
  

APPLICATIONS OF LARGE VOCABULARY CONTINUOUS SPEECH 

RECOGNITION TO FATIGUE DETECTION 

 

 

 

 

By 

 

Sridhar Raghavan 

 

 

 

 

 

 

 

 

A Thesis 

Submitted to the Faculty of 

Mississippi State University 

in Partial Fulfillment of the Requirements 

for the Degree of Master of Science 

in Electrical Engineering 

in the Department of Electrical and Computer Engineering 

 

 

Mississippi State, Mississippi 

 

August 2006  



  

Copyright by 

 

Sridhar Raghavan 

 

2006  



  

APPLICATIONS OF LARGE VOCABULARY CONTINUOUS SPEECH 

RECOGNITION TO FATIGUE DETECTION 

 

 

 

 

 

By 

 

Sridhar Raghavan 

 

 

Approved: 

 

 

 

_________________________________ _________________________________ 

Dr. Joseph Picone    Dr. Georgios Lazarou 

Professor of Electrical and    Assistant Professor of Electrical and  

Computer Engineering   Computer Engineering 

(Major Advisor and Director of Thesis) (Committee Member) 

 

 

 

 

_________________________________ _________________________________ 

Dr. Julie Baca     Dr. Nicholas H.Younan 

Research Professor, Center for  Professor of Electrical and  

Advanced Vehicular Systems   Computer Engineering 

(Committee Member)    (Graduate Coordinator) 

 

 

 

_________________________________ 

Dr. Roger L. King 

Associate Dean for Research and 

Graduate Studies 

 



  

Name: Sridhar Raghavan 

 

Date of Degree: August 5, 2006  

 

Institution: Mississippi State University 

 

Major Field: Electrical Engineering 

 

Major Professor: Dr. Joseph Picone  

 

Title of Study: APPLICATIONS OF LARGE VOCABULARY CONTINUOUS  

SPEECH RECOGNITION TO FATIGUE DETECTION 

 

Pages in Study: 68 

 

Candidate for Degree of Master of Science 

 

 

 

Applications of speech recognition have evolved in recent years from simple 

transcription tasks to metadata analysis. This thesis explores the use of speech 

recognition for automated fatigue detection. The fatigue detection system relies on 

accurate phonetic alignments from a speech recognition system. The main challenge 

addressed in this thesis was to make the process of phonetic alignment using speech 

recognition robust to out of vocabulary words. This requirement was achieved by 

incorporating confidence measures, which significantly reduce false positives in speech 

recognition output. This allowed the performance of the fatigue detection system to 

match the results of other cognitive tests based on the Sleep Onset Latency (SOL) and 

Sleep, Activity, Fatigue, and Task Effectiveness (SAFTE). Confidence measures reduced 

the squared error between voice-based fatigue prediction and SAFTE by 20% when 

67.1% of the words in the test set were out of vocabulary words. 
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CHAPTER I 

INTRODUCTION 

Non-intrusive fatigue assessment systems are crucially needed to successfully 

monitor the level of alertness of all personnel during critical mission or life-threatening 

activities. This thesis explored the use of automatic speech recognition (ASR) to detect 

fatigue from voice. There are numerous challenges which have to be overcome in order 

to have reliable fatigue detection systems based on voice. However, advances in speech 

recognition technology have made it possible to obtain good performance even in noisy 

environments, and hence, the technology has found widespread application in recent 

years. 

1.1 Using Voice to Detect Fatigue 

Applications of speech recognition have grown from simple speech to text 

conversion to other more challenging tasks. A relatively new application using voice is in 

the field of cognitive analysis [1]. The main goal is to detect the mental preparedness of a 

worker before critical missions, based on cognitive measures such as fatigue. Speech is 

one attribute of human behavior that can be used to measure fatigue. People working in 

stressful environments such as military and aviation are more susceptible to fatigue than
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others, and accidents by such workers are often fatal. Complex instrumentation often 

creates cognitive overload and places a greater demand on the crew to be vigilant [1]. 

A prescribed remedy for fatigue is sleep. Roher [2] studied the effect of sleep on 

fatigue and determined that the quality of sleep is more important than the number of 

hours of sleep. This makes the task of monitoring fatigue even more challenging. There is 

no well-accepted non-intrusive technique to measure quality of sleep. This thesis 

explored the potential for using voice to perform real-time fatigue detection. 

