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Over the past few years, speech recognition technology performance on

ranging from isolated digit recognition to conversational speech has dramatic

improved. Performance on limited recognition tasks in noise-free environmen

comparable to that achieved by human transcribers. This advancement in auto

speech recognition technology along with an increase in the compute power of m

devices, standardization of communication protocols, and the explosion in the popu

of the mobile devices, has created an interest in flexible voice interfaces for mo

devices. However, speech recognition performance degrades dramatically in m

environments which are inherently noisy. In the recent past, a great amount of effor

been spent on the development of front ends based on advanced noise robust appr

The primary objective of this thesis was to analyze the performance of

advanced front ends, referred to as the QIO and MFA front ends, on a speech recog

task based on the Wall Street Journal database. Though the advanced front ends are

to achieve a significant improvement over an industry-standard baseline front end
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improvement is not operationally significant. Further, we show that the results of

evaluation were not significantly impacted by suboptimal recognition system param

settings. Without any front end-specific tuning, the MFA front end outperforms the Q

front end by 9.6% relative. With tuning, the relative performance gap increases to 15

Finally, we also show that mismatched microphone and additive noise evalua

conditions resulted in a significant degradation in performance for both front ends.
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CHAPTER I

INTRODUCTION

Over the past few years, speech recognition technology performance on

ranging from isolated digit recognition [1] to conversational speech [2,3,4] h

dramatically improved. Performance on limited recognition tasks in noise-f

environments is comparable to that achieved by human transcribers [5]. This advanc

in automatic speech recognition (ASR) technology along with an increase in the com

power of mobile devices, standardization of communication protocols, and the explo

in the popularity of the mobile devices, has created an interest in flexible voice interf

on mobile devices. Because mobile devices have limited space for text input (e.g

keyboard) and output space (e.g., a cellular telephone display), voice interfaces are

One class of approaches for this application involves the use of a client/se

architecture as shown in Figure 1. A variety of client/server architectures have

explored in recent years [6]. However, to implement complex applications such as sp

recognition and spoken information retrieval, there is a need for a pervasive stan

Hence, standards activity has accelerated in recent years. The standardizatio

common architecture is extremely critical to ensure compatibility among various hard

and software platforms. The Aurora Distributed Speech Recognition (DSR) grou

working group under the auspices of the European Telecommunications Stan
1
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Institute (ETSI), has been promoting standards activity for third generation cell

telephony applications [7,8]. Evaluations conducted by the Aurora DSR group w

designed to promote standardization of an advanced front end (AFE) for mobile term

devices as a part of the overall goal of standardization of a DSR architecture.

A speech recognition system can

be decomposed into four main components

as shown in Figure 2: an acoustic front

end, acoustic models, language models,

and search . The process o f

parameterization of a speech signal into a

sequence of feature vectors is performed

by the acoustic front end, and is referred to

as feature extraction. The acoustic front

end is a software module that incorporatesFigure 2. The four main components in
typical speech recognition system.

Input
Speech

Language Model
p(W)

Recognized Utterance

Acoustic
Front-End

Statistical Acoustic Models
p(A/W)

Search

Figure 1. A typical client/server architecture for a mobile computing application. Amb
noise as well as convolutional noise (microphone and channel) are serious problems
type of application.

Output
Back-end

Server

Client

(Terminal)

Ambient Noise Channel Noise

Microphone Noise
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a set of signal modelling techniques [9] to convert a digital speech signal to a sequen

vectors. Modern speech recognition systems typically produce a feature vector

10 msec. The design of this component is described in greater detail in chapter 2.

In real applications, front ends must incorporate advanced features, suc

quantization and compression, in order for systems to operate at acceptable lev

performance and efficiency. The Aurora working group has been developing a refe

client/server architecture shown in Figure 3 for speech recognition applications. The

of the ETSI Aurora large vocabulary (ALV) evaluation was to standardize front

processing within this architecture for large vocabulary speech recognition applicatio

large vocabulary speech recognition system is generally considered to be a syste

uses some form of sub-word acoustic modeling [10] and is capable of recognizing te

thousands of words spoken continuously [11,12,13].

The ALV evaluation was the second in a series of evaluations designed to pro

the development of the AFE. The objective of the first Aurora evaluation was to calib

Figure 3. The Aurora standard for a DSR architecture includes provisions for compre
and error protection along with feature extraction.

Feature Compression
Split VQ

Error
Protection

Terminal DSR Front-end

Detection &
Mitigation

Error
Decompression

Server DSR Back-end

Wireless Data Channel - 4.8 kbps

Recognition
Decoder

Extraction

Speech

Detection &
Mitigation

Error
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the performance of Mel Frequency Cepstral Coefficients (MFCC) based fr

ends [14,15] on small vocabulary tasks that use word models. The results of

evaluation showed that the performance of both the ETSI WI007 and HTK front e

degraded heavily under simulated noisy environment. The details of these evaluatio

discussed in section 1.2. First, let us review three popular client/server architecture

automatic speech recognition in a mobile environment.

1.1. Architectures for Mobile Speech Recognition Applications

There are three popular architectures for speech recognition applications

These three architectures are classified on the basis of the distribution o

computational resources between the client and the server — terminal-only, server

and terminal/server. A terminal-only architecture implements speech recognition

user’s terminal device, often referred to as the client. This is depicted in Figure 4. Bec

the complete process of recognition is performed on the terminal device with

transmission of recognition-related data involved, this architecture is robust to va

artifacts of the communication channel such as transmission errors, channel e

interference noise and compression. However, applications for this architectur

typically limited to small recognition tasks such as isolated words or phrases becau

the limited computational power and memory availability on a portable terminal dev

Voice dialing on cellular phones is a popular example of an application on suc

architecture.
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A server-only architecture involves transmission of speech over a no

communication channel to a back-end speech recognition server, as shown in Fig

The complete process of speech recognition including feature extraction and recog

is performed on the server. Because of the availability of ample computation powe

memory resources on the server, complex voice interfaces, such as spoken inform

retrieval [16], can be implemented. Such applications are popular in large-scale telep

applications, but are not popular in mobile applications because of the great dema

communications bandwidth between the server and terminal device. Typically the sp

signal is compressed (coded) before the transmission over the wireless chan

conserve bandwidth. Compression and other characteristics of noisy communic

channels (e.g., interference noise and packet loss) result in a significant degradat

speech recognition performance [1,6,17,18,19]. Various channel correction algorit

such as error detection, packet reconstruction and channel adaptation, are used to

the influence of channel artifacts. However, the degradation in recognition performan

not completely alleviated.
Terminal Device (Client)

Voice-Decoder

Server

Analog Voice Channel

Recognition
Decoder

Terminal Device (Client)

Recognition
Decoder

Speech Speech
Feature

Extraction
Voice-Coder
Figure 4. Terminal-only architecture.
 Figure 5. Server-only architecture.
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The third architecture, which is the subject of investigation in the Auro

evaluations and the primary focus of this work, distributes processing to both the term

and server sides. We refer to this architecture as Distributed Speech Recognition (D

This architecture combines the advantages of both the terminal-only and server

architectures by distributing the computational resources between the two devices

features are extracted on the terminal which are transmitted over the channel. Be

these features, and not the speech samples, are digitally transmitted over the

channel, the influence of the artifacts of the noisy channel is minimal on recogni

performance.

In a typical DSR architecture, such as the Aurora standard shown in Figu

features are extracted from the speech signal on the terminal device. This process is

coupled with noise enhancement schemes [20] that require a minimal amou

processing power. Unlike the server-only architecture, the noise enhanced featur

then compressed and transmitted digitally over the error-protected channel, resultin

significant reduction of channel-induced errors. Sophisticated model compensatio

natural language modules can be employed on the server to improve speech recog

performance.

1.2. An Overview of the Aurora Evaluations

A major challenge for DSR architectures is the standardization of

front end [21]. Such a standard is required to be robust to the demanding condi

encountered in practical applications such as cellular telephony. It also needs to be
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to variations in languages. The DSR group of ETSI has been actively involved in an e

to standardize an advanced front end for cellular telephony [7,8]. To achieve this obje

the DSR working group has conducted a series of evaluations of noisy speech const

using simulated as well as actual noisy environments. The objective of the first Au

evaluation was to calibrate the most popular speech recognition front ends for s

vocabulary speech recognition applications. Two front ends were evaluated on the Au

2 database [22,14], which is simply a noisy version of the small vocabulary TIDi

task [23].

The original 16 kHz studio quality TIDigits database was downsampled to 8 k

and filtered through G.712 characteristic [24] to simulate the Global System for Mo

Communications (GSM) terminal characteristic. Eight different noise types (subu

train, babble, car, exhibition hall, restaurant, street, airport and train station) were add

a controlled fashion to cover a range of signal to noise ratios (SNRs). The range inclu

no noise condition, referred to as the “clean” condition, and the following SNRs: 20,

10, 5, 0, and -5 dB.

Two training sets, referred to as clean and multi-condition, were defined. The c

training set does not contain any additive noise. The multi-condition training se

representative of four noise types (suburban train, babble, car, and exhibition

covering all seven SNR ratios. Three test sets, denoted Test Sets A, B and C, wer

defined. Test Set A is representative of all four noise types seen in the multi-cond

training set. Test Set B is representative of four noise types not represented in the



8

ce

oyed.

It is

in the

ining

(Test

ality

nds

llular

d the

.

ance

ed to

ding

Front end Training Set Test Set A Test Set B Test Set C

WI007
Clean 39.9% 45.0% 36.0%

Multi-condition 12.2% 14.2% 17.4%

HTK
Clean 38.9% 44.4% 33.3%

Multi-condition 12.7% 14.5% 16.9%

was
condition training set. Test Set C is filtered through M-IRS filtering [107] to introdu

convolutional noise. It contains two noise types (suburban street and train).

For the first evaluation on Aurora-2 database, word-based models were empl

The results of this evaluation for two training conditions is summarized in Table 1.

evident from the results presented in Table 1 that there was no significant difference

performance between the two front ends. However, even on the multi-condition tra

set, which contains ample samples of noisy speech encountered during decoding

Set A), the performance is approximately 13.0% WER. State of the art on studio-qu

TIDigits is approximately 0.2% [25]. Hence, the performance of these popular front e

degrades by an order of magnitude. For many practical applications, such as ce

telephony, this degradation due to noise is unacceptable. This observation motivate

development of an advanced noise robust front end and a second Aurora evaluation

The second Aurora evaluation was conducted with a goal to improve perform

in noisy environments. The performance of the advanced front end (AFE) was requir

be no worse than the ETSI WI007 front end [15,22] and significantly better in deman
Table 1. In the first Aurora evaluation, the performance of the ETSI WI007 front end
shown to be comparable to the HTK front end on all test conditions.
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environments. These performance goals are

shown in F igure 6 . Other genera l

requirements for this evaluation were:

• extension to a range of
European languages (Aurora-3
database; spec i fica l ly the
SpeechDat-Car [26] subsets in
F inn ish , I ta l ian , Spanish,
German and Dannish);

• extension to a large vocabulary
task (Aurora-4 database);

• coverage of a range of
background noise types typical
o f the ce l lu la r te lephony
environment;

• compatibility with HMM-based back-end recognizers (word and sub-wo
based).

More specific requirements are described in [27].

Two databases were defined to cover these requirements — Aurora-3 and Au

4. The Aurora-3 database was designed to calibrate the AFE performance in real

environments. It included five European languages to calibrate robustness to variat

language. This database was a small vocabulary task selected from a larger SpeechD

database [26] that is recorded in automobiles in motion. Each of the language sets co

of three training sets and corresponding test sets designed to calibrate the follo

conditions:

• Well-matched condition: Both the training and test sets are recorded with t
same hands-free microphone over the similar range of vehicle speeds to
the same noise conditions;

Low

High

WER

High LowSNR

Performance
Target WI008

Reference
WI007

Mel-Cepstrum

Figure 6. Target performance for secon
Aurora evaluation.
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• Moderate mismatch condition: The training set consists of a subset of th
range of noise types seen in the test set;

• High mismatch condition: The training set is recorded with a close-talkin
microphone while the test set is recorded with a hands-free microphone.

The Aurora-4 database was designed to study performance on a large vocab

task, namely the WSJ0 subset [28] of the Wall Street Journal Corpus. Seven additive

conditions (clean, street traffic, train station, car, babble, restaurant and airport) rand

chosen from a range of SNRs and two filtering schemes were employed to simulat

noisy terminal characteristics. This database is the subject of this thesis. The experim

design of the ALV evaluation using this database is discussed in detail in chapter 3.

The ALV evaluation formed a significant portion of the second Aurora evaluatio

The goal for the ALV evaluation was to achieve a 25% relative improvement in word e

rate (WER) across a variety of noise conditions compared to the MFCC WI007 front

Two consortia submitted proposals on speech recognition front ends for the

evaluation: (1) Qualcomm, ICSI, and OGI (QIO) [29], and (2) Motorola, France Telec

and Alcatel (MFA) [30]. These advanced front ends used a variety of noise reduction

channel normalization techniques including discriminative transforms, spec

subtraction, feature normalization, voice activity detection, and blind equalization. T

noise robust algorithms are discussed in detail in chapter 2.

1.3. Comparison to Previous Speech in Noise Evaluations

The Spoke tasks in 1994 DARPA Continuous Speech Recognition (C

evaluations [31] were designed to test a number of challenging conditions invol
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adaptation and compensation. These evaluations represented an important miles

CSR research. In particular, the evaluations referred to as Spoke 5 and Spoke 10

designed to benchmark algorithms that compensate for channel mismatch and ad

noise conditions. Both of these evaluations were derivatives of the same WSJ0 5K

used in the Aurora evaluation. A common language model, identical to the one used i

thesis, was used for these evaluations.

Spoke 5 involved the use of unsupervised channel compensation for a varie

microphones. The baseline microphone condition was a close-talking Sennh

microphone and the channel mismatch condition consisted of 10 different microp

types. These microphones included four tie-clip microphones, three stand-mou

microphones, two desktop microphones, and one hand-held microphone. Only Car

Mellon University (CMU) participated in this evaluation. Two different chann

compensation algorithms [32] were evaluated. Without any compensation, the bas

CMU system achieved a WER of 12.4%. The best CMU system with compensa

enabled achieved a WER of 9.7% which is about a 20% relative improvement ove

no-compensation case. However, this is still 45% worse than the Sennheiser micro

condition, which had a WER of 6.7%.

While Spoke 5 was designed to benchmark channel-mismatch compens

algorithms, Spoke 10 involved the compensation of “clean” data (recorded on c

talking Sennheiser microphone) corrupted with additive noise. Three SNR levels

included: 22 dB, 16 dB, and 10 dB. Three sites participated in Spoke 10 evalua

Cambridge University (CU), IBM, and SRI International. These groups used model-b
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Condition CU IBM SRI

Baseline (clean) 7.2% 7.2% 6.7%

Without compensation (10 dB SNR) 84.7% 77.4% 35.4%

With compensation (10 dB SNR) 19.8% 12.8% 12.2%

SR
approaches for noise compensation [31,33]. From the results shown in Table 2,

evident that the best system from SRI achieved a WER of 12.2%, and show

improvement of 66% relative to the no-compensation case for the worst S

condition (10 dB). However, this system suffered from a 83% relative degradation w

compared to the “clean” baseline condition.

