 to 64 for the Alphadigits task. Similar
experiments showed that the percentage of the CPU time used for Gaussian computations
increases by a factor of three on the SWITCHBOARD task as the number of Gaussian
mixture components in a HMM state varies from 12 to 16 [29]. On the same task, the CPU
load for the Gaussian computations for a network decoder increased by a factor of five as
the number of Gaussians in a HMM state increases from 2 to 12. Similarly, the use of
guinphone or other longer time-span acoustic models considerably increases the amount

of time required for the computation of observation probabilities.

CPU time taken by Gaussian
evaluations (%)

= B3 R W B B h M

th O h o h O Wh O th O

5 15 25 35 45 o5 B5
Humber of Gaussians in mixture

Figure 2. The effect of an increase in the number of mixture components on the CPU time
used by Gaussian evaluations.



1.3. Fast Gaussian Evaluations

We have established that computations in real systems are dominated by Gaussian
evaluations. Therefore, in order to reduce the run-time of the system, it is necessary to
reduce the time consumed by Gaussian evaluations without increasing the system WER.
We begin with a simple observation: if a feature vector lies on the tail of a distribution,
then the likelihood of that distribution producing that feature vector is very small [6]. Such
an input vector is known to be an outlier with respect to that Gaussian distribution. Thus,
removing these Gaussians from the computation of log probability for this feature vector
does not produce a significant degradation in the accuracy of the distance computed.

This was the motivation for an approach known@aussian Selectiof3, 44].

Using this technique, a speedup in the likelihood computations ranging from 3x to 9x was
reported [43]. The most important step in Gaussian selection is to find a method which can
efficiently find the Gaussians which do not make a significant contribution to the overall
mixture probability. Vector quantization (VQ) like approaches were successfully used to
find these Gaussians and approximate the log probability computations [45-49].

Another technique that is most commonly used is the Nearest Neighbor
Approximation [50-52], which uses the Gaussian with the smallest Mahalanobis distance
to the feature vector at a particular frame for the likelihood computation. The nearest
neighbor approach efficiently determines the Gaussian closest to the input vector among
all the Gaussians in the k-dimensional space. Therefore, in this approach we do not
compute a sum of Gaussians [39, 50]. The computation can be kept completely in the

logarithmic space, thereby reducing the computational complexity.



Several VQ based approaches require partial computation of a Mahalanobis
distance for each Gaussian in the mixture distribution and require scanning all the
Gaussians to find the most significant Gaussians [46]. This greatly increases the
computational load. J. Fritsat al proposed the Bucket Voronoi Intersection (BVI) [53]
and Bucket Box Intersection (BBI) [54] algorithms for fast search. These algorithms use a
tree-based search to find the most significant Gaussians. In order to build the tree, the
feature space is partitioned into several cuboids with edges parallel to the coordinate axes.
These cuboids divide the feature space into seweranoiregions. These voronoi regions
are used to build a tree to search the most significant Gaussian. This thesis is based on this

latter work.

1.4. Thesis Contributions

The primary objective of this thesis was to investigate the BBI algorithm and
develop an Extended BBI (EBBI) algorithm. Though the BBI algorithm has enjoyed
significant success, an extensive study of the algorithm suggested the possibility of
improvements. Several issues specific to the BBI algorithm have been addressed in this
thesis:

* Modifications of the optimization criterion to deal with multiple minima:
Previous implementations of the BBI algorithm [39, 54] did not consider the
case when multiple minima in the number of splits occur during the
optimization process. We propose a modified optimization criterion in which
the dimension with the optimal number of splits can be selected in this case.

* Normalization of mixture weights: The effect of using the normalized

weights during the Gaussian score computations has been studied in a great
detail.
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» Gaussian clipping: Generation of a lower-order mixture model from a
higher-order model by clipping the Gaussians with small mixture weights is
known as Gaussian clipping. Gaussian clipping has been introduced in this
thesis to speed up computations. Mixture weights have been renormalized to
insure that each model disregards only a certain percentage of error.

» State level trees:A state-level binary tree was used in this thesis to obtain an
improvement in speed. In general, there are several possibilities:

(1) Use a single large binary tree shared by all HMM states.

(2) Let several HMM states share a binary tree (phonological tying, such as
that used in phonetic decision trees can be used) [28].

(3) Let each HMM state use one tree.

The optimal choice depends upon the task, available memory (to store trees)
and other such parameters.

The first approach produces a slightly greater speedup than the third approach, but
introduces a higher degradation in the performance of the system. The second approach
produces the maximum speed up and requires the least memory, but introduces a larger
increases in the WER. The use of a state-level tree introduces the least approximation
error and results in the significant speedups compared to the first approach. Since the
objective of this thesis is to develop a technique to speed up score computations while
maintaining accuracy, the state-level tree approach has been used.

Hence, we show that Gaussian speedup reduces the total run-time (RT) of an
LVCSR system. We have developed the Extended BBI algorithm to achieve a maximum
improvement of 21% in the run-time of the system without introducing any approximation
error. This is significant because we are not increasing the WER of the system to achieve

this speedup. This is described in more detail in Chapter 4.
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1.5. Structure of the Thesis

In Chapter 2, we provide a detailed mathematical overview of the BBI algorithm.
This chapter explains the search criterion used by the BBI algorithm and discusses the
optimization of this search criterion. Chapter 3 discusses the problems with previous
implementations of the BBI algorithm and proposes an improved BBI algorithm known as
Extended BBI. This chapter also includes the experimental results which verify the
superiority of the Extended BBI algorithm. In Chapter 4, we present the experimental
design and present the experimental results for the proposed algorithm. The experimental
results presented in Chapter 3 compare the performance of the BBI and Extended BBI
algorithms. The experimental results presented in Chapter 4 provide an understanding of
the performance of the Extended BBI algorithm with respect to the variations in algorithm
parameters and the number of Gaussians in a mixture distribution. In Chapter 5, we

summarize the major findings in this work and discuss promising future directions.



CHAPTER 2

BUCKET BOX INTERSECTION

This chapter presents an overview of the Bucket Box Intersection algorithm used
for fast Gaussian evaluations, which includes searching, training, and optimization.
Special emphasis is placed on the optimization criterion used to minimize the search

complexity.
2.1. K-Dimensional Binary Search Tree

We have discussed that the state log-likelihood of an input vector can be evaluated
by using the dominant Gaussian components, without significantly increasing the WER of
the system. This approach needs an efficient way to select such Gaussian components. The
data structure which allows for fast search in the BBI algorithm is known as a k-d tree
[55], wherek is the dimensionality of the feature space.

A k-d tree is a k-dimensional space partitioning tree. It is an efficient data structure
with respect to storage. The average search time for a k-d tréxlisg n) , where niis the

number of records in the file. At every non-terminal node of the tree, the current

k-dimensional regionRK , iIs divided into two half spaces by means of a hyperplane

orthogonal to one of thk coordinate axes [58]. The hyperplane is represented as a pair of

12
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two quantities — , the index to the coordinate axis orthogonal to the planéhand , the

location of the plane on this axis [59]. This is mathematically representétl as(j, h)
The initial region represents the root node. The two regions obtained by splitting the root

region are called théeft andright child of the root node and are represented as
lehilg = {xO R: X;sh} andrgpg = {xO R X;>h} . Any feature vector can be

located with respect to the hyperplane by a single scalar comparison ﬁf‘ the component

of a feature vector with the location of the hyperpldne . A k-d tree of dep#titions a

k-dimensional space in disjoint regions caltetketsof the tree.
Figure 3 shows an example regiafbcd in a 2-dimensional space. The region

abcd represents the root node of the k-d tree and contains a hyperpiane orthogonal to
the axisX; . This hyperplane splits the regiabcd into two regioabgef aatf
These regions are further divided by the hyperpladgs  twpd  , both orthogonal to the

coordinate axisX, . Successive splits by hyperpladgs thradigh , as shown in the

Figure 3, build a k-d tree of depth 4. The resulting k-d tree is shown in Figure 4. A feature

vector f,, = (X4, X,) inthe regiorabcd can be located in this framework by a sequence

of four scalar comparisons, which lead to the bucikgtv
2.2. Building a K-D Tree for the HMM-Based Recognition System

This section describes the procedure for building a k-d tree for the HMM based

speech recognition system [39, 53, 54]. Let us consider a single multivariate Gaussian in a
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Figure 3. An example of building a k-d tree in a 2-dimensional region.

k-dimensional space with a mean vector= [, Uy, ..., K] and a covariance matrix

> = (of, 03, oﬁ) . Assuming a diagonal covariance matrix, the log-likelihood of this

Gaussian is:

2
(Xi—H;) } ©6)

i, O 2 <
logP(x; (4, =)) = _é{logg(zn)k |—| GIZE-I- z >

i=1 G

i=1

The region in ak-dimensional space, where the log-probability given by
Equation 6 is greater than an absolute thresh@ldiefines a hyper-ellipsoid with axes

parallel to the coordinate axes [39]. Using this absolute threshold value, a
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Figure 4. A k-d tree of depth 4 corresponding to the regions divided by the hyperplanes
H, throughH;5in Figure 3.

ukhv

multidimensional box can be computed which completely encloses the hyper-ellipsoid
region. This box is known as@aussian bo¥54]. These boxes are used to build a k-d tree.
Figure 5 represents an example of a Gaussian in a 3-dimensional space and a

corresponding hyper-ellipsoid region. Figure 6 represents a Gaussian box which includes
the hyper-ellipsoid region of Gaussian. The valugs x;,y, ,  WAnd are the lower and
upper projection boundaries of the Gaussian box along Yand coordinates.