Several studies [3][4] show that voice is sensitive to fatigue. Typical correlates of 

fatigue include decreases in fundamental frequency and increases in word duration as the 

fatigue level increases. The goal of this thesis is to use a speech recognition system to 

detect such temporal and spectral variations. Greeley, et al. [5] have found that certain 

phones in human speech show temporal and spectral variations as a function of speaker’s 

level of fatigue. Mel-Frequency Cepstral Coefficients (MFCCs) [6] are a good 

representation of the temporal and spectral characteristics of the speech signal. By 

analyzing MFCC features it was found that certain phones show more correlation with 

fatigue than others.  

Greeley, et al. [5] computed correlation coefficients between the active and 

fatigued features of a single speaker. Experiments were conducted on data that was time 

stamped in order to asses the variation in the feature vectors as the speakers became 

increasingly fatigued. The correlation metric computed in this manner was compared 

with the Sleep Onset Latency (SOL) test which is considered the gold standard for fatigue 

analysis. An important observation was that the correlation coefficient varied 
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systematically as the subjects became more and more fatigued, and the correlation metric 

matched the SOL metric. A more detailed description of these experiments is presented in 

Chapter II. 

1.2 Using Automatic Speech Recognition for Fatigue Analysis 

Voice has been successfully used in many applications other than simple speech 

to text conversion. Applications involving speaker verification [7], deceit detection [8], 

reading tutors [9], automatic language recognition [10] and translation [9] are actively 

being developed. These applications share core technology based on a statistical approach 

to speech recognition. This thesis explores three families of techniques for detecting 

fatigue as part of a set of pilot experiments. The three approaches are speaker 

verification, word spotting, and ASR. It was determined that an ASR approach was most 

promising. Each of these approaches are briefly described below. 

Speaker verification is the task of verifying a subject’s authenticity based on his 

or her voice characteristics. This process entails two phases: enrollment and verification. 

During enrollment a speaker model is built using a subject’s speech. During verification, 

this speech is used as a template to verify the authenticity of the speaker [7][11]. A 

speaker verification system was used as a primitive change detection system to determine 

whether systematic variations in the long-term statistics of the speech signal due to 

fatigue could be modeled using a classic pattern recognition paradigm. The results from 

this approach were not promising since a clear variation in the likelihood ratio scores 

between the speakers and the models as a function of fatigue was not found. 
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A second approach, word spotting, attempts to identify the occurrence of specific 

word instances in a speech file [12]. A word spotting system is built by training word 

models corresponding to the required keywords and training a garbage model on all other 

words. A garbage model is built by labeling all non-keywords in the transcription by the 

same token. The approach taken in this thesis for decoding used loop grammar; only the 

words of interest along with the garbage token were present in the grammar. This 

grammar guided the ASR system to either output the keywords, if present in the 

utterance, or output only the garbage token. This approach is attractive because there are 

fewer constraints on the words uttered by the speaker, and the lexicon can contain only 

the most frequently used words for a particular domain. Result from this approach 

showed a high number of false alarms, and hence this approach was not pursued. 

A third approach entailed use of a large vocabulary continuous speech recognition 

(LVCSR) system to convert continuous speech to text. An LVCSR system can also cope 

with pronunciation variations and ambient noise to a certain degree, because it is based 

on statistical pattern classification algorithms that can learn the pronunciation variations 

and the noise characteristics from the data. A description of the basic blocks of an 

LVCSR system is given in Section 1.3. An LVCSR system was used to locate phoneme-

like units, referred to as phones, in the incoming audio stream. The fatigue software then 

extracts the required phone from the decoded output, and in turn extracts the 

corresponding MFCC vectors from the feature stream. These features are then used by 

the fatigue analysis system to obtain a fatigue prediction estimate based on the correlation 

approach described in Chapter II. 
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Of the three approaches described above, the LVCSR approach was the most 

promising, and hence was the focus of this thesis. Though word spotting offered a less 

constrained user interface, the high false alarm rate made the overall system unusable. 

Performance of the LVCSR approach was improved significantly through the use of 

confidence measures [13]. This is described in greater detail in 0 . 

1.3 Automatic Speech Recognition 

The ASR system used in this thesis is a public domain LVCSR system developed 

by the Intelligent Electronic Systems (IES) program at Mississippi State University [14]. 

A speech recognition system, shown in Figure 1, consists of the following four blocks: 

feature extraction, language model, acoustic model and search. Feature extraction 

 

Figure 1   Basic components of a large vocabulary speech recognition system 
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converts the incoming signal to a stream of vectors, and typically uses an MFCC 

approach [6]. The acoustic model is a statistically trained model that learns the temporal 

and spectral characteristics of the speech signal. A language model is used to guide the 

recognizer with some a priori information about the language of interest in the 

application. The search block typically uses a Viterbi decoding algorithm [15] and finds 

the best path through the search space using language model and acoustic model 

probabilities. 