The most important difference from an experimental design point of view betw

the ALV evaluation and the DARPA 1995 CSR evaluations (Spoke 5 and 10) was

desire to use a fixed recognizer in the ALV Evaluation. The goal of the ALV evaluat

was to benchmark signal enhancement approaches in the front end component of a

recognition system, while the 1995 CSR evaluations allowed model-based approach

noise compensation within the recognizer. An important design constraint for the

evaluation was the fact that the participating advanced front ends were required to

the ETSI latency requirements [15]. Other significant differences are tabulated in Ta

As we will observe in chapter 5, the advanced front end with the best perform

on the ALV evaluation achieved a WER of 34.5% (averaged across all conditions).

advanced front end performance represents a 130% relative degradation when com
Table 2. A summary of performance on the Spoke 10 task in the DARPA 1994 C
evaluation.
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Condition DARPA 1995 CSR Spoke ALV

Additive
Noise Condi-

tions

One condition:
car

Seven Conditions:
clean, street traffic, train station,

car, babble, restaurant, and airport

SNR Levels Three levels:
22 dB,16 dB,10 dB

Randomly chosen between:
10-20 dB for training sets;

5-15 dB for test sets

Evaluation
Tests

Two Tests:
Spoke 5 for mic. mismatch;
Spoke 10 for additive noise

Mixed microphone mismatch and
noise conditions.

Terminal filtering of the data.

CSR
to the performance on the matched microphone (Sennheiser microphone)

clean (without noise) conditions. On the CSR evaluation, an 83% degradation for the

conditions was observed. The range of noise and microphone conditions on the

evaluation was limited compared to Aurora. Hence, the slightly larger degradation in

Aurora evaluation is not unexpected.

1.4. Thesis Scope and Contributions

The primary goal of this thesis is to analyze and evaluate the noise robus

algorithms employed in the QIO and MFA advanced front ends. Though these adva

algorithms improve recognition performance significantly over the MFCC baseline f

end, this improvement is not operationally significant. It has been shown in several st

that human performance is stable for SNRs as low as 10 dB [34,35,36]. Mach
Table 3. A comparison of the experimental setup between the DARPA 1995
evaluations (Spoke 5 and 10) and the ALV evaluation.
13



14

ntly in

ad in

all
nd
d 5K
an

cus
nce
ased
ting

the
eet
l-to-

s
ided
also
d. It

nse)

on
cific

LV

FEs

for a

s and
performance degrades rapidly below 15 dB SNR. Despite the progress made rece

the development of noise robust front ends, there are still significant challenges ahe

closing the gap between machine and human performance.

The key contributions of this thesis are:

• Development of the Aurora baseline system:This system was designed to
minimize computation time without significantly compromising the over
system performance or the ability of the evaluation to rank front e
algorithms. The baseline system achieved a WER of 14.0% on the standar
WSJ0 task, and required 4 xRT for training and 15 xRT for decoding (on
800 MHz Pentium processor).

• Analysis of the WI007 (MFCC) front end: The performance of the WI007
front end on six focus conditions is calibrated and analyzed. These six fo
conditions are: sampling frequency reduction (16 kHz and 8 kHz), uttera
detection (influence of endpointing), compression (a vector quantization-b
compression scheme), model mismatch (mismatched training and tes
conditions), microphone variation (two microphone conditions available in
WSJ0 task [28]), and additive noise (six noise types collected from str
traffic, train stations, cars, babble, restaurants and airports at varying signa
noise ratios).

• Analysis of noise robustness algorithms:A theoretical analysis of technique
that reduce degradations due to convolutional and additive noise is prov
for the QIO and MFA front ends. The performance of these front ends is
evaluated on the Aurora 4 task and compared to a baseline MFCC front en
is shown that the performance of these AFEs is significantly (statistical se
better than the MFCC front end.

• Parameter Tuning: The influence of front end-specific parameter tuning
performance is calibrated and analyzed. It is shown that the front end-spe
tuning does not significantly influence recognition performance for the A
evaluations described in this thesis.

The Aurora baseline system allows users to calibrate the performance of A

through extensive experimentation in a reasonable amount of time without the need

large cluster of compute servers. The large gap between the performance of the AFE
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humans establishes the need for further research towards the development of bette

robust algorithms. Because the experimentation was performed without

front end-specific parameter tuning, it can be argued that the performance obtain

these AFEs is suboptimal. Optimizing well-known recognition system parameters

such as the language model scale and word insertion penalty often improves perform

This thesis establishes that front end-specific parameter tuning does not resul

significant improvement in recognition performance for the algorithms analyzed.

1.5. Structure of the Thesis

Chapter 2 discusses the need for perceptually-motivated signal parametriz

and reviews an industry-standard feature extraction algorithm used in the baseline s

and the Aurora WI007 standard. It also presents an analysis of the advanced noise

algorithms used in the QualComm-ICSI-OGI (QIO) and Motorola-FranceTeleco

Alcatel (MFA) front ends. Chapter 3 describes the experimental framework used in

ALV evaluations. A detailed discussion is presented on the development of the s

training and test sets that were used to facilitate large scale evaluations. Chapter 4 pr

the design and development of the ALV baseline LVCSR system that was used a com

testbed to benchmark the performance of the front ends. Chapter 5 present

experimental results in the ALV evaluation, and an analysis of attempts to optimize

performance of these front ends with the baseline system. It is shown that the perform

of both QIO and MFA front ends is significantly better than the baseline MFCC front e
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but this improvement is not operationally significant. Chapter 6 summarizes the

contributions of this work and suggests some directions for future resea
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CHAPTER II

FRONT END ALGORITHMS

The term “front end” in the speech recognition literature is commonly used

describe a collection of signal modeling techniques [9] that transform an audio signa

a sequence of feature vectors as shown in Figure 7. These features capture the spec

temporal variations of the speech signal. Many signal modeling techniques are desig

approximate human auditory phenomena known to be an integral part of the hu

speech recognition apparatus.

Front end design has been an area

of active research for the past quarter

century. The two dominant front end

approaches in speech recognition are

based on the mel frequency cepstral

coefficient (MFCC) representation [38]

and percep tua l l i near p red ic t ion

(PLP) [39]. The popularity of these two

front ends is attributed to their ability to

de l ive r good per fo rmance wh i le

ma in ta in ing a fa i r l y s imp le and

Figure 7. A front end converts a speec
signal to a sequence of feature vectors th
serve as input to the acoustic modelin
component of a speech recognizer.

Input
Speech

Language Model
p(W)

Recognized Utterance

Acoustic
Front-End

Statistical Acoustic Models
p(A/W)

Search
1
7
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computationally efficient implementation in a real-time framework. The PLP front end

been reported to perform marginally better than the MFCC front end in deman

environments though it has been shown that after a few passes of adaptatio

performance of both front ends is comparable [40].

This chapter presents overviews of the three approaches studied in this thes

industry-standard MFCC front end and two advanced front ends featuring algorit

intended to improve robustness to noise. It also describes the differences betw

standard MFCC front end (ISIP) [41] and the WI007 front end [15] that was used

baseline for the ALV evaluation.

2.1. The Mel-Scaled Cepstral Coefficient Front End

A detailed discussion of various signal modeling techniques used in mod

speech recognition systems can be found in [9,42,43]. The most popular approac

transforming the input signal into a sequence of feature vectors uses the mel-

frequency cepstral coefficient (MFCC) representation [41] shown in Figure 8. In

following sections, we briefly describe each component in this block diagram.

2.1.1. Zero-mean

The first step in conversion of the speech signal to a feature vector is to remov

the DC offset, a process referred to as debiasing of the signal. A mean value is com

every 10 msec using an overlapping 25 msec window. This analysis window begins

same time as the 10 msec frame, and extends 15 msec after the end of the frame.
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Speech Signal

Preemphasis

Cepstral
Analysis

Time
Derivative

Time
Derivative

Energy
+

Mel-Spaced Cepstrum

Delta-Delta Energy
+

Delta-Delta Cepstrum

Delta Energy
+

Delta Cepstrum

Fourier
Transform
Analysis

Mel-scale
Filterbank
Analysis

* Computes features 100 times per sec

* 25 msec Hamming window for
frequency domain analysis

* Includes absolute energy and
12 cepstral coefficients

* Cepstral mean substraction to

Zero-mean

Energy
Computation

Energy
Norm.

Cepstral
Mean

Substraction

Concat

* Zero-mean to debias the signal

* Energy normalization

* Time derivatives to model spectral
changes

handle convolutional noise

Liftering

* Liftering of cepstral coefficients
Figure 8. A signal flow graph describing an MFCC front end.
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often referred to as a left-aligned window. The mean value computed over this windo

subtracted from the signal:

, (1)

where is the mean of the speech sample values within a window, represen

input speech samples, represents the debiased speech samples,

and  is the total number of speech samples in the window.

2.1.2. Preemphasis

The next step is to shape the spectrum of the debiased signal using a first-

finite impulse response (FIR) filter given by:

. (2)

This filter amplifies portions of the spectrum above 1 kHz at approximately 20 db/dec

Because the human auditory system is more sensitive to frequencies above 1

preemphasis tends to increase the contribution of the high frequency portion o

spectrum in the overall recognition process [44]. A typical range for in spe

recognition applications is [-0.4,-1.0]. The value of this filter coefficient used in

ETSI WI007 front end is 0.97. The computation of the first output sample at time z

, at each frame varies from one front end implementation to the other. For exam

xd n[ ] x n[ ] µx–=

µx x n[ ]

xd n[ ] n 1 2 … N, , ,=

N

H pre z( ) 1 aprez
1–

+=

apre

y 0[ ]



21

dge

and

r the

the

g to

nergy

al is

rier

ctral

ctral

g the

eech

pe is

n. In

of its

ower
reference implementations at Mississippi State University [41] and Cambri

University [50] compute  at every frame by assuming .

On the other hand, the ETSI WI007 front end does not make any assumption

computes the using a circular buffer implementation. Hence, needed fo

computation of the first sample at each frame is retrieved from the previous frame in

circular buffer. The value of needed of the computation for correspondin

the first output sample for the first frame is assumed to be zero.

2.1.3. Fourier Transform Analysis

The next two processing steps, frequency domain analysis and an absolute e

computation (described in section 2.1.8), are performed in parallel. The sign

transformed from the time domain to the frequency domain using a Fou

Transform (FT). A 25 msec Hamming window is used which corresponds to a spe

resolution of 40 Hz. This choice of a window duration captures the short-term spe

envelope of the speech signal, which is related to the vocal tract shape, while ignorin

spectral harmonics corresponding to the fundamental frequency of the sp

waveform [9,43]. A feature vector that represents the time-varying vocal tract sha

critical to achieving high performance speaker independent speech recognitio

practice, a Fast Fourier Transform (FFT) is used to compute the transform because

computational efficiency [45]. The 25 msec window is zero-padded to the nearest p

of two (e.g., for an 8 kHz sample frequency, we use a 256 point FFT).

y 0[ ] x 1–[ ] x 0[ ]=

y 0[ ] x 1–[ ]

x 1–[ ] y 0[ ]
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This spectral estimate of the speech signal is computed every 10 msec. Due

limited velocity of the articulators in the human speech production apparatus, the sp

signal can be regarded as relatively stationary when analyzed over a 5 to 10

interval [44]. A 10 msec frame duration has been historically used in speech recogn

systems [9] as a compromise between computational efficiency and the temp

resolution necessary to assume the speech signal is stationary.

2.1.4. Mel-scale Filter Bank Analysis

The Fourier Transform (FT) of the signal is then transformed using a mel-s

filter bank analysis. The human auditory system is known to be sensitive to frequenc

amplitude on a logarithmic basis. This behavior can be approximated by transformin

signal using a nonlinear frequency scale. Though there are techniques to perform s

scaling in the time domain [46,47], it is more convenient to simply implement this a

table-lookup in the frequency domain. The mel scale [47] is a popular approximatio

this non-linear mapping, and is given by:

. (3)

A logarithmic filter bank analysis is used to approximate the sensitivity of

basilar membrane of the human ear to discrete frequencies [48]. Instead of perce

individual frequencies on a continuous scale along the basilar membrane, there is ev

that hair cells along this membrane are tuned to specific frequencies. A bank o

bandpass overlapping filters arranged linearly along the mel scale represents a crud

adequate approximation to the frequency resolution of the human ear. The output o

f mel 2595 10 1 f 700.0⁄+( )log⋅=
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of the overlapping filters is computed as the weighted sum of the FT coefficients tha

within its bandwidth:

, (4)

where represents the number of coefficients within the filter width, repres

the weighting function (filter gain), and represents the frequency response give

the FT. A triangular weighting function is the most common form for [38

Figure 9 depicts a mel-scale triangular filter bank implementation which is used in m

MFCC front ends.

2.1.5. Cepstrum Analysis

After the mel-scale filter bank analysis, a cepstrum analysis is performed on

filter bank outputs. Cepstrum analysis is a homomorphic process [48] that is appli

deconvolve the excitation and the vocal tract shape. Speech production ca

approximated as the convolution of two impulse responses:

, (5)

Savg n( ) 1
Ns
------ wFB n( ) S f( )

n 0=

Ns

∑=

Ns wFB n( )

S f( )

wFB n( )

s n( ) g n( ) v n( )⊗=
S(f)

Frequency
Figure 9. Mel-frequency spaced triangular filter banks for an MFCC front end.
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where represents the speech signal, represents the excitation, and

represents the vocal tract shape. Only the vocal tract shape information is exploite

speaker independent recognition.

The corresponding frequency domain representation is given by the product o

components:

. (6)

This product can be represented as a sum in log domain:

. (7)

The spectrum of the excitation signal and the vocal tract shape can be separated

conventional digital signal processing techniques in the log-frequency domain. The

tract shape is represented by the low-order cepstral coefficients, while the high-

coefficients contain the spectral information corresponding to the excitation sig

Typically, for most speaker independent speech recognition applications, only the fir

coefficients (low-order) are retained for further processing.

The classical cepstrum is defined as the inverse Discrete Fourier Transform (ID

of the log magnitude spectrum [43]. In a typical MFCC front end, the cepstrum

implemented using a Discrete Cosine Transform (DCT) because the log magn

spectrum is a real symmetric function [43,50]:

, (8)

s n( ) g n( ) v n( )

S f( ) G f( ) V f( )⋅=

S f( ){ }log G f( ){ } V f( ){ }log+log=

C k[ ] 2
N
----cn Savg n( ) πn 2k 1+( )

2N
---------------------------cos

n 0=

N 1–

∑=
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where represents the total number of filter banks, , wh

, and elsewhere. The resulting coefficients are an approximation to

classical cepstrum, and compactly represent the log magnitude spectrum of the s

signal. The first thirteen cepstral coefficients are typically adequate to describe the

tract shape for most speech recognition applications.

2.1.6. Liftering

The thirteen cepstral coefficients are then weighted using a process know

liftering [38]. While the low-order cepstral coefficients represent the vocal tra

shape (e.g., spectral slope and glottal pulse shape), the high order cepstral coefficie

sensitive to the analysis window, fundamental frequency and other artifacts [51]. He

for speaker independent recognition, it is advantageous to reduce these speaker-dep

variations. The low-order coefficients are enhanced though a raised-sine weig

function given by:

. (9)

Typical values for the parameters , , and in an industry-standard MFCC front

are 1, 22 and 11, respectively.

The zeroth cepstral coefficient, , represents the average value of the spe

or the root mean square value of the signal [9]. Historically, this term is excluded from

N k 0 1 … N,,,= cn 1 2⁄=

n 0= cn 1=

w n( ) G 1 h nπ( ) L⁄( )sin+ 1 n L≤ ≤
0 elsewhere 

 
 

=

G L h

c 0[ ]
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set of cepstral coefficients. Instead, an absolute energy term, described belo

section 2.1.8, is explicitly computed.

2.1.7. Cepstral Mean Subtraction

A simple technique to reduce the influence of convolutional noise due to cha

and/or microphone distortion is cepstral mean subtraction (CMS) [52]. CMS is perfor

on the 12 cepstral coefficients:

, (10)

where represents the mean of the cepstral coefficient,

, and is the total number of frames in the speech utterance. The me

each cepstral coefficient is computed over an entire utterance (e.g., speech file

conversation side [53] depending on the nature of the application.