The projection boundaries can be calculated for each coordinate axis by using the

specified threshold value [54]. Substitutindpr the log probability in Equation 6 yields,

2
(X;—H;) }. 7)

1, 0. k& 00 &
T = —|log2m) o; O+
2{ Sk I i; o’

i=1
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Figure 5. A single multivariate Gaussian in a 3-dimensional space. The surface that
results from intersecting the Gaussian with a plane can be represented by a
hyper-ellipsoid region of the Gaussian.

A Gaussian Box
yU - )
Hyper-ellipsoid Region
+
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Figure 6. A Gaussian box corresponding to the hyper-ellipsoid region in Figure 5.
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Solving Equation 7 forx; gives the lower and upper projection boundaries of a

Gaussian box for the coordinate akis as follows:

o[ 1 O < L0
X, = W+ [-20; {T+—Iogc(2n)k|_| 0i2D:|. (8)
2 g Lo

2.3. Optimization of a K-D Tree

Let us consider a k-d tree of depthwith N Gaussians in the initial root region.
Given that the feature vectdr, belongs to the root region, the cost of the search
is Sc(root) = N. Under the k-d tree framework, if, [l Buckef , the cost of the search
for the bucketBuckef isS;(Buckef) = N, . Thus, the cost of the search using the k-d

tree framework reduces frold 4, . [ is the probability that the feature vector lies
inthe i bucket andN; is the number of Gaussians whose boxes intersect with this

bucket, the average cost of the search foithe  bucket can be written as [60, 61].
Avg( S(Buckep)) = p, [N, )
The expected cost of search for the tree is:

Nbuckets
Exp(&) = Z p; LN; (10)
i=1

The objective of the k-d tree optimization is to minimize the expected cost of

search. This results in a global optimization criterion (GOC) [60], which involves the
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variablesp, and\; . Since these variables are functions of the division hyperplane at each

non-terminal node of the tree, the GOC requires a joint optimization of the choice of the
division hyperplane at each non-terminal node of the k-d tree. This is an extremely
complex and practically unfeasible criterion. Thus, it becomes necessary to locally
optimize the tree to achieve the minimum expected search time. This can be achieved by
independently minimizing the expected search at each node. This results in a local
optimization criterion (LOC) [61].

Let us consider a bounded regi&y Wth Gaussians that have a non-empty

intersection. Lefp; ang, be the probabilities that a feature vector lies ihdhe, and

r respectively. LetN, andN, be the number of Gaussians whose boxes have a

region

non-empty intersection with the left and right regions respectively. The varigbles, ,

N, andN, are functions of the division hyperplane [59] paramejgrs gng . An

ideal division, producing the best possible partition to achieve the minimum search

complexity, is the one which reduces the search complexity to half [62]. Thus, for an ideal

division, py = p, = 172 andN; = N, = Ng /2. In other words, for an optimal
division,N(h) =N (h) = 0 [63].

If Njgr; and N are the number of Gaussians whose boxes are entirely in the

right

left and right regions respectively amd,,;;;  is the number of Gaussians whose boxes are

split by the hyperplane, theN; = Njg¢+ Ngpie  amd, = Nyjgne + Ngpy 5 with the



19

condition Njgg + Nyjgne + Ngpjic = N [63]. A hyperplane for whiciNg,;; = 0, will

give minimum values oN;, anil,

The functional dependence of the variablgs  @nd  on the division hyperplane

is determined by the distribution of the feature vectors in the initial region and the

Gaussian boxes which intersect with that region [59]. The root region conbains

Gaussians. The projections of these Gaussians on the coordinatg axis 2 gNgs

projection boundaries along that axis. Let us assume (hak,, ..., I, ) are the
b

locations of the projection boundaries along the coordinate axis in a sorted order. If the

hyperplane position is such thag , = Lj +A ,wheke is a small positive value and
hg o<1y, thenNi(hg o) = 0 andN,(hy o) = Ng . If we slowly vary the hyperplane

position along the axis from_j tdJ; the values o amng change as

follows [63, 64]:

* When the hyperplane crosses a lower projection boundary, a new Gaussian gets
included in the left region and no Gaussian gets excluded from the right region.

Thus,N, increases by 1 aitN]  remains unaltered.

* When the hyperplane crosses an upper projection boundary, one Gaussian gets
excluded from the right region and no new Gaussian gets included in the left

region. ThusN; remains unaltered Nt ~ decreases by 1.

« If the position ofh, , varies between two adjacent projection boundaries, the
number of Gaussians in both the regions remain same. Thus, the valdgs of
andN, remain constant.
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Let us consider the example given in Figure 7. A hyperplagg is moved along
the axis from the lowest boundatyj towards the highest bouanry . There are nine
different positions of the hyperplane along the axis. Figure 8 shows the behavr of
andN, as a function ohy , . The projection boundaries in Figure 7 are indicated as

(1,2 ...,2 ENRb) , With NRb = 8. It can be observed that when the hyperplane position is

such thathy U (I, lg) ,the values &, arld,  are equal. Such a hyperplane results in

Alz 34 56 A 78 9

]

X X X X X X

|
LY
7<) 0

lglg 10111112 11314 115 116

Figure 7. A study of the number of Gaussians in the left and right regions with respect to
the hyperplane position along the coordinate pyxis
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Region where Nand N
are jointly minimum
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Number of Gaussiang the region
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|

Position of hyperplane in terms of the boundaries of the projection
interval along thegy axis

Figure 8. Behavior of the variablég andN, with respect to the hyperplahg o Note that
the projection boundaries of the Gaussians are shown to be evenly distributed
along the horizontal axis in this figure.

a balanced division alongth axis. Similarly, the balanced division hyperplane can also be

found along th&™ coordinate axis.

For each coordinate axis in a k-dimensional region, there exists a projection

boundary that results in a balanced division. Mef,, i = 1,2, ...,k , be the number of

Gaussians having non-empty intersections with the left and right regions, obtained as a
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result of a balanced division along tlj%h axis. The optimal hyperplane will be the one

which results in the least value Nfopn over all coordinate axis [65].

Thus, the optimization process can be summarized as follows [59, 60]:

For a bounded regioRR,, ink -dimensional space, the balanced division is
chosen for each coordinate axis;

From these balanced divisions, the partition, for which corresponding
(Nopn, Nopti) point is closest to théNRb/Z, NRb/Z) point, is chosen. The

proximity measure is a Euclidean distance. In other words, the final optimal
partition is chosen as the one which results in the least number of splits.

The balanced hyperplane for a coordinate axis in a k-dimensional region can be

obtained as follows:

Label the projection boundaries of the Gaussians in the regionlwith Uand
for the lower and upper projection boundaries respectively along the
coordinate axis;

Place the hyperplane at a position so that the number of lower projection
boundariesI( ) in the left region is equal to the number of upper projection
boundariesy ) in the right region.