The entire speech recognition framework can be represented using Bayes Rule as 

follows: 

)(

)()|(
)|(

AP

WPWAP
AWP =  , (1) 

where P(W|A) is the probability of the word sequence given the acoustics. P(A|W) is the 

probability of the acoustics given the word sequence. P(W) is the probability of the word 

sequence which is given by the language model. P(A) is called the evidence and is the 

normalizing term. The evidence term can be neglected in the maximization process since 

it will remain constant for a particular data set, reducing the equation to the following: 

)().|(
maxargˆ WPWAP

W
W = . (2) 
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The words can be divided into sub-units called phonemes. There are 

approximately 46 phones in English language. The acoustic models can model words or 

phonemes. Each model is represented with an HMM [16] that is implemented using a 

stochastic finite state automaton [16]. For limited vocabulary tasks, word models achieve 

high performance [16]. However, for large vocabularies that often consist of more 

than 100,000 words, word models are not practical [17] and hence phone models or 

cross-word triphone models are used. 

Phonetic models, often referred to as phone models, are typically used for large 

vocabulary systems. The articulation of words in human speech is context dependent, i.e. 

 

Figure 2   Three-state HMMs used to model phones in an ASR system 
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the articulation of a particular sound depends on its surrounding sounds. It has been 

determined [18] that context-dependent phones that model the current phone in the 

context of the previous and next phone is a reasonable compromise between performance 

and complexity [17]. Context-independent and context-dependent phone models are often 

represented by a three-state HMM [16] as shown in Figure 2.  

Each state in an HMM can be represented by a Gaussian mixture 

model (GMM) [15]. Recognition performance generally increases as the number of 

mixture components in the GMM increases [17] because an increase in the number of 

mixture components improves the ability of the GMM to model arbitrary distributions. 

This issue will be explored more extensively in Chapter V. 

1.4 Thesis Contribution and Organization 

The goal of this thesis is to automate fatigue detection using an ASR system. The 

concept of performing fatigue analysis on the speech signal using spectral information 

was developed by Greeley, et al. [5]. The fatigue analysis system requires accurate phone 

alignments to make accurate fatigue prediction. The system should be robust to ambient 

noise and should also account for out of vocabulary words. Robustness is a challenging 

issue [19] that is outside the scope of this work. 

The main problem addressed in this thesis was detection of selected phones 

critical to the fatigue detection process with a high degree of confidence. Word posteriors 

computed from word graphs were used as a confidence estimate [13]. A confidence 

measure algorithm was implemented and the decoder output was annotated with the 
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confidence scores. Confidence measures were used to filter out false alarms from the one 

best output. The effectiveness of a confidence measure was first evaluated by examining 

the distribution of the measure for out of vocabulary (OOV) words. Models were trained 

on a selected vocabulary set and then tested on words from both within and outside the 

training vocabulary set. It was observed that the average confidence measure score for 

OOVs was 15% less than that for words spoken from within the training set. This was a 

positive indication that word posteriors could be used for discriminating potential false 

alarms from the output of an ASR system. 

A secondary goal of this thesis was to improve the ability of the fatigue detection 

system to ignore OOVs in previously unseen data. Robustness to OOVs was achieved by 

using confidence measure. The relative performance of the baseline system was reduced 

from a total mean squared error of 0.1535 to 0.1487 with the use of confidence measures. 

The OOV error rate was 61.7%. It should be noted that only six test epochs were 

observed in this experiment, which explains why only a marginal improvement was 

achieved. 

The discriminative power of confidence measures was analyzed by using a 

receiver operating characteristic (ROC) curve. The area under the ROC curve is an 

indication of the discriminative power of the classifier. An area of 0.5 indicates a random 

classifier while an area of 1 indicates an ideal classifier. The area under the ROC curve 

for the system that incorporated a confidence measure was 0.82, which indicates good 

discrimination. A suitable operating point or threshold had to be determined for 
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classification. A threshold of -75 was chosen since at that point the probability of false 

alarms was equal to the probability of true occurrences of words. 

Fatigue experiments demonstrated that the Voice Correlation metric [5] matched 

more closely to the Sleep, Activity, Fatigue, and Task Effectiveness (SAFTE) model than 

the Sleep Onset Latency (SOL) model [5]. The total squared error between the 

normalized SOL and Voice Correlation metric was 0.33 while the total squared error 

between normalized SAFTE and Voice Correlation metric was only 0.029 . After using 

confidence measures it was determined that the total squared error between the Voice 

Correlation metric and SAFTE model decreased from 0.15 to 0.12, and this was observed 

when the test set had an OOV error rate of 61.7%.  