2.1.8. Absolute Energy and Energy Normalization

The log of the absolute energy term is explicitly computed once per frame u

the 25 msec analysis window of the input speech prior to the preemphasis step:

, (11)

where  represents the total number of samples in the 25 msec window.

ccms n, k[ ] cn k[ ] µ k[ ]–=

µ k[ ] k
th

k 1 2 … 12, , ,=

n 1 2 … N, , ,= N

E x
2

n( )
n 0=

N 1–

∑
 
 
 

e
log=

N
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The logarithm of the absolute energy is then normalized on an utterance ba

reduce the variations in energy levels that may arise due to variation in loudness lev

different speakers:

, (12)

where represents the logarithm of maximum energy, , and is

total number of frames in the speech utterance. The term representing the norm

log-energy and the twelve CMS-transformed cepstral coefficients are concatenat

form a 13-dimensional absolute feature vector.

2.1.9. Time Derivatives

The final step in the MFCC front end is the computation of the first a

second-order time derivatives of the 13-dimensional feature vectors. These

derivatives improve our ability to discriminate between certain classes of sounds

capture some of the temporal characteristics of the speech signal [54,55]. Li

regression analysis is used to generate these derivatives [56,57]:

, (13)

where is a scalar value representing the derivative of the feature ve

coefficient at frame , and represent past and future values of

Enorm n[ ] E n[ ] Emax–=

Emax n 1 2 … N, , ,= N

dn k[ ]

w cn w+ k[ ] 
  cn w– k[ ] 

 –
 
 
 

w 1=

dw
∑

2 w
2

w 1=

dw
∑

------------------------------------------------------------------------------------=

dn k[ ] k
th

n cn w+ k[ ] cn w– k[ ]
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coefficient in time and is the number of frames used in the computation. Two adja

frames on each side of the current frame are sufficient to capture the velocity o

cepstral coefficients. Hence, is set to 2. As shown in Figure 10, a five-frame windo

needed for the first-order derivative computation.

The second-order derivatives are computed by applying Equation 13 to the o

of the first differentiation, with set to 2. Hence, the acceleration of the ceps

coefficients is computed by a differentiation of the first-order derivatives. The total ex

of the data involved in the second derivative calculation is nine frames of data, or 90 m

Thus, the overall feature vector for the MFCC front end contains 13 absolute fea

(energy plus 12 cepstral coefficients), 13 first-order derivatives (velocity) of these abs

features, and 13 second-order derivatives (acceleration), resulting in a feature vecto

a dimension of 39.

dw

dw

dw
sec
f first

x∂ dt⁄

x
2∂ dt

2⁄ x
2∂ dt

2⁄

delta:

delta-delta:
Figure 10. Each temporal derivative is computed using a five frame window (at 10 m
per frame). Hence, the second derivative computation, which requires five frames o
derivative data, involves data extending over nine frames of the input signal.
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2.2. The ETSI WI007 Front End Specification

The WI007 MFCC front end [15], shown in Figure 11, is a scaled down version

the standard MFCC front end described in the previous section. Liftering of cep

coefficients is not implemented in the WI007 front end. Also, no energy normalizatio

cepstral mean subtraction is incorporated in this front end. However, the ETSI stan

split-vector quantization compression algorithm and framing algorithm [15]

implemented in the WI007 front end. Only the 13 absolute features (energy

12 cepstral coefficients) are transmitted to the back end server though the channel.

back end server, the bit-stream is decoded, error-detected, error-corrected

decompressed to form the final features. The delta and acceleration coefficient

computed from the base features at the back end to form 39-dimensional feature ve

2.3. The QIO Advanced Front end

A collaboration between the CDMA Technologies Group at Qualcomm,

Speech Group at International Computer Science Institute (ICSI), and the Antropic S

Processing Group at Oregon Health and Science University (OGI) produced a fron

design referred to as the QIO front end [58]. It features three key componen

15-dimensional MFCC-based feature vector generated using data-driven LDA-de

filters, on-line mean and variance normalization, and a multilayer perceptron-based

activity detector (VAD).

A block diagram of the QIO front end is shown in Figure 12. The speech sign

analyzed using a 10 msec frame and a 25 msec window. For each frame of speech
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Figure 11. A signal flow graph describing the WI007 MFCC front end implementatio
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Figure 12. A block diagram of the Qualcomm-ICSI-OGI (QIO) front end.
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mel-scaled triangular-weighted filter bank analysis, similar to the standard MFCC f

end, is performed. However, the QIO front end uses 23 bins in its filter bank, compar

24 for the standard MFCC front end. A natural logarithm of the output of each of

23 bins is performed. Time trajectories of the 23 logarithmic filter bank energies

filtered though linear discriminant analysis (LDA) derived RASTA-like filters. In parall

a VAD detector detects the speech and non-speech frames. The DCT of the speech

is then computed and only the lower 15 cepstral coefficients are retained for fu

processing. An online mean and variance normalization of these 15 cepstral coefficie

performed.

These coefficients are processed through compression, framing, bit-str

formatting and error protection algorithms [15] on the terminal side. These proce

frames are then transmitted over a digital channel. On the server side, the frame

processed though the ETSI standard bit-decoding, error mitigation and fea

decompression algorithms. Delta and acceleration coefficients are computed on the

side using the 15 reconstructed cepstral coefficients. Thus, the overall dimension

output feature vector is 45. The three key noise reduction techniques implemented

QIO front end are described in the following sections.

2.3.1. LDA-derived RASTA-like Temporal Filtering

RASTA filtering is known to compensate for slowly varying convolutional noi

introduced due to channel and/or microphone mismatch [59]. RASTA filtering invol

temporal filtering of time trajectories of the log mel-frequency filter bank energies. T
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overall influence of this filtering process is that it attenuates the frequencies of the

bank energies below 1 Hz and above 12 Hz. Typically, the frequency response o

RASTA filter is optimized on a series of ASR experiments on a noisy database [59

Because these optimizations are expensive and do not guarantee generalization, th

used in the QIO front end were derived using a data-driven LDA analysis [60].

frequency response of these LDA-derived filters match closely to the frequency resp

of the RASTA filter, and hence, the LDA-derived filters are referred as RASTA-like filte

The LDA-derived filters are typically computed using a noisy training datab

and applied on a test database [60]. For the QIO front end, a noisy version o

OGI Stories database [59] was used to compute these filters. This OGI Stories dat

was corrupted by adding restaurant noise to achieve a 10 dB SNR.

The LDA-derived RASTA-like filters can potentially be derived for each of the l

mel-frequency filter bank bins. For each bin, coefficients corresponding to a one-se

time duration (e.g., 100 frames) are concatenated to form a sequence of feature vec

typical feature vector is formed every frame by using the value of a specific mel-frequ

filter bank bin corresponding to the current frame plus the value of the same m

frequency filter bank bin corresponding to 100 adjacent frames (50 past and 50 f

frames). Each of these feature vectors can be interpreted as a center aligned overl

window (current frame plus 50 past plus 50 future frames). An overlapping wind

corresponding to the ith frame is shown in Figure 13. A sequence of these feature vec

is constructed by sliding the overlapping window by one frame over all the frames in

training database. The class of each of the feature vector is labeled by the pho
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feature vector corresponding to the ith frame for bin 1
corresponding to the current frame. LDA analysis is then applied to these 101 dimens

feature vectors that correspond to a specific bin. The transformation vector comp

through this LDA analysis represents the coefficients of the RASTA-like filters for t

specific bin.

Though each mel-frequency filter bank bin could potentially be filtered usin

unique filter corresponding to this bin, only two filters are actually used in the QIO fr

end. Both of these filters are approximated as a 41-tap symmetric FIR to meet the

latency requirement [8]. The filter corresponding to the second bin was selected and
Figure 13. Feature-vector generation for LDA-derived RASTA-like filters.
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to filter the time trajectories of first and second filter bank bins. The remaining 21 b

were filtered though the filter corresponding to the fourth bin.

2.3.2. Voice Activity Detection

A multilayer perceptron (MLP) based voice activity detector (VAD) eliminat

non-speech segments [61]. For extremely noisy speech, this reduces insertion err

reducing the opportunity for noisy speech to be misinterpreted as speech. The input

MLP consists of three frames of features. Two adjacent frames are used to incorp

contextual information during the decision-making process. The MLP consists of 6 i

units, 15 hidden units and one output unit. A threshold is applied to the output post

probability from the MLP to create a binary-valued output. This output is then smoo

using an 11-point median filter. The MLP was trained on multiple databases, represe

both clean and noisy conditions.

2.3.3. Online Mean/Variance Normalization

Online mean and variance normalization is known to reduce the influence o

convolutional noise [52,62] such as channel distortion. The initial estimates of the m

and variance are computed using the first four frames of the training utterances. T

initial estimates are then updated for each frame using the following equations:

, (14)µ t[ ] µ t 1–[ ] α x t 1–[ ] µ t 1–[ ]–( )+=
35
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, (15)

, (16)

where is a scalar representing a cepstral coefficient, and the is

corresponding normalized cepstral coefficient at frame . The terms and

the estimated mean and variance of . The constant is an adaptation constant n

to guarantee a positive estimate of the variance. The scalar is an empirically-de

variance floor. For the ALV evaluation, these two parameters were set to and

respectively.

2.4. The MFA Advanced Front end

The second advanced front end studied in this thesis resulted from a collabor

between the Human Interface Lab at Motorola Labs, France Telecom R&D, and Al

SEL AG (Germany). The front end produced by this collaboration is referred to as

MFA front end [63,64]. It is based on a 12-dimensional MFCC feature vector plu

weighted average of log-energy and the zeroth cepstral coefficient.

The input speech signal is first processed through a noise reduction block tha

a time domain two-stage Wiener filter, as shown in Figure 14. This analysis is perfor

on a frame basis with a frame duration of 10 msec, and uses a 25 msec Hanning wi

The SNR of the resultant signal is then enhanced using a process referred to as “Wav

Reduction” that weights the speech segments of the speech signal higher than th

speech segments through the use of Teagor energy operator. Thirteen cepstral coef

σ2
t[ ] σ2

t 1–[ ] α x t[ ] µ t[ ]–( )2 σ2
t 1–[ ]–( )+=

x' t[ ] x t[ ] µ t[ ]–
σ t[ ] θ+

--------------------------=

x t[ ] x' t[ ]

t µ t[ ] σ2
t[ ]

x t[ ] α

θ

0.1 1.0
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and energy are computed using the methodology described in section 2.1. A least

square error-based blind equalization is applied to these coefficients to produce the

feature vector.

The resulting feature vectors are then processed though the ETSI standard f

compression, framing, bit-stream formatting, and error protection algorithms [64],

digitally transmitted over the channel. The received bit stream is decoded and

corrected at the server. The resulting frames are then decompressed and processed

the Feature Processing block that performs three operations — a weighted log-e

computation, delta and acceleration computations, and voice activity detection. The o

frames from this block are 13-dimensional (weighted energy plus 12 cepstral coefficie

These 13-dimensional feature vectors are differentiated to generate coeffic

representing the first and second-order derivatives. The novel individual componen

this front end are discussed in the following sections.

2.4.1. Noise Reduction

The noise reduction process consists of a two-stage time domain mel-wa

Wiener filtering process [63,64] that uses a frame-based noise reduction approach

first stage is a mel-warped classical Wiener filter that reduces noise but introduces a

residual noise [65]. This white residual noise is removed using a second stage of the

warped classical Wiener filtering.

The frequency responses of the two Wiener filters are derived using estimat

the noise and speech spectra. In the first stage, the noise spectrum is estimated usi
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the non-speech frames. A log energy-based voice activity detector (VADNest) [63] is

to detect the speech frames. The spectrum of the clean speech signal is estima

subtracting the estimate of the noise spectrum from the estimate of the spectrum

input signal. However, in the second stage, the noise spectrum is estimated

frame (speech and non-speech). The estimate of the clean speech from the first s

improved by applying the first-stage Wiener filter. This improved estimate of the cl

speech, along with the estimate of the noise spectrum, is used for computation o

second-stage Wiener filter. The frequency response of the two Wiener filters are smo

and time-warped using a filter bank that incorporates 23 mel-scale bins. The imp

response of these filters is then computed by applying an inverse DCT transform t

frequency response.

The second stage uses an additional gain factorization stage that operates

noise-reduced signal at the input of this stage to accomplish a dynamic noise redu

Frames are classified as speech or non-speech based on the SNR. For speech fram

gain of the Wiener filter’s frequency response is set to 0.1 whereas for the non-sp

frames, the gain is set to 0.8. The overall influence of this processing is that m

aggressive noise reduction is applied to non-speech frames than speech frames.

2.4.2. Waveform Processing

The waveform processing block improves the SNR of the signal by emphasi

voiced speech segments and deemphasizing the non-speech segments of the si

smoothed instant energy contour computed though a Teagor energy operator [66] is
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to detect the speech and non-speech segments. The voiced segments of speech

display quasi-periodic maxima and minima [67]. The smoothed instant energy v

corresponding to the voiced segments exhibit a quasi-periodic property and have a p

corresponding to the fundamental frequency. The contour corresponding to the unv

and silence/noise segments is relatively flat or random. The maxima in the energy co

correspond to the high SNR portions of the signal and hence, are classified as s

segments. The speech segments are then given more weight than the non-speech se

2.4.3. Blind Equalization

Blind equalization is applied to reduce the influence of convolutional noise. I

known that the response of the Wiener filter compensates for variations in the cha

microphone response [68]. The Wiener filter accomplishes this deconvolution by redu

the mean square error between the reference and the recovered signal. In the c

domain, it has been shown that the adaptive filter that minimizes the mean square

between the current (recovered) cepstrum and a reference cepstrum [69] compensa

convolutional noise.

2.4.4. Feature Processing

The block named Feature Processing has three main functions — a weighted

energy computation, delta and acceleration computations, and voice activity dete

The weighted energy is computed using the weighted sum of the zeroth cep

coefficient and a logarithm of the absolute energy:
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The first and second derivatives of these coefficients are computed and appe

to the 13-dimensional base features (weighted energy plus 12 cepstral coefficients)

techniques previously described in section 2.1.9. The non-speech frames are dr

using a two-stage voice activity detector (VAD). In the first stage, three measure

speech activity are computed. Each measure generates a binary decision whether th

frame is speech or non-speech. In the second stage, a heuristic VAD logic combines

three complementary decisions to make a final decision.

The first measure is an acceleration (second derivative) of the energy th

computed across the entire spectrum. The energy is computed by summing the squ

the coefficients of the mel-warped Wiener filter corresponding to the first stage of

Noise Reduction block. This filter is described in section 2.4.1. A thresholding mecha

based on the acceleration of the energy is used to make a binary decision. Becau

decision is based on the entire spectrum, this measure accurately detects plosiv

unvoiced sounds.

The second measure is an acceleration of an energy-based measure

measured over a group of sub-bands of the spectrum likely to contain the fundam

frequency. An energy-based measure is computed by averaging the coefficients of th

stage mel-warped Wiener filter corresponding to the second, third and fourth bins. Si

to the first measure, a thresholding mechanism is used to make a binary decision

advantage of this measure is that the high SNR in these three sub-bands makes it

Ew n[ ] 0.6
c 0[ ]( )
23

--------------- 0.4 E n[ ]ln( )+=
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robust to noise. On the other hand, it is susceptible to microphone characteristics

pass), speaker characteristics and band-pass noise that can significantly alter the

content of these three sub-bands.

The third measure uses the acceleration of the variance of the Wiener filter

coefficients computed over the lower half of the frequency band. Note that the Wi

filter coefficients for this computation are selected before they are mel-warped. Simi

the first and second measures, a thresholding mechanism is used to make a b

decision. This measure accurately detects voiced sounds because it is computed us

portion of the spectrum (e.g., the lower half of the spectrum) that is likely to contain m

of the harmonics of the fundamental frequency.