2.4. Approximation Error Introduced by the K-D Tree

In a k-d tree framework, the evaluation of a Gaussian is restricted to a Gaussian

box with thresholdT . This introduces an approximation efqr in the computation of

the observation probability [39, 59, 60]. The approximation error is bounded by the

thresholdT , suchthaE, <T . Inthe BBI algorithm, the Gaussian boxes with threghold

are used. Also, only those Gaussians are used in the computation of observation

probabilities whose boxes contain the feature vecta¥l If  is the number of Gaussians in
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an HMM state andv,, m = 1,2 ...,M , is the mixture coefficient fot"  Gaussian,

M
then the mixture coefficients satisfy the constraimig= 0 a@ w, =1 . The
m=1

approximation error introduced by each GaussiaBjs . Thus, the overall approximation

M
error can be written asz w,[E, [54]. Using the constraints mentioned above, the

m=1
overall approximation error i&, .Sinde,<T , the overall approximation error is less

than or equal to the threshold . The Gaussian speedup and approximation error depend

on tree parameters, namely error thresfiold and tree depth

We have discussed the BBI algorithm in this chapter. In the next chapter, we will
discuss the issues related to the previous implementations of the BBI algorithm and
suggest solutions for these issues. These modifications will lead to the Extended Bucket

Box Intersection algorithm proposed in this thesis.



CHAPTER 3

EXTENDED BUCKET BOX INTERSECTION ALGORITHM

This chapter demonstrates various drawbacks of the BBI algorithm. The Extended
BBI algorithm, proposed in this thesis, gives solutions for many of these problems. The

performance of the two algorithms are compared and discussed in detail.
3.1. A Modified Optimization Criterion for Multiple Minima

The BBI algorithm requires the selection of a balanced hyperplane that produces a
minimum number of Gaussian splits [60]. In practical applications there may be more than
one collection of splits which produce the same (minimum) number of Gaussians. These
hyperplanes may yield the same speedup but may not yield an optimal approximation
error. The BBI algorithm doesn’t consider this scenario. The Extended BBI algorithm
proposes a modified optimization criterion to allow for multiple minima. In this algorithm,
the following steps are used to obtain the optimal division hyperplane:

* Find the variance of those coordinate axes whose hyperplanes produce a
minimum number of Gaussian splits;

» Choose the hyperplane corresponding to the coordinate axis with the highest
variance.

To explain this, let us consider the example shown in Figure 9. In this example, the

coordinate axig has a higher variance. Thus, according to the Extended BBI algorithm,

24
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Figure 9. An example of multiple minima in the number of Gaussian splits. Case 1
contains a hyperplan&;B; orthogonal to the axis with a lower variance and
case 2 contains a hyperplaiB orthogonal to the axis with a higher variance.
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the hyperplane orthogonal to this coordinate axis will yield an optimal result in the case of

multiple minima. Using the optimization criterion proposed by the BBI algorithm, two

balanced hyperplaneAB an#B; , orthogonal to the coordinate jaxis kand

respectively, are found. Both the hyperplanes result in the same number of Gaussian splits,

N = 2. The hyperplaneA;B, splits the region in such a way that the boxes

split
corresponding to the Gaussians numbered 2 and 4 do not lie in same node of the tree.
Let us consider a feature vectBr  lying in the region shown in Figure 9. Given the

positions and forms of the Gaussians in the region, Gaussians 2 and 4 can contain the

vector P with equal probability. Under the framework of the division hyperplanB, :

the vectorP lies in Gaussian no. 2 only, which is contradictory to the fact that it lies in
both the Gaussian boxes with equal probability. The k-d tree obtained using this division
hyperplane will produce a higher approximation error.

Now consider the hyperplan&B . It splits the region into two balanced regions
such that the nodes associated with both the regions contain Gaussians 2 and 4. Under this

hyperplane, the feature vectBr lies in the left region and Gaussians 2 and 4 both contain

the vector. Thus, the hyperpla®eB  produces an optimal division for the vector . The
k-d tree obtained using this hyperplane will produce a lower approximation error.
Generally speaking, all the vectors lying in the shaded region between Gaussians 2 and 4
lie in both the Gaussians with equal probability. For all these vectors, hyperpi8ne
produces a lower approximation error. Thus the hyperplane orthogonal to the axis with the

highest variance is the optimal hyperplane.
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Let us consider another example shown in Figure 10. The coordinat& axis has a
higher variance than the axjs . In order to obtain a k-d tree, a balanced hyperplane is

found for both coordinate axes. In case 1, the balanced hyperplane is orthogonal to the
axis having a lower variance. This hyperplane produces a division in which Gaussian 2
lies only in the right child of the node. Thus, this hyperplane yields an unbalanced
distribution for Gaussian 2. In an unbalanced distribution, a Gaussian that has a high
probability to be the most significant Gaussian for a feature vector in that region, lies in
only one region. In this case there is a 50% probability that this Gaussian will not be used

in approximate score computation. This is because the Gaussians lying in only one region

Ab
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Figure 10. An example of multiple minima in the number of Gaussian split. Case 1 uses
separating hyperplanes which are orthogonal to the axis with a lower variance
while case 2 uses the hyperplane which is orthogonal to the axis with a higher
variance.
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are used for the score computation. Thus, a hyperplane, which gives an unbalanced
distribution for the Gaussians in a region, gives a higher approximation error. In case 2, the
balanced hyperpland is orthogonal to the axis which has a higher variance. We can
observe that this hyperplane produces a balanced division for the Gaussian box 2 in both
regions. This hyperplane will result in a lower approximation error.

According to the optimization criterion used in case 1, a 2-dimensional feature
vector P lies in the bucket containing Gaussian box 1. Given the positions and forms of
the Gaussians in the region, it can be observed that the Gaussian associated with this box
can not be considered a significant Gaussian for the veetor . Thus, the optimization
criterion proposed by the BBI algorithm will produce a larger approximation error. Under
the division produced by the balanced hyperplanes used in case 2, theRector lies in the

Gaussian no. 3. This Gaussian can be considered as a significant Gaussian for the vector

since it has a minimum Euclidean distance from the veBtor . Thus, the resulting k-d tree
will produce a lower approximation error. The above discussion suggests that the
optimization criterion proposed by the Extended BBI algorithm gives a lower WER.

To compare the performance of the optimization criterion used by the two
algorithms, experiments were carried out using the OGI Alphadigits database [67]. We
used 64-mixture cross-word triphone models. No fast Gaussian evaluation techniques
were used in the baseline system. This system gave a 10.1% WER and used 57.9% of the
total CPU time for the Gaussian Computations. Performance of the BBI and the Extended

BBI algorithms is shown in Table 2. The performance of both algorithms is evaluated by
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calculating the increase in WER of
. Tree Depth | Threshold | WER
Algorithm (d) T (%)
the system. The speedup obtained by
Extended BBI 6 0.4 104
both the algorithms is the same in BB 6 04 114

this case. A k-d tree with a depth 6

Table 2. The performance of the Alphadigits
and an error threshold 0.4 was usegl system using the BBI and Extended BBI

for both the algorithms. algorithms.

The Extended BBI algorithm gave a WER of 10.4%. On the other hand, the BBI
algorithm gave a WER of 11.4%. Thus, the Extended BBI algorithm introduced a
significantly lower approximation error as compared to the BBI algorithm. In this
example, the optimization criterion used by the Extended BBI algorithm gave an overall
improvement of 10% in WER with the same amount of speedup in Gaussian evaluations.
This improvement is statistically significant according to the Matched Pairs

Sentence-Segment Word Error (MAPSSWE) test from NIST [80].
3.2. Mixture Weight Re-Normalization

The BBI algorithm finds the most significant Gaussians [54] for the evaluation of
the mixture and uses only those Gaussians for the score computation. In this case it is
required to re-normalize the mixture weights. But the BBI algorithm doesn’t re-normalize
the mixture weights [39, 54]. Further discussion will explain the re-normalization

technique and its effects on the performance of the algorithm.

Letus considerthayv,, m = 1,2 ...,1,...,M ,istheweightof thé"  Gaussian

in a mixture ofM Gaussians. Let us also consider that a feature vector lies in a bucket
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containing Gaussianls amdp . We restrict the mixture evaluation of the vector to
Gaussiand ant+p only. For re-normalization of mixture weights, we modify the
weights to wlN and wl, , such that,wl = w/(w+w,p) and
W|N+p = Wi, p/ (W +w, ). The modified mixture weights satisfy the constraint

wN +wl, ) = 1. Let us consider that the multivariate Gaussian has a mean vector
U = [Ay My ..., Byl and a diagonal varianck = [c‘ri, c‘rg, c‘rf,l] , whepe, is a

. . . . 2 .
k-dimensional mean vector representing the mean ofntHe Gaussiaag,and is a

k-dimensional vector representing the diagonal covariance matrix ahthe Gaussian.