This thesis is organized as follows. Chapter II describes the process of extracting 

MFCC features from a speech signal, and also gives a brief overview of the fatigue 

prediction technique found by Greeley, et al. [5]. Chapter III describes various ways an 

ASR system could be used for fatigue prediction, and introduces the concept of a 

confidence measure. 0 provides more details about the implementation of a confidence 

measure along with an example. Chapter V discusses various experiments run on the 

fatigue dataset. The thesis concludes with a discussion of future directions for this work 

in Chapter VI. 
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CHAPTER II 

FATIGUE ANALYSIS USING ACOUSTIC FEATURES 

This chapter begins with a description of how fatigue can manifest itself in the 

spectrum of a speech signal. This thesis refers to these manifestations as the acoustic 

correlates of fatigue. Research suggests that increases in fatigue correlate with a decrease 

in the fundamental frequency and an increase in the word duration [3]. Greeley, et al. [5] 

went one step further to analyze the changes in formants due to fatigue. Formant 

variations can be readily observed in the spectrogram. Development of automated 

techniques to extract fatigue cues was a major goal of the pioneering work performed by 

Greeley, et al. [5]. 

The development of such an automated system required annotated, or truth-

marked, training data from subjects experiencing a range of fatigue symptoms. An initial 

data set, referred to as the Phase I data, was developed to further study this problem. 

After promising results were obtained on this data, a more extensive data set, referred to 

as the Phase II data, was collected to facilitate the development of ASR technology. The 

Phase II data was very noisy, and it was not possible to build generalized models using 

this data. This issue will be dealt with in greater detail in Chapter III. A third fatigue data 

set, referred to as the FAA data, was collected under clean recording conditions to 

evaluate the overall system described in this thesis. This chapter reviews the analyses
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performed on these data sets and introduces the general approach to automated 

fatigue detection. Automated fatigue analysis attempts to model the acoustic correlates of 

fatigue in a speech signal. The first step in building an automated system is to convert the 

speech signal into a sequence of feature vectors. The most important attribute of a good 

feature especially for an ASR system is that the features should accurately model 

distinctions made by the human perceptual system. These are referred as perceptually-

meaningful features. This thesis uses mel-frequency cepstral coefficients (MFCCs) [6] as 

features to capture temporal and spectral variations in the signal. This chapter discusses 

some results obtained from pilot experiments that were conducted by Greeley, et al. [5] 

on these features. 

2.1 Acoustic Correlates of Fatigue in the Speech Signal 

Studies on military aircrews operating B1 bombers showed that voice had a 

similar pattern to that of other cognitive measures of fatigue [3]. An automatic voice- 

based fatigue detection system should use fatigue cues present in the speech signal. In 

order to determine these fatigue cues, one needs to understand the changes that occur in 

human speech as a person becomes fatigued. Literature suggests that there is a spectral 

and temporal variation in the speech pattern as humans become increasingly fatigued. 

The spectral variation can be attributed to a change in the human sound production 

system, while the temporal variation is controlled by the brain and its explanation is 

beyond the scope of this thesis. 
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Sounds produced by humans can be represented as a convolution of the excitation 

signal and the vocal tract characteristics. The excitation can be modeled as either a 

periodic signal or noise. For voiced speech sounds, the excitation can be modeled as a 

periodic signal whose fundamental frequency is determined by the vibration of the vocal 

cords. The vocal cords close temporarily to increase the air pressure generated from the 

lungs, and they open when the pressure exceeds the resistance of the vocal cords. The 

vocal cords vibrate due to a combination of factors, including their elasticity, laryngeal 

muscle tension, and the Bernoulli effect [20]. The opening and closing continues as long 

as the lungs pump air through the vocal cords and into the oral cavity. 

As discussed previously, fatigue affects the fundamental frequency. But 

fundamental frequency is a speaker-dependent parameter and hence will not be useful if 

one wants to build a speaker-independent fatigue detection system. On the other hand it is 

known that the formant frequencies of various phonemes do not vary significantly from 

person to person. This fact is exploited in most of the state-of-the-art speaker-

independent ASR systems. 