In this chapter, we reviewed the signal modelling techniques employed in t

front ends: WI007, MFA and QIO. We also presented a comparison between the W

front end and an industry-standard MFCC front end. In the next chapter, we describ

experimental framework used to evaluate these front ends.
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CHAPTER III

EXPERIMENTAL DESIGN

This chapter presents the design and development of the WSJ0-derived Aur

database used to evaluate these advanced front ends. The construction of the lexic

language models is also discussed. The final selection of the Aurora-4 database

balance between the need to train on large amounts of data and the desire for partic

to be able to run experiments quickly. This chapter reviews the experiments that gu

the selection of the final subset of the WSJ0 data.

3.1. Corpus Design

The first step in the ALV evaluation was to define an evaluation paradigm. T

Aurora Working Group decided to build on a standard evaluation paradigm based o

DARPA Wall Street Journal Corpus (WSJ) [28], and to evaluate noise conditions

postprocessing the clean data using digitally added noise [70]. WSJ is a large vocab

continuous speech recognition corpus consisting of high-quality recordings of

speech. Two-channel recordings of the same utterances were made at 16 kHz. Th

channel consisted of the same microphone for all speakers — a Sennheiser HMD

close-talking microphone that was extremely popular at the time. The second ch

included a sampling of 18 different types of microphones. The text material for this co
43
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was drawn from newspaper articles appearing in the Wall Street Journal. A portion o

data included utterances containing verbalized punctuation (“John COMMA who c

home early COMMA decided to read the newspaper PERIOD”).

The data is divided into a sequence of training (train), development (dev test)

evaluation (eval) sets. Further, the Aurora Working Group decided to focus on

5,000 word evaluation task, popularly known as WSJ0. This is an interesting task in

the evaluation set is defined in such a way that a 5,000 word vocabulary, whic

distributed with the corpus, is sufficient to give complete coverage of the evaluation

This means there are no out of vocabulary words (OOVs) in the evaluation set. This t

often referred to as the 5k closed vocabulary task. It is a popular approach when one

to focus on acoustic modeling problems, and remove language modeling issues fro

evaluation.

A standard bigram backoff language model (LM) [71] is also distributed with

corpus as a reference language model. It consists of 826,002 bigrams and 4,988 un

with corresponding backoff weights. This bigram language model yields a perplexity

of 147.

The standard training set for the WSJ0 is defined as SI-84. This set con

7,138 utterances from 83 speakers, totaling 14 hours of speech data. The SI-8

contains a mixture of utterances with and without verbalized punctuation. A typogra

error in the training transcriptions, “EXISITING” instead of “EXISTING”, was fixed

While the dev test set consists 1206 utterances from 10 speakers, the eval set is defi

the November 92 NIST evaluation set [72] consisting of 330 utterances from 8 speak
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For the ALV evaluation, processed versions [73] of the training, dev test,

evaluation utterances were generated at 8 kHz and 16 kHz. G.712 filtering [24] was

to simulate the frequency characteristics at an 8 kHz sample frequency

P.341 filtering [74] was used for simulation at 16 kHz. The filtering was applied to

noisy data as well. As shown in Figure 15, Training Set 1 consisted of the filtered ve

of the complete SI-84 training set (7138 utterances) recorded with the Sennh

microphone.

Training Set 2 was used to study the effects of variation in microphone and n

Its data distribution is also shown in Figure 15. The filtered 7,138 training utterance

divided into two blocks: 3569 utterances (half) recorded with the Sennheiser microph

and the remaining half recorded with a different microphone (18 different microph

types were used). No noise is added to one-fourth (893 utterances) of each of

subsets. To the remaining three-fourths (2,676 utterances) of each of these sub

different noise types (car, babble, restaurant, street, airport, and train) were add

randomly selected SNRs between 10 and 20 dB. The goal was to attain an e

distribution of noise types and SNRs. Thus, we had one clean set (893 utterances)

noisy subsets (446 utterances each) for both the microphone conditions.

There is one irregularity in Training Set 2. The speech file 408o303.wv1, reco

with the Sennheiser microphone exists, but the file 408o303.wv2, recorded with a se

microphone, did not exist on the original WSJ0 CDs. To keep the number of files con

across both the training sets, the file 408o302.wv2 was selected instead of 408o303

Thus both files 408o302.wv1 and 408o302.wv2 were used in Training Set 2.
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Training Set 2
(7138 utt.)

Second Mic.
(3569 utt.)

No noise
(893 utt.)

1 out of 6 noises

20 dB (2676 utt.)
added between 10 & No noise

(893 utt.)

1 out of 6 noises

20 dB (2676 utt.)
added between10 &

Noise
Type 1
(446
utt.)

Noise
Type 2
(446
utt.)

Noise
Type 3
(446
utt.)

Noise
Type 4
(446
utt.)

Noise
Type 5
(446
utt.)

Noise
Type 6
(446
utt.)

Noise
Type 1
(446
utt.)

Noise
Type 2
(446
utt.)

Noise
Type 3
(446
utt.)

Noise
Type 4
(446
utt.)

Noise
Type 5
(446
utt.)

Noise
Type 6
(446
utt.)

Training Set 1
(SI-84)

Sennheiser Mic.
Training Set 3
 (3569 utt.)
Training Set 3 was defined to study the impact of using utterances recorded

with the Sennheiser microphone for training. The Sennheiser microphone block o

Training Set 2 was referred to as Training Set 3. We will see chapter 4 that the resu

this set were poor because of the reduction in the number of training utteran

Consequently, this training set was not considered for further experimentation in the

evaluation.
Figure 15. Definition of Training Set 1 (Clean Training) and Training Set 2 (Mu
condition Training).
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Fourteen evaluation sets were defined in order to study the degradations in s

recognition performance due to microphone conditions, filtering and noisy environm

Each of the filtered versions of the evaluation set recorded with the Sennhe

microphone and the secondary microphone were selected to form two evaluation set

remaining 12 subsets were defined by randomly adding each of the 6 noise typ

randomly chosen SNRs between 5 and 15 dB for each of the microphone types as

in Figure 16. The goal was to have an equal distribution of each of the 6 noise type

the SNR with an average SNR of 10 dB. Following the same process that was used f
Test Set 1
Sennheiser Mic.
No noise added
Filtered SI-84
(330 utt.)

Test Set 2
Sennheiser Mic.
Car noise added
between 5 & 15 dB
(330 utt.)

Test Set 3
Sennheiser Mic.
Babble noise added
between 5 & 15 dB
(330 utt.)

Test Set 4
Sennheiser Mic.
Rest. noise added
between 5 & 15 dB
(330 utt.)

Test Set 5
Sennheiser Mic.
Street noise added
between 5 & 15 dB
(330 utt.)

Test Set 6
Sennheiser Mic.
Airport noise added
between 5 & 15 dB
(330 utt.)

Test Set 7
Sennheiser Mic.
Train noise added
between 5 & 15 dB
(330 utt.)

Test Set 8
Second Mic.
No noise added
Filtered SI-84
(330 utt.)

Test Set 9
Second Mic.
Car noise added
between 5 & 15 dB
(330 utt.)

Test Set 10
Second Mic.
Babble noise added
between 5 & 15 dB
(330 utt.)

Test Set 11
Second Mic.
Rest. noise added
between 5 & 15 dB
(330 utt.)

Test Set 12
Second Mic.
Street noise added
between 5 & 15 dB
(330 utt.)

Test Set 13
Second Mic.
Airport noise added
between 5 & 15 dB
(330 utt.)

Test Set 14
Second Mic.
Train noise added
between 5 & 15 dB
(330 utt.)

pes.
Figure 16. Definitions of 14 Test Sets that include 6 noise types and different mic ty
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definition of the 14 evaluation sets, 14 dev test sets, each consisting of 1206 uttera

were also created to allow for future research.

3.2. Language Model and Lexicon

The pronunciations contained in the lexicon were prepared using the pub

available CMU dictionary (v0.6) [75] with some local additions made to give fu

coverage of the training set. The additions needed for the training lexicon are show

Table 4. All stress markers in the CMU dictionary were removed and the wo

“!SENT_START” and “!SENT_END” were added to follow the ISIP prototype syste

lexicon format. Each pronunciation was replicated twice in the lexicon (one ending

the sil phoneme and one with sp) to model both long and short inter-word silenc

requirement for the technology being used in the baseline system). Similarly

evaluation lexicon was prepared from the CMU dictionary with local additions as sh

in Table 5.
e

Table 4. Local additions to the CMU
lexicon needed for coverage of the SI-8
training set.
Word Pronunciation

PHILIPPINES F IH L IH P IY N Z

PHILIPS F IH L AH P S

PURCHASING P ER CH AH S IH NG

ROUTE R AW T
R UW T

ROUTINE R UW T IY N

ROVER R OW V ER
4
Table 5. Local additions to the CMU
lexicon needed for coverage of th
November 92 eval set.
Word Pronunciation

PURCHASING P ER CH AH S IH NG

ROUTES  R AW T S
 R UW T S

ROUTINELY R UW T IY N L IY

ROVING R OW V IH NG
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The 5K bigram LM and associated lexicon do not give complete coverage o

dev test set. Since our goal was to conduct all experiments with no OOVs, we decid

augment the LM with the missing words. There are several ways this can be done

chose a static linear interpolation technique supported in the SRI Language Mod

Toolkit (SRILM) [76]. We constructed an interpolated bigram LM by generating an L

on the test set, and interpolating it with the existing bigram such that the overall perpl

of the modified LM was comparable to the original LM. The original LM had a perplex

of 147. The interpolated LM was constructed by setting the interpolation factor such

the final perplexity was the same. The resulting value of this interpolation factor

0.998. This interpolated LM was only used for tuning experiments on the dev test se

3.3. Aurora-4 Database Development and Definitions

LVCSR experiments are computationally expensive and require a fairly la

amount of infrastructure. Most of the sites participating in ALV evaluation did not h

such a large infrastructure but they wanted a rapid turnover of experiments w

developing their front ends. Hence, a goal was established to define a small subs

would provide results comparable to a full evaluation and yet run in a single day’s w

of CPU time on an 800 MHz Intel CPU.

Though such short sets are notoriously misleading, it was considered a prior

provide such sets to the working group. Below we describe the development of va

short sets, and other modifications made to the standard evaluation data set to me

needs of the Aurora evaluation. For the ALV evaluation, only training set and eva

definitions were required and hence, these sets were defined as Aurora-4a databas
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development-test set definitions were later included in the Aurora-4 database as Auro

for future experimental purposes. We will show that these reduced sets represented

compromise between computation time and the integrity of the experimental results

3.3.1. Training Subset Selection

The WSJ0 SI-84 training set consists of 7,138 utterances, 83 speakers and

14 hours of data. There are more than 129,000 word tokens and about 10,000 u

words. The average number of words per utterance is 17.8, and the average utte

duration is 7.6 secs. The average speaking rate is about 2.4 words per second. The t

set includes utterances with verbalized punctuation. The distribution of the numb

words per utterance for the entire training set is shown in Figure 17. Figure 18 summa

the distribution of the utterance durations.

One major design decision in the construction of the short set was to preserv

83 speakers since we are concentrating on speaker independent recognition. A

constraint for the evaluation was that a complete experiment should be able to be

one day using a single 800 MHz Pentium cpu. We decided to select 415 trai

utterances and 30 dev test set utterances to meet this constraint. Since training on t

SI-84 set up to 16 mixture cross-word models requires about 10 days (275 hours

training time required for 415 utterances was 275 x 415/7138 = 16 hours. Similarly

decoding time of 50 hours for 330 utterances was approximately 50 x 330/30 = 5 h

for 30 utterances. These compromises reduced the compute time for one com

experiment to approximately one day.
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This, in turn, motivated a second major design decision: uniformly sample e

speaker, resulting in 5 utterances per speaker. Since the average number of wor

utterance was 18, we decided to throw out utterances that were extremely short (les

eight words) and long (greater than 24 words) with respect to the average utterance l

This reduced SI-84 to 4,944 utterances. We then randomly sampled the rema

ut te rances f rom each speaker to ob ta in a to ta l o f 4

utterances (83 speakers x 5 utterances per speaker). We will refer to this set

short-415 [77]. Its word count and duration statistics are compared to the full trainin

in Figures 19 and 20, respectively. Both distributions for the short-415 set are pe

compared to the distributions for the SI-84 training set because extremely short and

utterances with respect to average length were not included in the short-415 set.

Unfortunately, performance of system trained on 415 utterances even for th

mixture cross-word models) was poor — 44% WER as shown in Table 6. This system

tested on a short development set consisting of 30 utterances. Hence, we follow

similar paradigm but doubled the training set size to 830 utterances (short-830)

performance on short-830 for 1-mixture

cross-word models was also poor —

36.0% WER. We then decided to increase

the training set size to a quarter of the

total training utterances in SI-84. This

yielded short-1785 with an error rate of

25.5%.

Acoustic Models Training Set Devtest-30

CI-Mono-1-mix 415 46.0%

CD-Tri-1-mix 415 44.1%

CI-Mono-1-mix 830 46.6%

CD-Tri-1-mix 830 36.0%

CD-Tri-1-mix 1785 25.5%

Table 6. Performance as a function of th
training set for the baseline system (wit
ISIP’s standard front end and unfiltere
audio data).
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Figure 17. A histogram of the word count
for the full training set (SI-84).
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Figure 18. A histogram of the utteranc
durations for the full training set (SI-84).
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Figure 19. Comparison of the histogram
of the word counts for the full training
set (SI-84) and the short-415 training set.
Figure 20. Comparison of the histogram
of the utterance durations for SI-84 an
short-415.
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Since the training subset has to be consistent for both the Training Set 1 (c

and Training Set 2 (multi condition data), we decided to sample one-fourth of each o

clean and noisy utterances from both the Sennheiser as well as the second micro

conditions. The distribution of data in Training Set 2 is shown in Figure 15. We alterna

picked 112 utterances from each of the 12 noisy blocks and 224 utterances from ea

the two clean blocks to obtain 1,792 utterances. We refer to this set as short-1792. T
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what was used for acoustic training in the evaluations. A summary of the word coun

duration statistics are shown in Figures 21 and 22, respectively. Note that the word

distribution as well as the utterance duration distribution for the short-1792 is very sim

to the respective distributions for the SI-84 training set.

Key statistics for all short training sets are provided in Table 7. Although

average duration and speaking rate is almost constant across all the training sets, th

number of unique words drastically reduce as the number of utterances decrease

often results in undertrained acoustic models since there are an insufficient numb
s s
d

SI-84

short-415
short-1792

SI-84

short-415
short-1792
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Table 7. A comparison of some vital statistics for various training subsets.
Figure 21. Comparison of the histogram
of the word counts for SI-84 and
short-1792.
Training
Set
Size

Total
Number
of Words

Average No.
Words/

Utterance

N

Uniq

415 6,797 16.4

830 14,996 18.1

1785 32,085 18.0

1792 32,012 17.9

SI-84 128,294 18.0
Figure 22. Comparison of the histogram
of the utterance durations for SI-84 an
short-1792.
umber
of

ue Words

Average
Duration

(secs)

Average
Speaking Rate

(words/sec)

2,242 6.85 2.4

3,626 7.67 2.4

5,481 7.59 2.4

5,444 7.63 2.4

8,914 7.62 2.4
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instances of each phonetic context to support reliable training. Hence, all 7,138 utter

were included in each of the two training sets (Training Set 1 and Training Set 2) de

in the Aurora-4a database [78].

3.3.2. Devtest Subset Selection

The Nov’92 development test set consisted of 1,206 utterances, and incl

10 unique speakers, and totals over 134 minutes of data. Similarly, the Nov’92 evalu

set consists of 330 utterances, 8 speakers, and about 40 minutes of data. Our goal

produce a short set that was a reasonable match to the statistics of both of thes

Following the same strategy described in section 3.3.1, we selected 3 utterance

speaker for a total of 30 utterances.