The log-likelihood of a feature vect@r in such a k-dimensional space can be written as,

M
S log(Wi, [Py, (11)
=1

where,

_ 1 ﬁ(lm ulmD
P = bep[-)—zz 0. (12)

" i=1 D
(21'[) |_|0
i=1

Considering the example discussed earlier, the log-likelihood of the feature vector

using the BBI algorithm can be written as,
L = log(w, [P)) +log(w . , [P ,). (13)

Using re-normalization of mixture weights, the log-likelihood can be written as,
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0
EP|D+ 0

Iog HN

= log v — P+ o (14)
tp

If w, +w,,, = Cthen the Equation 14 can be written as,

L = IongI [P|E+ IongHp EPHpE, (15)
or,
L = log(w, [P)) +log(w, , , [P, ,) —2 OogC. (16)

As C<1, logC<0. Thus, the log-likelihood using the normalized weights is
obtained by subtracting a number that is less than or equal to zero, which is the same as
adding a number which is greater than or equal to zero. This suggests that the use of
re-normalized weights results in higher log-likelihoods, which should in turn lead to an
improved system performance. Such a system produces the same amount of speedup as
that obtained by a system using non-normalized mixture weights. The Extended BBI
algorithm uses re-normalized mixture weights for the score computations.

To verify the effect of re-normalization, experiments were run on the OGI
Alphadigits database using 64-mixture cross-word triphone models. Performance for the
BBI and the Extended BBI algorithms is shown in Table 3. The baseline system gave a
WER of 10.1%. The BBI algorithm gave a WER of 11.4%. The Extended BBI algorithm
gave a WER of 11.1%. Thus, the BBI algorithm introduced a 13% relative approximation
error whereas the Extended BBI algorithm introduced only a 10% relative increase in the
WER. Thus, the approximation error introduced by the Extended BBI algorithm is smaller

than that introduced by the BBI algorithm.



Algorithm Tree Depth Threshold WER
(d) (T (%)
Extended BBI 6 0.4 11.1
BBI 6 0.4 114

32

Table 3. The performance of the Alphadigits system using the BBl and Extended BBI
algorithms, where the Extended BBI algorithm is using re-normalized mixture
weights.

The improvement gained by the mixture weight re-normalization is not statistically
significant according to the MAPSSWE test. This is because the mixture weight
re-normalization results in a small increase in the log-likelihood. The average increase in

log-likelihood is given as,

M

—E‘nDO . W a5
AL = —HM-o80 Zl m%. (17)

m O bucket

If the parameters of the BBI algorithm are selected such that the algorithm restricts

the score computation of a vector to only 25% of Gaussians representing the state, the sum
of the mixture weights used for score computations will approximately be equal th 0.25
Thus the average increase in log-likelihood willhk = —-4.log(0.25 = 5.56 . Since, the

increase in the log-likelihood is small, the resulted improvement in WER of the system

using re-normalized weights is small.

1.The value ofAL will be 0.25 in this case, if all the Gaussians representing the state have same
mixture weight.
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3.3. Selection of a K-D Tree

There are several options for how we apply the k-d tree to the HMM model: one
k-d tree per state, one k-d tree shared by all states, or multiple k-d trees with each tree
sharing a subset of the states. The optimal choice depends on the task, available memory
and other factors. Previous implementations of the BBI algorithm have successfully
employed the latter two approaches [39, 54]. Use of one k-d tree for all the states yields a
very high speedup and requires small amounts of memory. However, the main
disadvantage is that it results in a very large approximation error. Similarly, when multiple
trees are used, the speedup in Gaussian evaluations can be increased by using tree-tying
and similar techniques [13, 15]. But such implementations also result in a large
approximation error. The Extended BBI algorithm presented here uses one k-d tree per
HMM state. The use of one k-d tree per state results in a smaller reduction in CPU time.
However, it delivers a smaller approximation error. Thus, it results in a lower WER.

In order to compare the performance of the system under these k-d tree choices,
the experiments were run using the OGI Alphadigits database with 64-mixture cross-word
triphone models. The WER of the two systems is given in Table 4. The BBI algorithm
gave a WER of 13.6% whereas the Extended BBI algorithm gave a WER of 10.9%. Thus,
the BBI algorithm introduced a 35% relative increase in WER whereas the Extended BBI
algorithm introduced only an 8% increase. However, for the Extended BBI algorithm,
Gaussian evaluations used 29.1% of the total CPU time, while for the BBI algorithm,

Gaussian evaluations used only 24.7% of the total CPU time. Hence, the Extended BBI
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Algorithm Tree Depth Threshold | % of Total CPU Time used by WER
9 (d) (M Gaussian Evaluations (%)
Extended BBI 6 0.4 29.1 10.9

BBI 6 0.4 24.7 13.6

Table 4. The performance of the Alphadigits system using the BBI and Extended BBI
algorithms. The BBI system is using a single large tree shared by all states while
the Extended BBI system is using one k-d tree per state.

algorithm is a slightly less efficient. The reduction in WER obtained by the Extended BBI

algorithm is statistically significant according to the MAPSSWE test.

Thus far we have studied the improvements in WER of a system utilizing the
Extended BBI algorithm with a modified optimization criterion, mixture weight
re-normalization, and state-level k-d trees. Next, we evaluated the performance of the
Extended BBI algorithm using these algorithms in combination. The same experimental
setup was used for this experiment. Performance for the BBl and the Extended BBI
algorithms is shown in Table 5. The BBI algorithm gave a 11.4% WER whereas the
Extended BBI algorithm gave a 10.2% WER. The Extended BBI algorithm gave a 12%

relative improvement over the BBI algorithm. This improvement is statistically significant

according to the MAPSSWE test.

Algorithm Tree Depth | Threshold | WER
(d) (T (%)
Extended BBI 6 0.4 102
BBI 6 0.4 11.4

Table 5. The performance of the BBl and Extended BBI algorithms, where the Extended
BBI algorithm is using state level k-d trees, a modified optimization criterion and
mixture weight re-normalization.
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In this chapter, we have compared the performance of the Extended BBI algorithm
and the BBI algorithm on a limited task to calibrate the impact of our proposed
enhancements. In the next chapter, we will evaluate the performance of the Extended BBI

algorithm across a wide variety of experimental conditions.



CHAPTER 4

EXPERIMENTS

The last three chapters provided a theoretical background for the Extended BBI
algorithm. In this chapter, we present the performance of the proposed algorithm on

various industry-standard databases.

4.1. Experimental Databases

This section discusses the databases that have been used in this thesis to measure

the performance of the Extended BBI algorithm.

TIDIGITS

We have used TIDIGITS database for the initial evaluation of the algorithm [32].
TIDIGITS is a small database containing continuous digits. The vocabulary size of the
database is 11 words, and contains the digits “0-9” and “oh”. Many state-of-the-art
systems produce a WER of 0.2% on the TIDIGITS task [39].

The experiments for this task used 16-mixture components. These experiments
used 5-state left-to-right models containing a start and a stop state [23]. The input features

used FFT-derived MFCC (Mel-frequency Cepstrum Coefficients) [25]. Without using the

36
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Extended BBI algorithm, the system produced a WER of 0.6%. Also, Gaussian

evaluations took 24.4% of the total CPU time in this system.

Alphadigits

The OGI Alphadigits corpus is a database of digits sequences that are six digit
strings of letters and numbers [67, 68]. It has a vocabulary of 36 words [69]. The
experiments used standard 39-dimensional MFCC feature vectors. To compare the
performance of the algorithm as a function of the number of mixture Gaussians, 16, 32
and 64-mixture components were used.

Without using the Extended BBI algorithm, the system produced a WER of 10.3%
for 16-mixture and 32-mixture components and a WER of 10.1% for 64-mixture
components. In this system, Gaussian evaluations took 31.7% of the total CPU time for
16-mixture, 43.2% of the total CPU time for 32-mixture and 57.9% of the total CPU time

for 64-mixture components.

SWITCHBOARD

SWITCHBOARD (SWB) is a large vocabulary database, which is commonly used
to evaluate the performance of the LVCSR systems [70]. The database was collected by
Texas Instruments (TI) in 1990. It contains over 2,000 two-sided conversations. The
database presents many challenges to the LVCSR systems [71, 72].

The experiments for this task used 12-mixture components. The input feature
vectors used standard FFT-derived cepstral coefficients with cepstral mean subtraction.