Due to time constraints and the large number of experiments that needed to b

to effectively tune a system, we decided to reduce the 1206 utterance dev test se

330 utterance set which was comparable in size to the evaluation set. To do thi

decided to preserve all 10 speakers represented in the dev test, and select 33 utteran

speaker. These utterances were selected such that the duration profile of the 330 ut

subset was a good model of the entire 1206 utterance set (measured in word

utterance). The 14 noisy subsets corresponding to these 330 utterances were define

of these 14 subsets corresponds to the 14 noisy sets defined in section 3.1, and

14 subsets are collectively defined as Aurora-4b database [78].

In the previous paragraph, we described the definition of devtest-330 by sam

the 1206 utterance Nov’92 dev test set. We decided to create devtest-30, a sub
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devtest-330. More importantly, we decided not to throw out long or short utterances

time, because we wanted this subset to be representative of the devtest-330. Hen

attempted to sample the entire distribution. In Figures 23 and 24, we compare the

counts and duration statistics for these short sets to the full Nov’92 dev test set.

In Table 8, we analyze the statistics of these three sets. Most of the impo

statistics such as the number of speakers, average utterance duration and average s
data.
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Table 8. A comparison of the complexity of several subsets of the eval and devtest 
Figure 23. Comparison of the histogram
of the number of words per utterance for th
full dev test set and two dev test subsets.
Description
Nov’92

eval
eval-

No. of Speakers 8 8

No. of Utterances 330 16

Amount of Data (mins.) 40.19 20.

No. of Word Tokens 5,353 2,7

No. of Unique Words 1,270 93

Avg. No. of Wd per Utt. 16.2 16

Avg. Utt. Duration (secs) 7.3 7.

Avg. Spk. Rate (wd/sec) 2.2 2.

Test Set Perplexity 134.9 139
s
e
Figure 24. Comparison of the histogram
of the utterance durations for the full de
test set and two dev test subsets.
166
Nov’92
devtest

devtest-330 devtest-30

10 10 10

6 1206 330 30

69 134.42 38.33 3.35

15 19,254 5,468 493

6 2,404 1,444 290

.3 16.0 16.6 16.1

5 6.7 7.0 6.7

3 2.4 2.4 2.4

.0 146.8 143.7 151.5



56

kens

ets are

ed to

f the

et was

pled

ed four

for

riments

res to

wn in

ation

tistics

word

the

this

e [78].
rate for these three sets are comparable. Although the number of unique word to

reduces as the size of the test set decreases, the perplexities [43] of the dev test s

comparable.

3.3.3. Eval Subset Selection

In order to reduce the computing requirements for the evaluations, we decid

reduce the size of the evaluation set by 50%. To obtain this shortened version o

evaluation set, we began by sampling in such a way that every speaker in the eval s

represented in the shortened set. This is shown in Table 9. We randomly sam

utterances from each of the speakers. This random sampling process was repeat

times to get four different eval short lists (A, B, C, D). Next, we computed the WER

these short sets based on results for the complete evaluation set for a series of expe

on various noise conditions. These results are shown in Table 10.

We then analyzed each set using a number of statistical distance measu

determine the set that is closest to the original eval set. These results are sho

Table 11. We chose subset “A” since this was closest to the results for the full evalu

set for the normalized statistical measures 3 and 4. The word count and duration sta

are compared to the full evaluation sets in Figures 25 and 26, respectively. Both the

count distribution and utterance duration distribution for eval-166 match closely to

respective distributions for Nov’92-eval set. Fourteen noisy versions corresponding to

166 utterance eval-166 set are defined as the 14 eval sets in the Aurora-4a databas
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Table 9. Distribution of the number of utterances for each speaker in the eval set.
Speaker
Identity

Number of
Utterances (full eval)

Number of
Utterances (eval-166)

440 40 20

441 42 21

442 42 21

443 40 20

444 41 21

445 42 21

446 40 20

447 43 22

Total 330 166

nd its
Table 10. WER on various noisy conditions for the complete November 92 eval set a
four subsets (A, B, C, and D).
Test Set
Training

Set Eval Set A B C D

1 1 10.1% 10.2% 10.4% 9.7% 9.4%

2 1 55.4% 56.1% 54.9% 56.2% 58.0%

3 1 64.6% 64.8% 63.2% 66.1% 66.9%

4 1 58.4% 59.2% 59.5% 62.0% 58.8%

6 1 61.0% 61.7% 60.4% 63.5% 62.4%

8 1 53.7% 54.6% 52.5% 54.6% 55.5%

9 1 71.6% 72.5% 71.5% 72.8% 73.2%

10 1 76.2% 77.5% 75.5% 77.4% 79.5%

11 1 76.7% 78.5% 74.0% 77.5% 77.5%

13 1 74.5% 77.1% 74.1% 75.8% 76.9%

1 2 27.2% 27.9% 28.0% 28.0% 26.9%
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Figure 25. Comparison of the histogram
of number of words per utterance for th
full November 92 eval set and eval-166.
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Figure 26. Comparison of the histogram
of the utterance durations for the ful
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These 14 eval sets are subsets of the fourteen 330 utterance noisy eval sets def

sec t ion 3 .1 .

3.3.4. Endpointing the Aurora-4a Database

When speech recognition systems are subjected to severe amounts of nois

non-speech data preceding and following the utterance tends to cause insertion erro

insertion errors can often be the dominant reason for an increased WER. It was deci

generate an endpointed version of the Aurora-4a database by removing these non-

segments to evaluate the influence of endpointing on the recognition performance

baseline ETSI MFCC front end.

To remove the effects of this noise, it was decided to endpoint all speech dat

that complete experiments (training and evaluation) could be performed on endpo

data. We generated endpoint information using our best WSJ0 baseline recogn

system, described in section 4 using a forced-alignment mode [79]. The endpoints
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then extended by 200 msec on each side of an utterance. Table 12 summarizes the

of silence in WSJ data. The first row represents the average number of seconds of

data removed from each file (amount of data removed per utterance averaged acr

utterances). The second row represents the amount of silence removed as a percen

the total available audio data. The third row represents the total amount of data disc

as a percentage of the total audio data. Note that the eval data tended to have more

than the training data.

In this chapter, we presented the process for the development of the Auro

database. CPU constraints played a primary role in our decisions to reduce the amo

data. In the next chapter, we will describe the development of a speech recognition s

that served as the baseline system for the Aurora evaluations. This system was ca

designed to produce statistically significant results on these evaluations while minim

the CPU requirements for the evaluation.
f
Table 11. Results of several distance measu
applied to select a subset of the full eval set.

T
s

Distance Measure A B C D

10.70  9.80 15.00 17.60

15.47 13.90 28.92 37.84

0.18 0.19 0.28 0.33

 0.22 0.23 0.48 0.60

abs x xi )–( )∑

x xi–( )2∑

abs
x xi–( )

xi
------------------ 

 ∑

x xi–( )
xi

------------------ 
  2

∑

resable 12. A summary of the amount o
ilence detected in the WSJ Corpus.
Data Set
SI-
84

dev-
330

eval

Average Silence/
Utt. (secs)

0.82 0.97 1.37

Average Silence/
Utt. (%)

11.2 16.4 25.3

Total Silence (%) 10.8 13.9 18.8
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CHAPTER IV

WSJ0 BASELINE SYSTEM

The WSJ0 baseline system was developed as a primary step towards achievi

final goal of developing the ALV baseline system. The WSJ0 baseline system provid

comparison point to insure that the future results on ALV baseline system were cred

This system demonstrated performance that is sufficiently close to start-of-the-art o

WSJ0 task. In this chapter, we describe the WSJ0 baseline system and the results

tuning experiments on this system.

4.1. System Description

The baseline system to be used for the Aurora evaluations is based on a p

domain speech recognition system that has been under development at the Instit

Signal and Information Processing (ISIP) at Mississippi State University for several y

This system is referred to as the prototype system [79] since it was the first recogn

system developed in ISIP and served as a test bed for developing ideas for implem

conversational speech recognition systems. This system is implemented entirely in

and is fairly modular and easy to modify. It has been used on several evalua

conducted by NIST [80,81] and the Naval Research Laboratory [82].
60
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The prototype system uses hidden Markov model-based context-depen

acoustic models [42], lexical trees [83] for cross-word acoustic modeling, N-gr

language models with backoff probabilities [13,42] for language modeling (finite s

networks are also supported), and a tree-based lexicon for pronunciation modeling

The core of the system is a hierarchical dynamic programming-based time synchro

network search engine [85,86] that implements a standard beam-pruning approa

maximizing search accuracy while minimizing memory requirements.

The signal processing component of the prototype system is the industry stan

MFCC front end described in section 2.1. To adjust to varying channel and spe

conditions, cepstral mean subtraction [61] was performed on the 12 cepstral feature

the mean being computed and subtracted separately for each utterance.

normalization techniques, such as vocal tract length normalization [87] and vari

normalization [88], were not used for the WSJ0 baseline system. Further, adapt

techniques, such as Maximum Likelihood Linear Regression (MLLR) [89] and Lin

Discriminant Analysis (LDA) [90], were not employed.

Using the feature data, a set of context-dependent cross-word triphone m

were trained. Each triphone model was a 3-state left-to-right model with self-loops

the exception of two models as shown in Figure 27. The silence model,sil, has a forward

and backward skip transition to account for long stretches of silence containing trans

noises. The short, inter-word silence model,sp, contains a forward skip transition tha

allows it to consume no data when there is no silence between consecutive words.
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state in the models contains a Gaussian mixture model where the number of mixtu

initially set to one and is trained up to sixteen mixtures.

The triphone models were trained using a standard Baum-Welch Expecta

Maximization (EM) training algorithm [12,91,43]. A typical training schedule i

summarized in Table 13. However, for the baseline system, we modified the fo

alignment step. Instead of aligning the word transcription using monophone models t

the monophone transcriptions, we produced cross-word triphone transcription

aligning the word transcription with cross-word triphone models. These triphone mo

were previously generated from the best performing system tuned on the eval set.

aligned triphone transcriptions were then converted to monophone transcription

removing the left and right context for each central phone. Models for all possible triph

contexts were generated using the decision trees produced during the state-tying ph

the training process — one of the distinct advantages of the decision tree based state

approach. The trained models were then used in conjunction with a bigram lang

model to perform recognition on the evaluation data.
Figure 27. Typical HMM topologies used for acoustic modeling: (a) typical tripho
(b) short pause, and (c) silence. The shaded states denote the start and stop states
model.
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Table 13. An overview of the training paradigm for a typical cross-wo
context-dependent large vocabulary speech recognition system.
1. Flat-start models: Initialize a set of single-mixture Gaussian monophone
models. Seed the mean and variance of each Gaussian to be equal to the global
mean and variance computed across a small set of the training data. This provides
a reasonable starting point for the model optimization. Random initialization
would also work but would converge less quickly.

2. Monophone training: Train monophone models on the entire training set using
four iterations of Baum-Welch reestimation. In this phase, the ‘sp’ model is not
trained and it is assumed that ‘sil’ only occurs at the beginnings and ends of
utterances. This gives the ‘sil’ model a chance to learn the parameters of silence
before we attempt to force it to learn interword silence.

3. ‘sp’ model training: The single state of the ‘sp’ model is tied to the central state
of the ‘sil’ model. The monophone models are then trained for four more
iterations. In this phase, it is assumed that the ‘sp’ model occurs between every
pair of sequential words while ‘sil’ only occurs at the beginnings and ends of
utterances. This allows the ‘sp’ model to learn the parameters of interword
silence.

4. Forced alignment: The transcriptions are force aligned to the acoustic data and
the aligner is allowed to choose the most likely pronunciation for each word in
the transcription. New phonetic transcriptions are generated from this forced
alignment process and are used throughout the remainder of the training regime.

5. Final monophone training: The monophone models are trained using the new
phonetic transcriptions and five iterations of Baum-Welch reestimation.

6. Cross-word triphone training: Cross-word triphone models are seeded from the
monophone models. Only triphones seen in the training data are created. Four
iterations of Baum-Welch reestimation are used to get initial estimates of the
triphone models.

7. State-tying: To reduce the parameter count and to provide sufficient training
data to undertrained states, we employ a maximum likelihood decision tree-based
state tying procedure [93]. Those states that are statistically similar to one another
are tied into a single state and the training data previously attributed to each is
now shared in the single tied state. The state-tied models are trained for four more
iterations of Baum-Welch reestimation.

8. Mixture training: The single mixture models are successively split until
16 mixtures are generated using incremental stages of 1, 2, 4, 8 and 16 mixtures.
At each stage, four iterations of Baum-Welch reestimation are used on the multi-
mixture models.
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4.2. WSJ0 Baseline System Tuning Experiments

Most HMM-based recognition systems provide a set of parameters that ca

used to tune performance for a given application. These parameters include thresho

state-tying and beam pruning, and scaling factors for the language model and

insertions. The first parameter we tuned is the state-tying threshold [92,93]. A prob

often associated with training context-dependent models in a speech recognition sys

the lack of sufficient training data for the large number of free parameters in the sys

To avoid this problem the prototype system employs a maximum likelihood phon

decision tree-based state-tying procedure [93] to pool HMM states. Each node o

phonetic decision tree is associated with a set of states. These states are itera

separated into child nodes using phonetic questions. When the tree is trained, the st

a single leaf node of the tree represent acoustically similar states that can be tied tog

This leads to better parameter estimates. The parameters governing the state-tying p

are the thresholds for splitting and merging a node [93].

All the experiments for baseline system were conducted on SI-84 training se

Nov’92 eval set. Table 14 shows the performance improvement due to varying the nu

of states after tying. Normally this parameter has a much more dramatic effec

performance. In this case, the improvements in performance were marginal. The nu

of tied states found to give best performance was 3,215. The number of initial state

46,346, which implies that less than one out of every 10 states were preserved in th

mode ls .
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The second parameter we optimized is the language model scaling factor. D

the decoding process, the language model probability (as determined by the bi

language model) is computed for each bigram pair. This probability is multiplied b

language model scale factor that weights the relative contribution of the language mo

the overall path score. Increasing this scale value tends to cause the language m

dominate the ranking of search paths — essentially boosting the importance o

language model relative to the acoustic model. Decreasing the scale causes the lan

model to play a lesser role. A word insertion penalty is added to the scaled lang

model score. This penalty is used to help inhibit the insertion of common, po

articulated words such as “the”, “a”, and “uh”. Decreasing the value of this parameter

tend to decrease the number of words hypothesized. For the experiments presen

Table 14, the language model scale factor [92] was set to 12 and the word inse

penalty [92] set to -10.
tied
sertion
Table 14. A comparison of experimental results obtained by tuning the number of
states retained after the state-tying process (language model scale = 12.0, word in
penalty = -10 and pruning thresholds set to 300, 250 and 250).
Number of
Tied-States

State-Tying Thresholds
xRT WER Sub. Del. Ins.Split Merge Occup.

1,157 1250 1250 2400 171 9.4% 7.1% 1.6% 0.7%

1,882 650 650 1400 151 11.0% 8.0% 1.7% 1.2%

3,024 150 150 900 149 10.7% 8.0% 1.6% 1.1%

3,215 165 165 840 138 8.6% 6.8% 1.1% 0.7%

3,580 125 125 750 123 8.9%  6.7%  1.4% 0.8%

3,983 110 110 660 120 8.7% 6.6% 1.0%  1.1%

4,330 100 100 600 116 9.1% 6.5% 1.4% 1.2%

5,371 75 75 450 106 9.0% 6.7% 1.0% 1.3%
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In Table 15, we present results from varying the language model scale factor

first six experiments were run with the number of tied states set to 3,215, the w

insertion penalty set to -10, and the pruning thresholds set to 300, 250 and 250. Th

two experiments were run with a word insertion penalty of 10, and gave slightly be

performance. An LM scale of 18 was chosen because insertions and deletions are ba

in addition to achieving the lowest overall WER. A 0.6% absolute reduction in error

was observed by adjusting this parameter. This is probably a result of the fact tha

language model has some predictive power for the WSJ data (more so than

conversational speech application), and hence can be relied upon to a greater d

Tuning the scale factor also reduced xRT by approximately 30%, which is advantage

The next parameter to be tuned was the word insertion penalty. An interestin

of folklore in speech research is that optimal performance is almost always achieved

one balances insertions, and deletions. In Table 16, we summarize some experime

which we optimized the value of this parameter. These experiments were run wit

number of tied states set to 3,215, the LM scale factor set to 16, and the pruning thres
cale
Table 15. A comparison of experimental results for tuning the language model s
factor. The best error rate that was achieved was 8.0%.
LM
Scale

Word
Penalty

xRT WER Sub. Del. Ins.

12 -10 138 8.6% 6.8% 1.1% 0.7%

14 -10 108 8.2% 6.3% 1.2% 0.7%

16 -10 103 8.0% 6.1% 1.4% 0.6%

18 -10 85 8.1% 6.1% 1.5% 0.5%

18 10 85 8.0% 6.2% 0.9% 0.9%

20 10 85 8.0% 6.2% 1.0% 0.9%
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Word
Ins.

Penalty
xRT WER Sub. Del. Ins.

-20 98 8.4% 6.3% 1.7% 0.4%

-10 103 8.0% 6.1% 1.4% 0.6%

0 107 8.1% 6.3% 1.0% 0.7%

10 117 8.2% 6.3% 0.9% 1.0%
set to 300, 250 and 250. Though the best performance on this isolated experimen

obtained with a setting of -10, a word insertion penalty of 10 was selected becau

produced near optimal results and balanced insertions and deletions. The fact that th

the optimum point was verified when these results were combined with other param

settings.

Once these basic parameters were adjusted, we turned our attention to

pruning [92], which allows users to trade off search errors and real-time performa

Tight beams result in fast decoding times but less accuracy. Beam pruning is a heu

technique that removes low scoring hypotheses early in the search process s

computational resources associated with those hypotheses can be used for more pro

paths. The decoder allows the user to specify a beam at each level in the s

hierarchy (typically state, phoneme, and word-level). A higher beam threshold will a

more paths to be considered during the search process. Using too low of a thresho

result in search errors (i.e. where the correct hypothesis is pruned).

A summary of some basic experiments on the impact of the beam prun

thresholds are shown in Table 17. For these experiments, we trained on the SI-84 tr
Table 16. A comparison of experimental results for tuning the word insertion penalty
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Beam Pruning
xRT WER Sub. Del. Ins.

State Model Word

200 150 150 14 8.6% 6.7% 0.9% 1.1%

300 250 250 85 8.0% 6.2% 0.9% 0.9%

400 350 350 230 8.0% 6.2% 0.9% 0.9%

the
set, and evaluated on the 330-utterance Nov’92 dev test set. As can be seen in Ta

there is a substantial impact on real-time rates by reducing the beam pruning thres

For the WSJ task, we find the combination of 300, 250, and 250 gives near-opt

performance at a reasonable real-time rate. Many other systems implemented in IS

these same beam pruning values [86]. Since CPU requirements are an issue in th

evaluation due to the large number of experiments needed to be run, it is important t

ways to reduce computations without significantly impacting performance.

In Table 18, we compare the results of our tuned system to state of the art.

overall best system, as shown in Table 17, achieves a WER of 8.0% on the dev test s

8.3% on the evaluation set. The best published results for comparable techno

highlighted in Table 18, are in the range of 6.8% WER. By directly tuning the WS

baseline system on the evaluation set, we have achieved error rates of 7.7%. How

tuning on the evaluation set is not reasonable.

We believe that the primary difference that accounts for the discrepancy in

error rates is the lexicon used by the respective systems. When WSJ research wa

peak, most sites were using proprietary lexicons that had been tuned to opti

performance, normally by implementing some basic form of pronunciation modeling
Table 17. A summary of beam pruning experiments on the SI-84 training set and
Nov’92 dev test set.
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Site
Acoustic

Model Type
Language

Model
Adaptation WER

ISIP xwrd/gi bigram none 8.3%

CU [94] wint/gi bigram none 8.1%

UT [95] wint/gd bigram none 7.1%

CU [94] xwrd/gi bigram none 6.9%

LT [96] xwrd/gi bigram none 6.8%

CU [94] xwrd/gd bigram none 6.6%

UT [97] xwrd/gd bigram none 6.4%

UT [97] xwrd/gd bigram VTLN 6.2%

LT [98] xwrd/gi trigram none 5.0%

LT [98] xwrd/gd trigram none 4.8%

LT [98] xwrd/gd/tag trigram none 4.4%

SJ0
do not, however, believe that the lexicon is solely responsible for this la

difference (18% relative). Diagnosing the reasons there is a performance gap will

more time since we need to conduct additional experiments which are outside the sc

this work. The difference in performance is a fairly consistent bias that should not m

algorithm differences in the front end processing. Possible reasons for this gap incl

difference in the results of the state-tying process, and issues in silence/noise mod

We have not seen such a large difference with state-of-the-art systems for other tas

have run (Resource Management and OGI Alphadigits) [1].

4.3. ALV System Design

As described in section 1.2, the goal for the ALV evaluation was to achieve a 2

relative improvement in word error rate (WER) across a variety of noise conditi
Table 18. A comparison of performance reported in the literature on the W
SI-84 Nov’92 evaluation task.
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compared to the MFCC WI007 front end. Hence, the ALV system was develope

benchmark the advanced front ends (QIO and MFA) relative to the baseline ETSI W

front end [15] in a reasonable amount of time. These three front ends have been des

extensively in chapter 2 of this work.

The system used in the ALV evaluation was modeled after a 16-mixt

WSJ0 system described in the previous section that attained a WER of 8.3%. Trainin

16-mixture cross-word context-dependent phone HMM system involves 36 pass

Baum-Welch training. Training on Training Set 1, shown in Figure 15, requi

approximately 275 hours, or 10 days, on an 800 MHz Pentium processor. Decodin

330 utterances that constitute Test Set 1, described in Figure 16, requires a

50 CPU hours. Considering the increase in the decoding time on noisy test sets beca

the poor acoustic match between the models and the data to be approximately three

the total decoding time for 14 test sets was estimate as 150 x 14 hours = 84 days. F

11 training conditions required for the ALV baseline system, mentioned in Table 19

total CPU time required would have been 94 x 11 = 1034 days. This computational

was not feasible for most of the sites involved in the Aurora evaluations. Hence

explored three ways to reduce this time without compromising the integrity of the sys

or the results:

• Evaluation set size:In section 3.3.3 we described the selection process u
to reduce the evaluation set from 330 utterances to 166 utterances.
resulted in a 50% reduction in runtime requirements.

• Number of mixtures: Mixture generation and training is another tim
consuming process, since it involves multiple passes through the data
example, reducing the number of mixtures from 16 to 4 would reduce
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Training
Conditions

Compression
Training

Set
Sampling
Frequency

Utterance
Detection

1

no

1

16 kHz No

2 16 kHz Yes

3 8 kHz Yes

4

2

16 kHz No

5 16 kHz Yes

6 8 kHz Yes

7 3 16 kHz No

8

yes

1
16 kHz Yes

9 8 kHz Yes

10
2

16 kHz Yes

11 8 kHz Yes
number of training passes from 36 to 28. Hence, the computation time du
training by a factor of 7/9, and result in minimal degradations in performan
An analysis of performance as a function of the number of mixtures is give
Table 20. We decided to select 4 mixtures for the final baseline system.

• Beam pruning: Decreasing beam widths in the search process is
straightforward way to reduce computational complexity. In Table 17,
evaluated performance as a function of a selected number of combinatio
beam pruning parameters. We selected the settings “200 150 150” beca
was observed that these settings reduced runtime by a factor of 6 with min
degradations in performance.
Table 19. Training conditions that were evaluated for the ALV baseline system.
ining
Table 20. A summary of performance on the Nov’92 dev test set using the SI-84 tra
set as a function of the number of mixtures.
Number of
Mixtures xRT WER

2 115 11.8%

4 113 9.5%

8 116 8.7%

16 114 8.0%
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Hence, after incorporating these optimizations, we were able to reduce

expected total computation time required to generate Table 19 from 1,034 da

163 days. The impact of these changes on performance is summarized below in Tab

This chapter described the design and development of a baseline LVCSR sy

which was used in the ALV evaluations. We also presented results on how this system

tuned to improve its speed and to allow rapid evaluation of advanced front ends

reasonable amount of time. In the next chapter, we will present the results and analy

the baseline MFCC (ETSI WI007) and two advanced front ends (QIO, and MFA)

were included in the ALV evaluation. The next chapter also describes the front

specific tuning experiments that were designed to evaluate the influence of the sub-o

parameter tuning on the performance of the advanced front ends.
educe
Table 21. Relative degradation in WER due to the three-step approach used to r
computational requirements.
Factor WER
Relative

Degradation

WSJ0 Baseline system (ISIP front end) 8.3% N/A

Terminal filtering (ISIP front end) 8.4% 1%

ETSI WI007 front end 9.6% 14%

Beam adjustments (15 xRT) 11.8% 23%

Reduce 16 to 4 mixtures 14.1% 20%

50% reduction of eval set 14.9% 6%

Endpointing silences 14.0% -6%
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CHAPTER V

EXPERIMENTS, RESULTS, AND ANALYSIS

The first two chapters provided an overview of the ALV evaluation and

theoretical overview of the front ends included in this study. The third chapter prese

the design and development of the Aurora-4 database. In chapter 4, we describe

design and development of the baseline system used in the ALV evaluation. In

chapter, we show that the performance of the advanced front ends on the ALV evalu

is significantly better than the baseline MFCC front end, but that these improvement

not operationally significant. It is also shown that front end-specific parameter tuning

the baseline recognition system did not result in a change in ranking of the advanced

ends.

5.1. Performance of the Baseline MFCC Front End

The stated goal for the ALV evaluation was to achieve a 25% relative improvem

over the baseline system. This improvement was measured by averaging WER ac

variety of evaluation conditions [14], including additive noise, sample frequen

reduction, microphone variation, compression, model mismatch and utterance dete

Summaries of this experimentation are provided in Tables 22 and 23. Table 22 con

results for experiments conducted without any feature value compression, and Tab
73
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provides results with compression. Each row in these tables consists of seven differe

conditions: clean data plus six noise conditions. As described in chapter 3, the ori

audio data for test conditions 1-7 was recorded with a Sennheiser microphone whil

conditions 8-14 were recorded using a second microphone that was randomly se

from a set of 18 different microphones. Noise was digitally added to this audio da

simulate operational environments.

The impact of using endpointed speech, described in previous section, was

evaluated as an independent variable. For the “no compression” case, the seve

conditions were then evaluated for several combinations of these conditions, resultin

total of 98 conditions: 7 noise conditions x 2 microphone types x (3 training conditi

for Training Set 1 + 3 conditions for Training Set2 + 1 condition for Training Set 3). For

the “with compression” case, the seven test conditions were then evaluated using

endpointed speech, resulting in a total of 56 conditions: 7 noise conditions x 2 microp

types x (2 training conditions for Training Set1 + 2 conditions for Training Set 2). Hence

a total of 154 test conditions were evaluated. These tables constitute a total of 4,580

(191 days) of CPU time on a 800 MHz Pentium processor. Note that the actual CPU

for 191 days is little higher than the estimated CPU time of 163 days, describe

chapter 3. The real time rate for decoding on mismatched conditions was higher

anticipated.

In the following sections, we analyze the results for specific contrastive conditi

All results were generated using the standard NIST scoring software [99], and the N

MAPPSWE significance test [100], which is included in the scoring software packag
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Table 22. A summary of results (in terms of WER) obtained by the ALV base
system (ETSI MFCC WI007 front end) on Aurora-4a task. Training Set 2 with endpoin
data and 16 kHz sampling frequency is the overall best condition.
Performance Summary (Without Compression)

Training Set Test Set

S
e
t

Sam
Freq

in
kHz

Utt
Det

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

16 N 14.9 65.2 69.2 63.1 72.3 69.4 73.2 61.3 81.7 82.5 75.4 83.8 81.0 84.1

16 Y 14.0 56.6 57.2 54.3 60.0 55.7 62.9 52.7 74.3 74.3 67.5 75.6 71.9 74.7

8 Y 16.2 49.6 62.2 58.7 58.2 61.5 61.7 37.4 59.7 69.8 67.7 72.2 68.3 67.9

2

16 N 23.5 21.9 29.2 34.9 33.7 33.0 35.3 49.3 45.2 49.2 48.8 51.7 49.9 49.0

16 Y 19.2 22.4 28.5 34.0 34.0 30.0 33.9 45.0 43.9 47.2 46.3 51.2 46.6 50.0

8 Y 18.4 24.9 37.6 39.3 38.8 38.2 40.4 29.7 37.3 48.3 46.1 50.6 44.9 49.3

3 16 N 20.6 23.2 34.4 40.1 38.2 34.7 41.3 46.8 49.1 53.5 53.4 57.2 53.2 56.1

lue
is the
Table 23. A summary of results for the ALV baseline system with feature va
compression. Training Set 2 with endpointed data and 16 kHz sampling frequency
overall best condition.
Performance Summary (With Compression)

Training Set Test Set

S
e
t

Sam
Freq

in
kHz

Utt
Det

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1
16 Y 14.5 58.4 58.8 53.8 62.5 56.9 65.5 53.3 75.1 76.3 68.5 77.8 73.5 75.9

8 Y 15.4 49.4 60.6 59.0 57.4 61.9 62.0 36.6 59.9 71.6 67.8 72.5 70.2 69.5

2
16 Y 19.1 23.4 31.7 35.5 35.3 33.1 36.4 40.9 47.4 50.3 48.9 54.7 49.3 51.8

8 Y 20.7 26.4 38.6 41.6 43.8 41.1 43.4 30.9 38.7 47.1 50.1 53.6 47.3 50.7
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5.1.1. Sample Frequency Reduction

Most telephony applications use a sample frequency of 8 kHz even though s

of-the-art ASR systems use speech data digitized at a sample frequency of 16

Spectral information above 4 kHz can be exploited to provide modest improvemen

performance. For example, the third formant for several speech sounds, such a

consonant “s”, has significant energy above 4 kHz. In state-of-the-art systems, a sa

frequency of 16 kHz is often used in conjunction with a Sennheiser close-talk

microphone to achieve better performance. Hence, we measured performance a

8 kHz and 16 kHz to analyze whether trends in recognition performance were cons

at both sample frequencies.

A comparison of performance for Training Sets 1 and 2 is shown in Figure 28

the “no compression” case. A similar comparison for the compression condition is sh

in Figure 29. For Training Set 1, degradations due to a reduction in sampling frequ

did not follow any trend. However, for Training Set 2, statistically significant degradati

in performance were observed on the Sennheiser microphone conditions (Test Sets

both the “no compression” and “compression” cases. The Sennheiser HMD-414

expensive close-talking microphone which does a good job of maintaining a relativel

frequency response from DC to 8 kHz. The spectrogram of a typical utterance (

441c020b) recorded with the Sennheiser microphone, shown in Figure 30, demons

that this microphone preserves high frequency information better than the microph

used for the second channel condition. This observation is supported by Figure 31, w
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Training Set 1, 16 kHz, utterance detection, no compression

Training Set 1, 8 kHz, utterance detection, no compression
Figure 28(a). A comparison of the WER for16 kHzand8 kHzsample frequencies for
Training Set 1 without feature vector compression. Test set conditions which
statistically significant at a 0.1% significance level are indicated in bold.
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Figure 28(b). A comparison of the WER for16 kHzand8 kHzsample frequencies for
Training Set 2 without feature vector compression. Test set conditions which
statistically significant at a 0.1% significance level are indicated in bold.
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Training Set 1,16 kHz, utterance detection, compression

Training Set 1, 8 kHz, utterance detection, compression
Figure 29(a). A comparison of the WER for16 kHzand8 kHzsample frequencies for
Training Set 1 with feature vector compression. Test set conditions which are statist
significant at a 0.1% significance level are indicated in bold.