The decoding performed an acoustic rescoring of input lattices. The language model
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scores were taken from the input lattices. Without using the Extended BBI algorithm, the
system produced a WER of 41.1%. In this system, Gaussian evaluations took only 9.9% of

the total CPU time.
4.2. Measurement of Performance

The performance of the algorithm is measured by the speedup in mixture
component evaluations and the approximation error. The speedup in Gaussian evaluation

is computed as follows:

(T(CPU)BaseIine_T(CPU)FGC) %
T(CPU)Baseline

% Gaussian Speedup 100 (18)

where,

* T(CPU)gaseline - Percentage of the total CPU time used by the Gaussian
evaluations in the baseline system,

* T(CPU)ggc - percentage of the total CPU time used by the Gaussian
evaluations in the system using fast Gaussian algorithm.

4.3. Profiling Tool

To compute the percentage of CPU time used by Gaussian evaluations, we have
used the gprof [73] utility. Appendix A provides the motivation to use this utility and also
establishes its accuracy. The gprof utility produces a dynamic call graph and a profile file
(gmon.out by default) for a program. Using the call graph and the profile file, a flat profile
is obtained that gives the statistics containing the total execution time (as a percentage of
total time) of each function and the number of times the function is called during the

complete execution of the program.
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4.4. Effects of Algorithm Parameters on the Algorithm Performance

The Extended BBI algorithm has two parameters — the k-d tree depth and an error
threshold. The Gaussian speedup and the approximation error depend on both the

parameters.

Effect of Tree Depth on Speedup and Approximation Error

An increase in the tree depth increases the number of separating hyperplanes and
the number of buckets in the leaf node of the tree [54]. As the number of buckets
increases, a k-d tree with a lower number of Gaussians in each bucket may be created [39].
This results in a reduced number of significant Gaussians for the Gaussian evaluations.
Thus, a higher tree depth produces a higher Gaussian speedup. Also, a reduced number of
Gaussians for score computations produces a higher approximation error [54]. Therefore

an increase in the tree depth increases the approximation error.

Effect of Threshold on Speedup and Approximation Error

The Gaussian threshold defines the size of the Gaussian boxes used to build the k-d
tree. As the threshold increases, the size of the Gaussian boxes decreases. This may
produce a reduced overlap between Gaussian boxes. This gives a k-d tree with a relatively
smaller number of Gaussians in each bucket of the tree and produces a higher speedup.
This also reduces the computational load of the Gaussian evaluations. Thus, as the number
of Gaussians used for the score computations decreases, the approximation error

introduced by the algorithm increases [39].



40

The error threshold for the Gaussian boxes is chosen such that it is smaller than the
maximum value of the Gaussians. This is known as an “absolute” threshold because it is
an absolute value with respect to the maxima of the Gaussian. In practical ASR systems,
the mixture of Gaussians contains Gaussian mixture components with different maxima.
In some systems, the maxima may differ by more than an order of magnitude. Gaussians
with lower mixture weights represent lower probability regions of the mixture. If the error
threshold is chosen such that it is smaller than the maxima of the Gaussian with the
highest probability, but greater than the maxima of the Gaussians with lower probabilities,
it will result in an inaccurate modeling of the Gaussians with lower probabilities. To avoid

this problem we useralative threshold.

4.5. Relative Threshold

A threshold chosen based on a certain percentage of each maximum for each
Gaussian mixture component is known as a relative threshold [54]. A relative threshold of
0.5 indicates that each Gaussian is cut at 50% of its maximum value. In this case, even the
Gaussians with very smaller maxima can participate in k-d tree generation. This results in
a lower approximation error. Thus, the performance of the algorithm using a relative

threshold is better than that obtained using an absolute threshold.
The relative thresholdTR |, is bounded, such tieat TR< 1 . In the case of a

relative threshold, only the exponential part of the Gaussian equation will contribute to the

projection boundary, and we can write:
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2

TR = expB— Z
|—1 i

(19)

I:II:I

Solving Equation 19 for the coordinate axis gives the projection boundaries of the

Gaussian box along this axis as follows:

X = % -2 o7 Oog(TR) . (20)

4.6. Experimental Results and Analysis

The parameters of the Extended BBI algorithm should be chosen to achieve a
significant speedup with minimal approximation error. This is done by analyzing the
performance of the algorithm using various combinations of parameters and finding the
parameter pair which gives best results. A publicly available speech-to-text system [74]

has been used in this thesis to evaluate the performance of the proposed algorithm.

TIDIGITS

TIDIGITS [32] was used for the initial evaluation of the Extended BBI algorithm.
The relative threshold used by the algorithm was varied from 0.2 to 0.8 in steps of 0.1. K-d
trees with depth between 3 and 5 were used. Table 6 gives the performance of the system
which is not using the Extended BBI algorithm (No EBBI System) and the performance of
the system which is using the Extended BBI algorithm.

We can observe that for a threshold of 0.2, the Gaussian speedup increased from
32.4% to 41.2% as the tree depth increased from 3 to 5. For these values of parameters, the

WER of the recognition system remained at 0.6%. This suggests that the proposed
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Tree Relative % of Total CPU Time Taken by Gaussian Speedup WER
Depth Threshold Gaussian Score Evaluations (%) (%)
No EBBI System 24.38 - 0.6
3 0.2 16.47 32.44 0.6
4 0.2 15.27 37.37 0.6
5 0.2 14.36 41.10 0.6
3 0.3 14.81 39.25 0.6
4 0.3 13.56 44.38 0.6
5 0.3 12.41 49.10 0.7
3 04 13.41 45.00 0.6
4 0.4 11.80 51.60 0.7
5 04 10.74 55.95 0.7
3 0.5 12.20 49.96 0.7
4 0.5 10.21 58.12 0.7
5 0.5 9.04 62.92 0.8
3 0.6 10.83 55.58 0.8
4 0.6 8.91 63.45 0.8
5 0.6 7.49 69.28 0.9
3 0.7 9.52 60.95 0.8
4 0.7 8.14 66.61 0.9
5 0.7 6.59 72.97 1.0
3 0.8 8.39 65.59 1.0
4 0.8 6.23 74.45 1.2
5 0.8 4.77 80.43 1.6

Table 6. Performance of the TIDIGITS system using the Extended BBI algorithm.

algorithm produced a 41.2% speedup without adding any additional approximation error.
Further, it can be seen that a depth of 3 with a relative threshold of 0.4 produced a 45%

speedup in score computations without degrading the performance of the system. Also, a
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tree depth of 4 and a relative threshold of 0.5 produced a 58% speedup with only a 0.1%
relative increase in the WER of the system. Thus, the algorithm produces a significant
amount of speedup without increasing the WER of the system. Figure 11 gives the
speedup in Gaussian evaluation as a function of relative threshold. The plots shown
represent tree depths of 3, 4 and 5. From these results, we can observe that:

* For a given tree depth, the speedup in Gaussian evaluations increases with an
increase in the relative threshold;

» For a given threshold, the speedup in mixture component evaluation increases
with an increase in the k-d tree depth.

Speedup in Gaussian Evaluations vs. Relative Threshold for Different
Tree Depths (for the TIDIGITS task)

a0

20

10

Percentage Speedup in Gaussian Evaluations
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| —#—depth= 3 —5—depth=4 —%—depth= 4 |

Figure 11. The effect of variations in relative threshold on the speedup in Gaussian
evaluations for a TIDIGIT system with a constant k-d tree depth. K-d trees with
depth 3, 4 and 5 were used.
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Next, we will analyze the effect of the algorithm parameters on the WER of the
system. The plots shown in Figure 12 give the variation in WER of the system as a
function of threshold and tree depth. These results suggest that:

* For a constant tree depth, the WER increases with an increase in the relative
threshold;

» For a constant relative threshold, the WER of the system increases with an
increase in the tree depth.

It can be observed that the WER remained unchanged for lower values of tree
depths and thresholds. Figure 13 gives a clear understanding of the algorithm

WER vs. Relative Thresholds for Different Tree Depths (for the TIDIGIT
taskj
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Figure 12. The effect of variations in the relative threshold on the WER of a TIDIGIT
system with a constant k-d tree depth.
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performance. This figure shows the Gaussian speedup and WER of the TIDIGITS system
as a function of the algorithm parameters. The WER is shown along the vertical axis and
the Gaussian speedup is plotted along the horizontal axis. The relative threshold was
increased from 0.2 to 0.8 along the horizontal axis. Different colors in the plot correspond

to different k-d tree depths. It can be observed that the maximum speedup that was
obtained without any degradation in recognition performance was 45%. A higher speedup

in Gaussian evaluations is obtained at the cost of a small increase in WER.

Gaussian Speedup and WER as a Function of Tree Depth and
Threshold {for the TIDIGITS task)
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Figure 13. The effect of k-d tree depth and relative threshold on the WER and Gaussian
speedup for the TIDIGITS system using the Extended BBI algorithm.
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Alphadigits

The OGI Alphadigits task [75] was used to obtain the performance of the
algorithm as a function of the number of mixture components. For this, 16, 32 and 64
mixture components were used. For the Alphadigits system with 16-mixture components,
the relative threshold was varied from 0.2 to 0.8 at steps of 0.1. The k-d tree depth was
varied from 3 to 5. Using the Extended BBI algorithm, the speedup in Gaussian
evaluations and the WER of the system were obtained. The results are listed in Table 7.
Gaussian evaluations took 31.7% of the total CPU time in the system, which is not using
the Extended BBI algorithm. This system produced a WER of 10.3%. We can observe that
for a constant threshold, the percentage speedup in Gaussian evaluations increases with an
increase in the tree depth. But, this speedup is obtained at a cost of an increased WER. For
a threshold of 0.2, as the tree depth increased from 3 to 5, Gaussian speedup increased
from 31% to 39% without any increase in the WER of the system.

The variation in percentage speedup is shown as a function of algorithm
parameters in Figure 14. The relative threshold is plotted along the horizontal axis and the
Gaussian speedup is plotted along the vertical axis. The plots shown represent tree depths
of 3, 4 and 5. It can be observed that for a fixed tree depth, Gaussian speedup increases
with an increase in the relative threshold. For a depth of 5, as the threshold increased from
0.2 to 0.8, the speedup in Gaussian evaluations increased from 39% to 79%. For a
threshold of 0.5, as the tree depth increased from 3 to 5, the Gaussian speedup increased

from 46% to 58%.
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Tree Relative % of Total CPU Time Taken by Gaussian Speedup WER
Depth Threshold Gaussian Score Evaluations (%) (%)
No EBBI System 31.70 - 10.3
3 0.2 21.86 31.04 10.4
4 0.2 20.02 36.84 104
5 0.2 19.38 38.89 10.4
3 0.3 21.19 30.91 10.5
4 0.3 19.94 37.10 10.5
5 0.3 18.68 41.07 10.5
3 0.4 19.63 38.08 10.6
4 0.4 17.89 43.56 10.8
5 04 16.20 48.90 10.7
3 0.5 17.13 45.96 10.9
4 0.5 15.00 52.68 111
5 0.5 13.33 57.95 11.2
3 0.6 14.97 52.78 11.4
4 0.6 13.04 57.73 11.5
5 0.6 10.96 65.42 12.0
3 0.7 12.85 59.46 12.0
4 0.7 11.11 64.95 12.6
5 0.7 8.64 72.74 134
3 0.8 11.04 65.17 13.5
4 0.8 8.54 73.06 14.6
5 0.8 6.61 79.15 15.6

Table 7. Performance of the Alphadigits system using the Extended BBI algorithm. The
system used 16-mixture components.

The variation in WER is shown as a function of the algorithm parameters in
Figure 15. The plots indicate that for a fixed tree depth, the WER of the recognition

system increases as the threshold increases. When the threshold is varied from 0.2 to 0.5,
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Speedup in Gaussian Evaluations vs. Relative Threshold for Different
Tree Depths {Alphadigits System with 16 Mixture Components)

Percentage Speedup in Gaussian Evaluations
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Relative Threshold

| —#—depth= 3 —5—depth= 4 —#—depth=5 |

Figure 14. The variation in Gaussian speedup as a function of the relative threshold for an
Alphadigits system with 16-mixture components. The plots correspond to the
tree depths of 3, 4 and 5.

the variation in WER is small. But the variation in WER s significantly larger when the
threshold is varied from 0.5 to 0.8. We can also observe that for a fixed value of the
relative threshold, WER increases with an increase in tree depth. For a relative threshold
of 0.7, when the tree depth increased from 3 to 5, the relative increase in WER increased
from 16% to 30%.

Figure 16 gives the simultaneous effect of the algorithm parameters on the
Gaussian speedup and the WER of the system. The relative threshold is varied from 0.2 to

0.8 along the horizontal axis. The tree depth is fixed for each plot. It can be observed that
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WER vs. Relative Threshold for Different Tree Depths {Alphadigits
System with 16 Mixture Components)
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Figure 15. The effect of variations in relative threshold on the WER of an Alphadigits
system with 16-mixture components for a constant tree depth.

the Gaussian speedup as well as the WER increases with an increase in threshold or tree
depth. The Extended BBI algorithm with a tree depth of 5 and a threshold of 0.3 produced
a 41% speedup with only a 2% relative degradation in WER. A higher speedup is obtained
at the cost of a significantly higher increase in WER. Thus, a tree depth of 5 and a relative
threshold of 0.3 can be considered as optimal values of the algorithm parameters for this
task.

Next, we will consider the Alphadigits system [76] with 32-mixture components.

The percentage of the total CPU time used for the evaluation of the mixture component
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Gaussian Speedup and WER as a Function of Tree Depth and
Threshold [Alphadigit System with 16 Mixture Compon ents)
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Figure 16. The effect of variations in tree depth and relative threshold on the WER and
Gaussian speedup for an Alphadigits system using 16-mixture cross-word
triphone models.

was 43% in this system, which is 36% higher than the CPU time used by the Gaussian
evaluations in the system using 16-mixture components. K-d trees of depth 3, 4, 5 and 6
were used in the experiments. The relative threshold was varied from 0.3 to 0.8 for
different test runs. The performance of the algorithm using different values of the
algorithm parameters is shown in Table 8.

Figure 17 shows a variation in the Gaussian speedup as a function of the relative
threshold. It can be observed that for a fixed tree depth, Gaussian speedup increases with

an increase in the threshold. Also, for a fixed threshold value, a higher speedup is obtained
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Tree Relative % of Total CPU Time Taken by Gaussian Speedup WER
Depth Threshold Gaussian Score Evaluations (%) (%)
No EBBI System 43.17 - 10.3
3 0.3 29.99 30.53 10.3
4 0.3 26.65 38.26 10.3
5 0.3 24.41 43.46 10.3
6 0.3 22.33 48.27 10.3
3 0.4 26.92 37.64 10.4
4 0.4 23.99 44.43 10.4
5 04 21.64 49.87 10.5
6 0.4 19.03 55.92 10.6
3 0.5 24.43 43.41 10.6
4 0.5 21.76 49.59 10.7
5 0.5 19.04 55.90 10.8
6 0.5 16.45 61.89 10.9
3 0.6 22.39 48.13 10.9
4 0.6 20.12 53.40 11.2
5 0.6 16.99 60.64 11.4
6 0.6 14.90 65.49 11.7
3 0.7 21.70 49.73 11.4
4 0.7 17.93 58.47 11.7
5 0.7 14.77 65.79 12.2
6 0.7 11.37 73.66 12.8
3 0.8 19.05 55.87 12.4
4 0.8 14.60 66.18 13.0
5 0.8 10.89 74.77 14.2
6 0.8 7.98 81.51 15.1

Table 8. Percentage speedup in Gaussian evaluation and WER for an Alphadigits system
with 32-mixture components.
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Speedup in Gaussian Evaluation vs. Relative Threshol for Different
Tree Depths (Alphadigits System with 32 Mixture Components])
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Figure 17. Variations in the Gaussian speedup as a function of the relative threshold and
k-d tree depth for an Alphadigits system using 32-mixture cross-word triphone
models.

as the tree depth increases. For a threshold of 0.3, as the tree depth varied from 3 to 6, the

Gaussian speedup increased from 30% to 48%. Similarly, for a tree depth of 3, as the

threshold increased form 0.3 to 0.8, the Gaussian speedup increased from 30% to 56%.
The variation in WER is shown as a function of algorithm parameters in Figure 18.