T T T T T T T T T T T T T T
W
E

R
 (

%
)

0

20

40

60

50

es
t S

et
 1

es
t S

et
 2

es
t S

et
 3

es
t S

et
 4

es
t S

et
 5

es
t S

et
 6

es
t S

et
 7

es
t S

et
 8

es
t S

et
 9

es
t S

et
 1

0

es
t S

et
 1

1

es
t S

et
 1

2

es
t S

et
 1

3

es
t S

et
 1

4

Training Set 2,16 kHz, utterance detection, compression

Training Set 2, 8 kHz, utterance detection, compression

10
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Figure 29(b). Acomparison of the WER for16 kHzand 8 kHz sample frequencies for
Training Set 2 with feature vector compression. Test set conditions which are statist
significant at a 0.1% significance level are indicated in bold.
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r
Figure 30(a). Spectrogram for utterance441c020bthat was recorded on Sennheise
microphone, digitized at 16 kHz and filtered using the ETSI P.341 standard.
d
Figure 30(b). Spectrogram for utterance441c020b that is recorded on a secon
microphone, digitized at 16 kHz and filtered using the ETSI P.341 standard.
heiser
m the
the
Figure 31(a). Comparison of the magnitude of the frequency response of the Senn
microphone and the second microphone derived from the speech segments fro
utterance id441c020b. Both the utterances were digitized at 16 kHz and filtered using
P.341 standard. The Sennheiser microphone preserves frequencies above 3.5 kHz.
heiser
m the
ing
Figure 31(b). Comparison of the magnitude of the frequency response of the Senn
microphone and second microphone derived from the non-speech segments fro
utterance id441c020b. Both the two utterances were digitized at 16 kHz and filtered us
P.341 standard. The Sennheiser microphone preserves frequencies above 3.5 kHz.
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provides the overall frequency response of the microphones on speech and non-s

data, respectively.

However, no significant improvement is observed when the sampling frequen

increased from 8 kHz to 16 kHz on matched conditions — training on Training Set 1

decoding on Test Set 1, as shown in Figure 28 and Figure 29. These sets are matche

both consist of clean utterances recorded on Sennheiser microphone. The add

information provided by high frequencies (between 4 kHz and 8 kHz) does not result

improvement in performance. The spectra l informat ion provided by l

frequencies (below 4 kHz) is sufficient to reach the upper bound on performance.

5.1.2. Utterance Detection

In addition to the investigation whether the trends in the recognition performa

were consistent at both sampling frequencies, we also investigated whether the recog

performance improved due to utterance detection. The non-speech segments of a

recorded in noisy environments often result in an increase in insertion errors. These

speech segments were removed from the audio data using the methodology kno

endpointing, described in section 3.3.4, with an expectation that the insertion errors w

reduce in noisy environments.

As expected, utterance detection resulted in a significant improvemen

performance on Test Sets 2-14 when the system was trained on Training Set 1, as sh

Figure 32. Table 24 shows that the reduction in insertion errors is primarily responsib

improvement in the performance. In this case, the “silence” model learned only



81

h are

W
E

R
 (

%
)

0

20

40

60

80
es

t S
et

 1

es
t S

et
 2

es
t S

et
 3

T
es

t S
et

 4

T
es

t S
et

 5

T
es

t S
et

 6

es
t S

et
 7

es
t S

et
 8

es
t S

et
 9

T
es

t S
et

 1
0

es
t S

et
 1

1

es
t S

et
 1

2

T
es

t S
et

 1
3

es
t S

et
 1

4

Training Set 1, 16 kHz,no utterance detection, no compression

Training Set 1, 16 kHz,utterance detection, no compression
Figure 32(a). Comparison of the WER betweenwithoutandwith utterance detectionfor
Training Set 1 at 16 kHz with no feature vector compression. Test set conditions whic
statistically significant at a 0.1% significance level are indicated in bold.
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h are

Figure 32(b). Comparison of the WER betweenwithoutandwith utterance detectionfor
Training Set 2 at 16 kHz with no feature vector compression. Test set conditions whic
statistically significant at a 0.1% significance level are indicated in bold.
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Test
Set

Training Set 1

Without Utterance Detection With Utterance Detection

WER Sub. Del. Ins. WER Sub. Del. Ins

1 14.9% 8.8% 1.0% 5.1% 14.0% 9.0% 0.8% 4.1%

2 65.2% 41.4% 3.6% 20.1% 56.6% 40.0% 3.6% 13.0%

3 69.2% 46.0% 6.5% 16.7% 57.2% 40.7% 6.2% 10.2%

4 63.1% 40.5% 12.0% 10.6% 54.3% 36.7% 10.8% 6.9%

5 72.3% 47.0% 11.2% 14.1% 60.0% 39.2% 13.8% 7.1%

6 69.4% 44.6% 7.8% 17.0% 55.7% 37.9% 8.2% 9.6%

7 73.2% 46.6% 14.1% 12.5% 62.9% 42.1% 13.7% 7.1%

8 61.3% 34.7% 14.6% 12.1% 52.7% 36.7% 8.7% 7.3%

9 81.7% 54.4% 12.3% 15.1% 74.3% 49.1% 15.1% 10.1%

10 82.5% 57.0% 12.2% 13.3% 74.3% 53.1% 13.0% 8.1%

11 75.4% 48.1% 17.9% 9.4% 67.5% 44.9% 17.5% 5.1%

12 83.8% 48.4% 26.7% 8.8% 75.6% 41.3% 30.5% 3.8%

13 81.0% 52.3% 15.5% 13.1% 71.9% 46.0% 18.4% 7.4%

14 84.1% 47.6% 26.2% 10.2% 74.7% 41.4% 28.5% 4.9%

ce did

noisy

ing in

duced

t in

ions,

e. In

noise

t 1 at
cally
silence during training because Training Set 1 consists of only clean data, and hen

not represent a good model of the actual background noise. Without endpointing, the

silences were interpreted as the non-silence words instead of silences, result

insertion errors. Endpointing reduced the amount of non-speech data and hence re

insertion errors.

In contrast to Training Set 1, for Training Set 2, a significant improvemen

performance was detected only for Test Set 8. A reduction in the number of delet

rather than insertions, was primarily responsible for this improvement in performanc

other words, because the training conditions contained ample samples of the
Table 24. A comparison of experimental results for endpointed data for Training Se
16 kHz with no feature vector compression. Test set conditions which are statisti
significant at a 0.1% significance level are indicated by shaded cells.
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conditions, the non-speech segments were modeled adequately by the silence mod

hence the insertion error rate did not increase significantly on the noisy test conditio

5.1.3. Compression

Continuing our investigation into the six focus conditions, we investigated

effects of compression on the features. It is desirable to compress feature values

transmission over a communications channel to conserve bandwidth. The compre

algorithm employed in the DSR client-server application is a lossy split vec

quantization (VQ) algorithm [15] that allows the quantized features to be transmitte

4800 bps. Since this compression algorithm is lossy, the recovered features are a dis

version of the original features, and will result in a degradation in recognit

performance. This degradation in performance was calibrated through a seri

experiments described in Figures 33 and 34.

No significant degradation in performance due to compression was detecte

Training Set 1 for both the 8 kHz and 16 kHz sampling frequencies. Since there wa

significant degradation for Test Set 1, which was a matched condition, it is natural to

a conclusion that the split VQ algorithm will not significantly degrade the performanc

the system. However, Figure 34 shows that there was a significant degradatio

performance for four noisy conditions at a 16 kHz sampling frequency and two n

conditions at an 8 kHz sampling frequency on Training Set 2. We have not fou

consistent explanation as to why these particular noise conditions were adversely aff



84

nt at

W
E

R
 (

%
)

0

20

40

60

80

es
t S

et
 1

T
es

t S
et

 2

es
t S

et
 3

T
es

t S
et

 4

T
es

t S
et

 5

T
es

t S
et

 6

T
es

t S
et

 7

es
t S

et
 8

T
es

t S
et

 9

T
es

t S
et

 1
0

T
es

t S
et

 1
1

T
es

t S
et

 1
2

T
es

t S
et

 1
3

T
es

t S
et

 1
4

Training Set 1, 16 kHz, utterance detection,no compression

Training Set 1, 16 kHz, utterance detection,compression
Figure 33(a). Comparison of the WER betweenwithoutand withcompressionof feature
values on Training Set 1 at 16 kHz. Test set conditions which are statistically significa
a 0.1% significance level are indicated in bold.
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Training Set 1, 8 kHz, utterance detection,compression

nt at

Training Set 1, 8 kHz, utterance detection,no compression
Figure 33(b). Comparison of the WER betweenwithoutandwith compressionof feature
values on Training Set 1 at 8 kHz. Test set conditions which are statistically significa
a 0.1% significance level are indicated in bold.
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Training Set 2, 16 kHz, utterance detection,no compression

Training Set 2, 16 kHz, utterance detection,compression

10

30
Figure 34(a). Comparison of the WER betweenwithoutandwith compressionof feature
values on Training Set 2 at 16 kHz. Test set conditions which are statistically significa
a 0.1% significance level are indicated in bold.
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Figure 34(b). Comparison of the WER betweenwithoutandwith compressionof feature
values on Training Set 2 at 8 kHz. Test set conditions which are statistically significa
a 0.1% significance level are indicated in bold.
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5.1.4. Model Mismatch

In addition to investigating the trends in recognition performance due to reduc

in sampling frequency, utterance detection, and compression of feature values, w

investigated the effects of model mismatch on the recognition performance. One w

expect to attain high recognition performance on matched conditions, defined a

experimental condition in which both the training and the test data were recorded u

identical conditions. Since training is based on a maximum likelihood param

estimation process [13,42,43], high performance recognition can only be achieved

the test conditions generate feature vectors that are similar in terms of means, vari

etc. If there are consistent differences in SNR, background noise, or microphone,

will be a significant degradation in performance if some form of adaptation is not use

these evaluations, it was decided not to consider adaptation within the recognition sy

We calibrated the degradation in performance using a series of experiments summar

Figures 35 and 36.

As expected, the best recognition performance was observed on matched tra

and testing conditions (Training Set 1 and Test Set 1) in which all utterances w

recorded with a Sennheiser microphone. For all other conditions involving Training S

recognition performance degraded significantly. Systems trained on Training S

performed significantly better than those trained on Training Set 1 across all n

conditions. These trends were consistent for both sampling frequencies and

compression conditions. Reducing this degradation from mismatched conditions thr

front end processing was a major goal in this evaluation.
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Training Set 1, 16 kHz, utterance detection, no compression

Training Set 2, 16 kHz, utterance detection, no compression
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Figure 35(a). Comparison of the WER betweenTraining Set 1andTraining Set 2at 16
kHz with no feature value compression. Test set conditions which are statisti
significant at a 0.1% significance level are indicated in bold.
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Figure 35(b). Comparison of the WER betweenTraining Set 1andTraining Set 2at 8 kHz
with no feature value compression. Test set conditions which are statistically significa
a 0.1% significance level are indicated in bold.
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Training Set 1, 16 kHz, utterance detection, compression

Training Set 2, 16 kHz, utterance detection, compression
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Figure 36(a). Comparison of the WER betweenTraining Set 1andTraining Set 2at 16 kHz
with feature value compression. Test set conditions which are statistically significan
0.1% significance level are indicated in bold.
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Figure 36(b). Comparison of the WER betweenTraining Set 1andTraining Set 2at 8 kHz
with feature value compression. Test set conditions which are statistically significan
0.1% significance level are indicated in bold.
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We tried to isolate the model mismatch due to additive noise from the mism

due to microphone by training the models on Training Set 3 which consists of ha

utterances from Training Set 2 recorded on Sennheiser microphone only. But as sho

Table 22, the performance was worst than the Training Set 2, even on matc

microphone conditions (Test Sets 1-7), because of the reduction in training data by

Hence, it was decided not to continue any experimentation on Training Set 3.

5.1.5. Microphone Variation

Next, we investigated the effects of microphone variation on speech recogn

performance. In general, the Sennheiser microphone performed significantly bette

the second microphone condition for all conditions, as shown in Table 25. The first c

this table corresponds to Training Set 1, which consists of clean utterances recorded

Sennheiser microphone, and Test Set 1, which consists of similar data. The second

the first row represents a mismatched condition in which the test set contained a diff

microphone. There was a significant increase in the word error rate, from 16.2% to 37
hone
Table 25. A significant performance degradation occurs for the second microp
condition on both training sets. No compression of feature values is employed.
Performance (Without Compression)

Training Set Test Set

Set
Sampling
Frequency

Utterance
Detection

1
(Sennheiser,

Clean)

8
(Second,

Clean)

2
(Sennheiser,

Car)

9
(Second,

Car)

1 8 kHz Yes 16.2 37.4 49.6 59.7

2 8 kHz Yes 18.4 29.7 24.9 37.3
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The same argument of model-mismatch discussed in the previous section can be ex

to explain the degradation in the performance. The same trend is observed on the ca

condition (Test Sets 2 and 9).

While Training Set 1 consists of utterances recorded with a Sennhe

microphone, Training Set 2 has half of the utterances recorded on the same Senn

microphone and the other half on any one of the 18 microphone types describ

chapter 3. With the Baum-Welch training algori thm, which is a maximu

likelihood-based parameter estimation method, this fact implies that models traine

Training Set 2 quickly converge towards the Sennheiser microphone in terms of

means and the covariances [101]. Hence, both the clean and car test conditions f

second microphone result in significant degradation in recognition performance, as s

in the second row of the Table 25. Note also that the last three cells in the second

which correspond to various noise conditions, show less of a degradation in perform

than the corresponding conditions in the first row. So there is some value in exposin

models to noise during the training process, but not as much as had been hoped for

initial design.

5.1.6. Additive Noise

In addition to calibrating the effects on recognition performance of many sig

processing issues such as sampling frequency reduction and utterance detection, w

calibrated recognition performance in presence of various background additive n

conditions. Figure 37 demonstrates the effect of these six noise conditions for two sa
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frequencies — 8 kHz and 16 kHz. As expected, severe degradation is observed a

sample frequencies.

However, the severity of this degradation can be limited by exposing the mode

noise conditions during training. In Figures 37(c) and (d), we demonstrate that the se

of the degradation in the noisy conditions is reduced by training the models on Tra

Set 2, which contains samples of the noise conditions. An important point to note is

these degradations are still significant compared to the clean condition. Similar tr

were observed when the feature vectors were compressed.

5.2. ALV Evaluation Results

A summary of the results presented at the post evaluation ALV Workshop he

Stuttgart, Germany in February 2002 are shown in Table 26. The overall perform

measure for a system was computed as an average of several WERs. First, an a

WER was computed across the 14 test sets used in the evaluation for each tra

condition. Next, the WER for each training condition was averaged. Since the evalu

was conducted at two sample frequencies (8 and 16 kHz), the final WER was the av

across both sample frequencies. This number is denoted Overall WER in Table 26

detailed ALV results for QIO and MFA front ends are tabulated in Table 27 and Table

respectively.