It can be observed that the approximation error introduced by the Extended BBI algorithm

increases as the tree depth or relative threshold increases. For a threshold of 0.4, as the tree

depth increased from 3 to 6, the WER increased from 10.4% to 10.6%. In other words, the
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WER vs. Relative Threshold for Different Tree Depths (Alphadigits
System with 32 Mixture Components)
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Figure 18. The effect of the algorithm parameters on the WER of an Alphadigits system
using 32-mixture components.

relative approximation error introduced by the algorithm increased from 0.9% to 3% when
the tree depth increased from 3 to 6 at a threshold of 0.4. Also, for a tree depth of 6, as the
threshold increased from 0.3 to 0.8, the WER increased from 10.3% to 15.1%. Thus, the
Extended BBI algorithm with a tree depth 6 and a threshold 0.3 did not introduce any
additional error in the recognition system, while the algorithm with a tree depth 6 and a
threshold 0.8 introduced a 46% relative approximation error.
Figure 19 shows simultaneous variations in the speedup and WER of the system as

a function of the tree depth and relative threshold. In this figure, the relative threshold was
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Gaussian Speedup and WER as a Function of Tree Depth and
Threshold {Alphadigits System with 32 Mizture Components)
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Figure 19. The simultaneous effect of the algorithm parameters on the Gaussian speedup
and WER of the Alphadigits system using 32-mixture components. Different

points on the plots give the Gaussian speedup and WER for a value of the tree
depth and threshold.

increased from 0.3 to 0.8 along the horizontal axis. Different colors in the plot correspond

to different k-d tree depths. It can be observed that for a tree depth of 6 and a threshold of
0.3, the Extended BBI algorithm produced a maximum Gaussian speedup of 48% without
any increase in WER. In other words, for these values of parameters, the speed of

evaluating the mixture components is almost doubled without introducing any additional

error in the system.
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We have seen that the algorithm produced approximately 50% Gaussian speedup
without introducing any approximation error for the Alphadigits system with 32-mixture
components. But, the same amount of speedup was obtained at a cost of 0.4% absolute
approximation error for the Alphadigits system with 16-mixture components. Also, a tree
depth of 5 with a threshold of 0.3 produced a 43% speedup without any additional error in
the Alphadigits system with 32-mixture components. However, the same algorithm
parameters resulted in a 41% speedup with 0.2% absolute approximation error in the
Alphadigits system with 16-mixture components. Thus, we can conclude that the
Extended BBI algorithm is more attractive as the number of Gaussians increases.

To gain a better understanding of the effect of the number of mixture components,
we used the Alphadigits system with 64-mixture components [77]. K-d trees of depth 5, 6
and 7 were used with a relative threshold varying from 0.3 to 0.8 at steps of 0.1. The
performance of the algorithm is shown in Table 9. The execution time for the evaluation of
the mixture components in this system was 57.9% of the total CPU time used by the
recognition system, which is 83% higher than the time consumed by the Gaussian
evaluations in the system using 16-mixture components. The effect of the algorithm
parameters on the Gaussian speedup is shown in Figure 20. It can be observed that the
speedup in mixture component evaluations increases with an increase in the relative
threshold or k-d tree depth. For a k-d tree depth of 7, the speedup in mixture component
evaluations increased from 52% to 84% as the relative threshold increased from 0.3 to 0.8.
Also, for a fixed threshold of 0.8, as the k-d tree depth varied from 5 to 7, the Gaussian

speedup increased from 71.5% to 84%.
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Tree Relative % of Total CPU Time Taken by Gaussian Speedup WER
Depth Threshold Gaussian Score Evaluations (%) (%)
No EBBI System 57.88 - 10.1
5 0.3 36.00 37.80 10.2
6 0.3 32.33 44.14 10.2
7 0.3 27.90 51.80 10.3
5 0.4 32.78 43.37 10.2
6 04 29.14 49.65 10.2
7 0.4 24.83 57.10 10.3
5 0.5 28.66 50.48 10.6
6 0.5 25.16 56.53 10.6
7 0.5 21.77 62.39 10.7
5 0.6 25.65 55.88 11.0
6 0.6 21.62 62.65 11.2
7 0.6 18.02 68.87 115
5 0.7 20.98 63.75 11.6
6 0.7 16.84 70.91 12.1
7 0.7 12.96 77.61 12.4
5 0.8 16.50 71.49 12.8
6 0.8 12.57 78.28 13.6
7 0.8 9.06 84.35 14.4

Table 9. Performance of the Alphadigits system using the Extended BBI algorithm. The
system used 64-mixture components.
The variation in WER is shown as a function of the algorithm parameters in
Figure 21. It can be seen that for a threshold of 0.8, as the tree depth increased from 5to 7,
the Gaussian speedup increased from 12.8% to 14.4%. For a tree depth of 7, as the

threshold increased from 0.3 to 0.8, WER increased from 10.2% to 14.4%. Gaussian
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Speedup in Gaussian Evaluation vs. Relative Thres hol for Different
Tree Depths {Alphadigits System with 64 Mixture Components)
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Figure 20. The effect of the algorithm parameters on the speedup in Gaussian evaluations
for an Alphadigits system using 64-mixture components.

speedup and WER are simultaneously plotted against algorithm parameters in Figure 22.
We can observe that for a tree depth of 6 and a threshold of 0.4, the speed of Gaussian
evaluations is almost doubled with only 0.1% absolute or 0.9% relative increase in WER.
Since this is the maximum amount of speedup obtained with the smallest approximation
error, these parameters can be considered to be the optimal algorithm parameters.

We can conclude that for the systems with higher mixture components, the same
amount of speedup can be obtained with a significantly lower increase in WER. Table 10

gives the relative approximation error introduced by the algorithm to obtain a 60% and a
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WER vs. Relative Threshold for Different Tree Depths {Alphadigits
System with 64 Mixture Compon ents)
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Figure 21. Variations in WER as a function of the algorithm parameters for an Alphadigits
system using 64-mixture components.

80% Gaussian speedup for the Alphadigits system with 16, 32 and 64 mixture
components. In the Alphadigits system with 16-mixture components, the Extended BBI
algorithm introduced a 16.5% relative approximation error to yield a speedup of 60%. On
the other hand, the algorithm produced the same amount of speedup with only about 3%

approximation error when the Alphadigits system with 64-mixture components was used.
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WER wvs. Relative Threshold for Different Tree Depths (Alphadigits
System with 64 Mixture Components)
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Figure 22. The effect of algorithm parameters on the Gaussian speedup and WER for an
Alphadigits system using 64-mixture components.

Relative Approximation Error Introduced by
Speedup in Gaussian Extended BBI Algorithm
Evaluations (%)
(%)
16-mixture 32-mixture 64-mixture
60 16.50 4.85 2.97
80 51.45 46.60 32.67

Table 10. The approximation error introduced by the Extended BBI algorithm to obtain a
certain Gaussian speedup for the Alphadigits system with varying mixture
components.
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SWITCHBOARD

SWITCHBOARD is a more complex task than the TIDIGITS and the OGI
Alphadigits tasks [78]. A set of experiments, with an error threshold varying from 0.3 to
0.8 and the tree depth varying from 3 to 5, were run. The performance of the algorithm is
given in Table 11. It can be observed that the time consumed by the evaluation of mixture
Gaussians decreases as the tree depth or relative threshold increases. Also, the
approximation error introduced by fast and approximative computations increases with an
increase in tree depth or relative threshold.

The effect of the algorithm parameters on the Gaussian speedup is shown in
Figure 23. Different colors in the plot correspond to different k-d tree depths. Figure 24
shows the variations in WER of the system as a function of the algorithm parameters. As
the relative threshold increases, the speedup in Gaussian evaluations increases at a cost of
a higher WER. This behavior is consistent with the behavior of the algorithm on the other
tasks. For the SWB task, the Extended BBI algorithm doubled the speed of score
computation with only a 3.4% relative increase in the WER. Figure 25 gives the
simultaneous effect of the algorithm parameters on the Gaussian speedup and WER of the
system. We can observe that a speedup of 42% in mixture component evaluations was

obtained with only a 1.2% relative increase in the WER.

4.7. Gaussian Clipping and Extended BBI Algorithm

Another technique that has been used in this thesis to speed up the evaluation of

the mixture Gaussians is known as Gaussian clipping. It is used to generate lower-order
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Tree Relative % of Total CPU Time Taken by Gaussian Speedup WER
Depth Threshold Gaussian Score Evaluations (%) (%)
No EBBI System 9.92 - 41.1
3 0.3 8.04 18.95 41.3
4 0.3 7.88 20.56 41.3
5 0.3 7.70 22.38 41.3
3 0.4 7.28 26.61 41.4
4 0.4 7.05 28.93 414
5 04 6.78 31.65 414
3 0.5 6.61 33.37 41.5
4 0.5 6.15 38.00 41.5
5 0.5 5.75 42.04 41.6
3 0.6 5.93 40.22 42.0
4 0.6 5.29 46.67 42.2
5 0.6 4.89 50.70 425
3 0.7 5.06 48.99 42.6
4 0.7 4.34 56.25 43.1
5 0.7 3.77 61.99 43.8
3 0.8 4.32 56.45 43.5
4 0.8 3.50 64.72 44.4
5 0.8 2.89 70.87 45.6

Table 11. The performance of the Extended BBI algorithm as a function of the tree depth
and relative threshold for an SWB task.

mixture models from higher-order mixture models by removing Gaussians with low
mixture weights. Mixture weights were re-normalized in this technique. For a system with
64-mixture components, this technique gave a speedup of 50% by using 32 Gaussians

components with higher mixture weights.
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Speedup in Gaussian Evaluation vs. Relative Threshol for Different
Tree Depths (for the SWE task)
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Figure 23. The speedup in Gaussian evaluations as a function of the relative threshold and

k-d tree depth for an SWB system.