It is obvious from results in Table 26 that the overall performance of MFA fro

end was slightly better than the performance of QIO front end. Both the advanced

ends achieved the overall goal of the ALV evaluation of at least 25% relative improvem
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Table 26. A summary of results of the ALV evaluation using a generic baseline sp
recognition system (presented at the Feb. 2002 Aurora post-evaluation meeting).
Baseline MFCC: Overall WER — 50.3%

8 kHz — 49.6% 16 kHz — 51.0%

TS1 TS2 TS1 TS2

58.1% 41.0% 62.2% 39.8%

QIO: Overall WER — 37.5%

8 kHz — 38.4% 16 kHz — 36.5%

TS1 TS2 TS1 TS2

43.2% 33.6% 40.7% 32.4%

MFA: Overall WER — 34.5%

8 kHz — 34.5% 16 kHz — 34.4.%

TS1 TS2 TS1 TS2

37.5% 31.4% 37.2% 31.5%
Table 27. Results of the QIO front end submitted to the ALV evaluation.
QIO Front End Performance Summary in ALV Evaluation

Training Set Test Set

Set
Samp.
Freq.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1
16 kHz 13.5 22.7 35.9 41.8 37.2 40.3 39.6 33.8 40.1 51.1 52.6 55.6 52.4 53.7

8 kHz 16.5 27.7 45.0 47.9 43.8 46.3 44.4 28.7 39.3 50.3 54.3 55.2 52.2 52.7

2
16 kHz 16.7 17.7 25.3 31.5 29.3 26.9 27.9 31.5 33.4 42.2 43.6 43.6 41.3 42.0

8 kHz 20.8 22.4 33.0 37.2 35.0 33.3 35.3 23.6 27.6 37.9 43.5 42.1 37.1 41.3
Table 28. Results of the MFA front end submitted to the ALV evaluation.
MFA Front End Performance Summary in ALV Evaluation

Training Set Test Set

Set
Samp.
Freq.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1
16 kHz 13.6 23.0 31.8 39.0 34.1 33.3 34.1 32.3 39.7 45.9 49.5 49.8 47.8 46.2

8 kHz 15.0 21.1 36.3 43.9 36.6 42.9 37.4 23.1 29.5 44.7 52.1 49.2 48.1 45.2

2
16 kHz 15.4 18.7 24.8 32.5 27.8 26.6 27.8 29.7 32.6 38.3 43.5 42.2 40.4 40.4

8 kHz 17.2 19.0 29.9 38.5 31.5 33.8 30.9 22.7 24.8 34.7 43.7 39.8 36.4 36.9
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over the baseline MFCC front end. However, the overall performance of the MFA f

end at 34.5% WER is almost ten times worse than human performance reported

similar task — human transcription of broadcast news speech [34,31]. Hence

performance of the advanced front ends is far from what is needed in prac

applications. Further research is needed to develop noise robust algorithms that clo

gap in performance.

5.3. Analysis of the ALV Evaluation

To do further analysis of the ALV evaluation, we acquired the code used

produce the results previously discussed, and re-ran the evaluations within our labor

Due to bug fixes and other changes made by the algorithm developers, the re

fluctuated slightly. A summary of the results of these new experiments at a sam

frequency of 8 kHz are shown in Table 29. The changes in performance were

statistically significant.

Table 30 and Table 31 present the detailed results for QIO front end and MFA f

end, respectively. Significance tests [100] on the 14 test conditions for Training S

showed that the performance of the MFA front end was significantly better than the

front end performance on all 14 test conditions. However, on Training Set 2, the M

front end was significantly better for only Test Sets 5 and 14. Training Set 2

representative of all noise conditions and includes microphone mismatches. H

Training Set 1 is a good measure for front-end robustness, and perhaps more inform

than the matched conditions (Training Set 2). For the ALV evaluations, WERs on the
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Table 29. A summary of results of the experiments that represented the replication
ALV evaluation using a generic baseline speech recognition system.
Baseline MFCC

8 kHz — 49.6%

TS1 TS2

58.1% 41.0%

QIO

8 kHz — 38.4%

TS1 TS2

43.1% 33.6%

MFA

8 kHz — 34.7%

TS1 TS2

37.5% 31.8%

t end
Table 30. Results of the experiments that represented the replication of the QIO fron
results submitted to the ALV evaluation.
QIO Front End Performance Summary in ALV Evaluation

Training Set Test Set

Set
Samp.
Freq.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 8 kHz 17.1 27.2 44.1 47.0 43.1 48.9 44.6 27.5 39.5 49.8 54.9 55.9 52.1 52.0

2 8 kHz 20.9 22.1 32.8 37.4 35.4 33.6 35.2 24.2 27.4 37.5 42.7 42.2 37.3 41.1

t end
Table 31. Results of the experiments that represented the replication of the MFA fron
results submitted to the ALV evaluation.
MFA Front End Performance Summary in ALV Evaluation

Training Set Test Set

Set
Samp.
Freq.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 8 kHz 14.5 22.1 37.0 43.2 36.6 43.3 38.2 24.3 29.8 43.4 50.6 48.7 48.6 44.9

2 8 kHz 18.1 20.6 30.9 36.8 31.6 33.8 31.7 24.3 24.8 34.7 43.3 40.3 38.1 35.7
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training sets were weighted equally, thereby decreasing the gap between the two

ends.

In Table 32, we calibrate the degradation in the performance of the three front

due to the microphone mismatch. Training Set 1 consisted of clean data recorded w

Sennheiser microphone. Test Set 1 also represents clean data recorded through th

microphone. Test Set 8 represents a mismatched condition since it consists of clea

recorded through the second microphone condition. Though both front ends deg

significantly due to microphone mismatch, this degradation is less severe than the M

based baseline system. The baseline system did not employ any channel normali

techniques such as cepstral mean subtraction.

As shown in Figures 38 and 39, the presence of additive noise resulted

significant degradation in performance for both the QIO and MFA front ends. The b

labels in these figures represent differences which are statistically significant. This tre

similar to the tend observed on the Aurora MFCC front end-based baseline syste

discussed in section 5.1 though the degradations are less severe. The degradation

less severe when the systems are exposed to noise during training. Performance

same noisy test sets was much better when training on Training Set 2 because Tr

Set 2 contains examples of all noise and microphone types.
Table 32. A performance comparison for a mismatched microphone condition.
Train
Set

WI007 MFCC Baseline QIO MFA

Test Set 1
(Senn Mic.)

Test Set 8
(Sec. Mic.)

Test Set 1
(Senn. Mic.)

Test Set 8
(Sec. Mic.)

Test Set 1
(Senn. Mic.)

Test Set 8
(Sec. Mic.)

1 15.4% 36.6% 17.1% 27.5% 14.5% 24.3%
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Figure 38(a). Comparison of the WER fo
selected noise conditions at8 kHz on the
QIO front end.Training Set 1was used for
training.
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r Figure 38(b). Comparison of the WER fo
selected noise conditions at8 kHz on the
QIO front end.Training Set 2was used for
training.
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Figure 39(a). Comparison of the WER fo
selected noise conditions at8 kHz on the
MFA front end.Training Set 1was used for
training.
r Figure 39(b). Comparison of the WER fo
selected noise conditions at8 kHz on the
MFA front end.Training Set 2was used for
training.
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5.4. Front End-specific Tuning Experiments

There are four classes of parameters that are most relevant to the tuning perfo

for this evaluation. Two of these relate to language model and acoustic scores

language model scale factor controls the relative weight of the language m

probabilities compared to the acoustic model probabilities. The word insertion pena

applied to every word hypothesis and is used to balance insertion and deletion error

language model scale factor typically ranges from 5 on tasks such as DARPA’s Res

Management corpus [102] to 20 on tasks such as WSJ [28]. The word insertion pe

usually ranges from -10 on Resource Management to +10 on WSJ.

The second class of parameters, which have perhaps the most significant imp

performance, relate to the state tying process. The number of tied states can norma

adjusted to improve performance. This parameter balances sparsity and generaliza

the data in the phonetic decision tree state tying process. We typically reduce the nu

of states by an order of magnitude. We can also control the degree to which state

merged or split by adjusting parameters related to the likelihood of the state.

In Table 33 and Table 34, we show the difference in performance between

baseline system and the tuned system for the QIO and MFA front ends, respectively

tuning process is described in more detail in section 4.2. Parameter tuning was perfo

on the matched training condition at 8 kHz (Training Set 1) using the 330-utterance

development test set. The beam pruning parameters (state, model and word) were o

during the tuning process to reduce the influence of pruning. As shown in Table 33

Table 34, parameter tuning resulted in a small overall improvement — about 1% abs
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QIO
Num.
States

State Tying Thresholds
LM Scale

Word Ins.
Penalty

WER
Split Merge Occu.

Baseline 3209 165 165 840 18 10 16.1%

Tuned 3512 125 125 750 20 10 14.9%

oth

the

mary

tailed

to the

t was

not

thout

n an

5.8%.

.7%

stem
tate),

stem

QIO
Num.
States

State Tying Thresholds
LM Scale

Word Ins.
Penalty

WER
Split Merge Occu.

Baseline 3208 165 165 840 18 10 13.8%

Tuned 4254 100 100 600 18 05 12.5%
and 8% relative. The amount of improvement was about the same for b

systems — 7.5% relative for QIO and 9.4% relative for MFA. Hence, the ranking of

systems remained the same.

The tuned systems were then benchmarked on the Aurora-4 database. A sum

of the results on these benchmark experiments is shown in Table 35, and the de

results are provided in Table 36 and Table 37. The pruning beams were scaled back

values used in the ALV baseline system: 200 (state), 150 (model), and 150 (word). I

observed that the overall relative ranking of the two competitive front ends is

influenced by the tuning process. The average performance of the MFA front end wi

tuning was better than QIO by 9.6% relative. Front end-specific tuning resulted i

increase in the relative performance gap between the two front ends from 9.6% to 1

While the average performance of the MFA front end remained relatively constant (34
Table 33. A comparison of the optimized system parameters to the baseline sy
parameters for the QIO front end. Beam pruning parameters were set to 300 (s
250 (model), and 250 (word).
Table 34. A comparison of the optimized system parameters to the baseline sy
parameters for the MFA front end.
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Table 35. A summary of the performance of the QIO and MFA front ends after fr
end-specific system tuning.
Baseline MFCC

8 kHz — 49.6%

TS1 TS2

58.1% 41.0%

QIO

8 kHz — 40.5%

TS1 TS2

45.7% 35.3%

MFA

8 kHz — 34.1%

TS1 TS2

37.0% 31.1%
Table 36. Performance of the QIO front end after front end-specific system tuning.
QIO Front End Performance Summary in ALV Evaluation

Training Set Test Set

Set
Samp.
Freq.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 8 kHz 19.1 31.7 46.8 49.2 45.7 51.1 46.6 30.0 42.2 52.9 55.5 58.3 54.8 55.8

2 8 kHz 22.5 23.8 33.6 38.1 36.4 36.2 37.7 25.0 29.5 39.1 44.5 45.0 40.5 41.8
Table 37. Performance of the MFA front end after front end-specific system tuning.
MFA Front End Performance Summary in ALV Evaluation

Training Set Test Set

Set
Samp.
Freq.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 8 kHz 14.4 21.5 36.8 42.1 36.5 44.1 36.4 23.3 30.2 43.0 50.2 48.9 47.0 43.6

2 8 kHz 16.8 20.7 29.7 36.0 31.0 33.3 32.0 22.5 24.6 34.1 42.3 39.4 37.1 36.1
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to 34.1%), the average performance of the QIO front end dropped by 5.5% relative (3

to 40.5%). One possible reason for this drop can be attributed to overfitting of the sy

parameters on the specific database employed for the tuning process (matched cond

Training Set 1 and short devtest set 1).

All these results provide sufficient evidence to conclude that the front end-spe

tuning process did not result in a change in the ranking of the advanced front end

also showed that though the advanced front end achieved significant improvement (g

than 25% relative) in performance over the baseline MFCC front end, the performan

these advanced front ends is very high (~35%) compared to human performance (~1

noisy environments. Hence, we conclude that the noise robust technology implemen

the advanced front ends is not operationally significant in practical applications.
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CHAPTER VI

CONCLUSIONS AND FUTURE DIRECTIONS

This thesis analyzed the performance of advanced front ends and demons

that the performance of the advanced front ends is significantly better than the bas

industry standard MFCC front end, but is not operationally significantly. It was also sh

that front end-specific tuning of a recognition system did not significantly change

results of the ALV evaluation.

6.1. Thesis Contributions

There are three major contributions in this thesis. These are described in d

below.

Development of the Aurora Baseline System

A baseline large vocabulary continuous speech recognition system was devel

This system design was tuned to reduce computation time without significantly degra

the overall system performance. The real time performance of the baseline system

4 xRT for training and 15 xRT for decoding on an 800 MHz Pentium processor. On

standard 5K WSJ0 task, the ALV baseline system WER performance was 14.0%.
102
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Analysis of Performance

An extensive analysis of the performance of the ETSI WI007 MFCC baseline f

end and two advanced front ends (QIO and MFA) was presented. For the baseline

end, it was shown that increasing the sampling frequency from 8 kHz to 16 kHz resu

a significant performance improvement only for the noisy test conditions. Uttera

detection resulted in significant improvements only on the noisy conditions for

mismatched training case. The DSR standard VQ-based compression algorithm d

result in a significant degradation in performance. A mismatch between training

testing conditions resulted in a 300% relative increase in WER whereas the mismatc

microphones resulted in a 200% relative increase in WER.

Both the QIO and MFA advanced front ends did not degrade as dramatically a

baseline MFCC front end on mismatched microphone and additive noise condi

though these degradations were significantly worse than the matched conditions. In

both advanced front ends met the goals set forth in the ALV evaluation — a 2

improvement in performance over the baseline system.

The performance of the MFA front end for Training Set 1 was significantly be

than the QIO front end performance on all 14 test conditions. Training Set 1 consis

clean utterances recorded on a Sennheiser microphone while the 14 test conditio

representative of all noise and microphone conditions. Hence, training on Training

and decoding on 14 test conditions represents highly mismatched evaluation cond

The overall performance on these highly mismatched conditions is a good measu

front end robustness.
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However, on Training Set 2, the MFA front end was significantly better only

Test Sets 5 and 14. Training Set 2 is representative of all noise conditions and inc

microphone mismatches. While training on Training Set 2, the models learned these

and microphone conditions under a maximum likelihood framework and hence

performance of both advanced front ends was comparable.

Due to microphone mismatch, both advanced front ends degraded significa

However, this degradation is less severe than the MFCC-based baseline system

baseline system did not employ any channel normalization technique.

The presence of additive noise resulted in a significant degradation in perform

for both the QIO and MFA front ends. This trend is similar to the trend observed on

baseline MFCC front end though the degradations were less severe.

Analysis of Parameter Tuning

It has been shown that the overall relative ranking of the two front ends was

influenced by the tuning process. The average performance of the MFA front end wi

tuning is better than QIO by 9.6% relative. Front end-specific tuning resulted in

increase in the relative performance gap between the two front ends from 9.6% to 1

While the average performance of the MFA front end remained relatively constant (34

to 34.1%), the average performance of the QIO front end dropped by 5.5% relative (3

to 40.5%). One possible reason for this drop can be attributed to overfitting of the sy

parameters on the specific database (e.g., matched conditions using Training Set

short devtest set 1) employed in the tuning process.
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6.2. Future Work

A major limitation in this work was the lack of access to a modular source c

implementation of each of these front ends. These front ends contain many technique

individually or collectively improve performance. The contribution of each of the

algorithms to the overall improvement in performance can be calibrated by benchma

these algorithms in isolation. In this way, a more detailed understanding of the effica

these approaches can be established.

Due to CPU limitations, recognition system parameter tuning was performed

on one condition: training on Training Set 1 and testing on short devtest set 1. It mig

argued that because the tuning conditions are different than the actual test conditio

improvement in the performance of the advanced front ends can be obtained by tuni

the mismatched conditions that have ample samples of the noise and microphone

This conjecture can be tested with appropriate additional experimentation.

Finally, the improvements in these algorithms needs to be verified wit

recognition system that utilizes more state of the art features, such as speaker and c

normalization [61,87,88], speaker and channel adaptation [31,88,103], and discrimin

training [104,105,106].
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