The experiments were run to compare the performance of the Gaussian clipping

and the Extended BBI algorithm. Table 12 shows the performance of the following

systems on the OGI Alphadigits task:

No FGC — A recognition system with a lower number of mixture components
(8 and 12 in this case) and no fast Gaussian computation techniques;

Extended BBI (16-mixture) — A recognition system using the Extended BBI
algorithm to extract 8 and 12 mixture components from 16 mixture
components;

Gaussian Clipping (16-mixture) — A recognition system using the Gaussian
clipping technique to extract 8 and 12 mixture components from 16 mixture
components.
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WER vs. Relative Threshold for Different Tree Depths (for the SWB task)
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Figure 24. The effect of the algorithm parameters on the WER for an SWB system.

From the results shown in Table 12, it can be observed that the “No FGC” system
using 8-mixture components produced a WER of 11.6%. When the Gaussian clipping
approach is used to extract 8 Gaussian components, the system gave a WER of 12.2%.
Thus, the Gaussian clipping technique results in a degradation of system performance.
When the Extended BBI algorithm was used to extract 8 Gaussians, a WER of 10.7% was
obtained. This suggests that the performance of the system using the Extended BBI
algorithm is 8% better than the “No FGC” system, and 12.3% better than the Gaussian

clipping system.
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Gaussian Speedup and WER as a Function of Tree Depth and
Threshold {for the SWB task)
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Figure 25. The effect of the algorithm parameters on the Gaussian speedup and WER for

an SWB task.
Number of Mixtures Technique Used WER
(%)
No FGC 11.6
8-mixture .
Extended BBI (16-mix) 10.7
Gaussian Clipping (16-mix) 12.2
No FGC 10.7
12-mixture .
Extended BBI (16-mix) 10.3
Gaussian Clipping (16-mix) 115

Table 12. A comparison of performance for several variants of the fast Gaussian
computational approach.
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The experimental results gives us enough evidence to conclude that the Extended
BBI algorithm is superior to the Gaussian clipping technique. We can also conclude that
the performance of the system using the Extended BBI algorithm is better than the system

using fewer mixture components and no Gaussian speedup techniques.



CHAPTER 5

CONCLUSIONS AND FUTURE DIRECTIONS

This thesis investigated major drawbacks of the BBI algorithm and proposed an
improvement of the algorithm known as the Extended BBI algorithm. The algorithm has
been applied to current state-of-the-art LVSCR system and it was shown via
experimentation that the Extended BBI algorithm is superior to the BBI algorithm and

Gaussian clipping technique.

5.1. Thesis Contributions

Extended BBI Algorithm and BBI Algorithm

We found that the optimization criterion used by the BBI algorithm failed to
provide an optimal hyperplane in the case of multiple minima. The Extended BBI
algorithm proposed a modified optimization criterion which provided optimal splits in
case of multiple minima. The optimization criterion used by the Extended BBI algorithm
produced a 10% lower WER than the optimization criterion used by the BBI algorithm.
Re-normalization of mixture weights used in the Extended BBI algorithm reduced the
WER by 3%. The proposed algorithm produced a 12% lower WER than the BBI

algorithm, without reducing Gaussian speedup.
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Gaussian Clipping and Extended BBI Algorithm

The Extended BBI algorithm has also been compared to the Gaussian clipping
technique for speeding up mixture component evaluations. Experimental results showed
that the Extended BBI algorithm produced a 12% lower WER than the Gaussian clipping
technique. Both algorithms were evaluated for the case of a 50% speedup in mixture

component evaluations on the Alphadigits task using 16-mixture components.

5.2. Summary of Experiments

We evaluated the performance of the Extended BBI algorithm on small as well as
large vocabulary tasks. For small vocabulary, TIDIGITS and OGI Alphadigits tasks were
used. For the large vocabulary task, we used the SWB conversational speech corpus. The
performance of the algorithm was also evaluated for a range of mixture component orders.

For TIDIGITS, the Extended BBI algorithm produced a speedup of 45% without
any increase in WER. On the same task, a speedup of approximately 58% was obtained
with only a 0.1% absolute increase in WER. For the Alphadigits system using 32-mixture
components, the Extended BBI algorithm produced a speedup of 48%. Thus, the
algorithm allows twice the number of mixture components to be used. This results in a
reduced WER since error rates generally decrease as the number of mixture components
are increased. For example, the Alphadigits system using 32-mixture components gives a
10.3% WER and the Alphadigits system using 64-mixture components gives a 10.1%
WER. For the SWITCHBOARD task, the Extended BBI algorithm achieved a speedup of

42% with a 1.2% relative increase in WER of the system.
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5.3. Future Work

We have verified that the modified optimization criterion used by the Extended
BBI algorithm yields a significant improvement over the BBI algorithm. However, we still
need to address some issues related to the optimization criterion.

The optimization criterion used by the Extended BBI algorithm focuses on
building a balanced binary tree by obtaining a separating hyperplane perpendicular to one
of the coordinate axis. In real applications this optimization criterion results in more than
one such hyperplanes. The Extended BBI algorithm computes the mean of the positions of
two such extreme hyperplanes and uses the hyperplane at the mean as division hyperplane.
It is important to study the performance of the Extended BBI algorithm under several
balanced hyperplanes. This is because the k-d trees obtained by using different
hyperplanes may result in a different set of most significant Gaussians.

The Extended BBI algorithm did not consider mixture weights in computing the
Gaussian boxes. This is because the mixture weights do not significantly change the
Gaussians with large likelihoods. The mixture weights can be included in the computation
of the Gaussian boxes, and this should provide an improvement in performance without an

additional computational cost during recognition.
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APPENDIX A

This appendix describes various profiling tools and provides a detailed analysis of
the gprof tool that is used in this thesis. There are several industry-standard tools used for
performance profiling. Two simple UNIX tools atene andtop. But neither of these can
show the resource usage of the individual modules or functions. Other industry-leading
tools aretcoy, Quantify prof andgprof [81]. The tcov tool counts the number of time each
function is executed but it does not give the execution time for each of the functions. The
Quantify tool uses an Object Code Insertion (OCI) technology to count the instructions a
program executes and to compute how many cycles they require to execute [82]. The prof
and gprof tools provide the run-time (in CPU seconds) of a program and divide this time
among all functions. The gprof utility provides more features than the prof utility. Since
we need a tool to find the time used by the individual functions of a program, we can use
the Quantify and gprof tools for profiling. In this thesis, we have used Intel-based UNIX
systems and Quantify is only available for Sun Sparc architectures. Therefore, we have
used the gprof utility.

The output of gprof is a file containing two tables, that profile and thecall
graph The flat profile gives the total execution times and call counts for each of the

functions in the program. The call graph shows how much time was spent in each function
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and its children. In order to understand the accuracy of gprof, we ran the recognizer on a
small set of utterances and used the gprof utility to find the execution time of the Gaussian
computations. We ran the recognizer several times using different load conditions on the
same machine. Table 13 gives the results of 10 test runs. Using these results, the mean
execution time is found to be 16.68 seconds and the standard deviation is found to be 0.2,
which gives a 2.5 digits of accuracy.

We can observe that there is a small difference in the execution time of the
Gaussian evaluations between different test runs. This is because the run-time figures
provided by gprof are based on a sampling process [83]. The rule of thumb is that a
run-time figure is accurate if it is considerably larger than the sampling period. By default,
the gprof uses a sampling period of 0.01 seconds. Since the run-time of the recognizer is
considerably larger than the sampling period, the run-time figures obtained in this thesis
are accurate. In case of smaller run-time figures, we can get a higher accuracy by

combining the data from several test runs, usingggtion of gprof [73].

. . . Run Execution Time of Gaussian
Run Execution Time of Gaussian Number Computations (Seconds)
Number Computations (Seconds) P
1 16.77 6 16.79
2 16.23 7 16.91
3 16.79 8 16.85
4 16.56 9 16.59
5 16.48 10 16.80

Table 13. Execution time of the Gaussian computations for several test runs.
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