In the linear acoustics model of speech production [20], the vocal tract can be 

modeled as a time-varying digital filter. The resonances of this filter are referred to as 

formants. The frequencies of these formants can be used to identify sounds. These 

formants are determined by the overall shape, volume and length of the vocal tract. The 

shape of the filter is a combination of the vocal tract characteristics and the following 

factors: 
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1. Yielding walls – The walls of the vocal tract are not rigid, and hence they 

vibrate due to the variations in air pressure inside the vocal tract. As a result, 

the cross-sectional area of the vocal tract will change. The effect of yielding 

walls causes a shift in the formant frequencies. A slight increase in formant 

frequencies is observed, and this is more pronounced for lower formants [20]. 

There will also be a slight broadening of the formant bandwidths at the lower 

end of the spectrum. 

2. Viscosity and thermal losses – Energy will be lost due to viscous friction 

between air and the walls of the vocal tract, and also due to heat conduction 

inside the vocal tract. The combined effect of these two results in a lowering 

of the formant frequencies [20]. The effect of this is more pronounced for 

frequencies beyond 3 to 4 kHz. 

3. Lip radiation – The lips act as a short circuit termination to the vocal tract 

circuitry. In a circuit theory model of speech production, lip radiation is 

represented by a short circuit. This is not completely true in the case of the 

human vocal system because this means there will be no change in pressure 

for a change in volume velocity. A reasonable approximation of lip radiation 

is a small baffle with infinite extensions at the two ends [20]. The behavior of 

the lip radiation load affects the wave propagation in the vocal tract [20]. The 

losses influenced by the lip radiation load cause a slight decrease in the 

formant frequencies. This is again more pronounced at higher frequencies. 
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Fatigue can have a direct influence on any of the above described factors, which 

are responsible for generating the formant frequencies in the vocal tract. Research 

suggests there is a variation in the pronunciation of phonemes due to artificially induced 

stress [21], but the study of the effects of fatigue on formants is still in its infancy. 

Therefore, Greeley, et al. [5] laid the foundation for the development of the fatigue 

detection system described in this study by analyzing the effects of fatigue on formant 

frequencies. 

 

Figure 3.1   A waveform and spectrogram of a non-fatigued subject 

 

Figure 3.2   A waveform and spectrogram of a fatigued subject 
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In order to study fatigue in speech, Greeley, et al. [5] designed and collected a 

small database known as the Phase I data. Ten subjects were asked to speak a list of 

sentences at regular time intervals. Since sleep deprivation is known to induce fatigue, 

the subjects were deprived of sleep throughout the recording period [2]. Some examples 

of sentences present in the Phase I list are as follows: “Lucy glanced at her watch and 

informed me that I have plenty of time to catch the ship.” and “I took the journal away 

with me and read most of it in the car.” 

 

Figure 4.1   A waveform and spectrogram of a non-fatigued subject uttering the word 

                   “papa” 

 

Figure 4.2   A waveform and spectrogram from a fatigued subject uttering the word 

                   “papa” 
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Figure 3 shows a comparison of subject’s voice before and after fatigue induction. 

A clear variation in the formants can be observed for some of the sounds. For example, 

the most notable of the change is that the energy at various formants has decreased. A 

possible yielding wall effect can also be witnessed in the first and second formants .i.e. 

there is a slight increase in the formants in this region. This can be attributed to the 

softening of the vocal tract walls due to fatigue. Figure 4 provides a magnified view of 

the variations in the formant frequencies. The word “papa” was uttered before and after 

fatigue induction. The second formant in the fatigued utterance has shifted slightly 

upwards in frequency near the ends of words. The fourth formant in the fatigued 

utterance is so weak that one cannot even observe it in the spectrogram. 

In order to confidently establish variations in formants as a function of fatigue, 

one needs to perform a thorough analysis of various sounds present in human speech. 

Greeley, et al. [5] have performed pioneering work in this area by conducting an 

extensive study that will be described in the next section. In later sections a technique 

using cepstral analysis [6] to capture the formant variations in the speech signal will be 

described. 

2.2 Analysis from Phase I and Phase II data 

Using the Phase I data, Greeley, et al. [5] conducted experiments to determine the 

relationship between formant frequencies of voiced sounds and fatigue. Ten volunteers 

were asked to speak sentences containing words from a set of 37 words. The recordings 

were made four times a day, before and after a night of sleep depravation [5]. Reaction 
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time was measured just before making the recordings, and sleep latency was measured to 

determine the general level of fatigue. 

Reaction time was measured by a simple visual reaction time test. When a light 

goes on the subject moves his hand as quickly as possible. The hand movements were 

measured by an optical proximity sensor. Measuring sleep latency involves having the 

test subject lie on a bed in a quiet, darkened room and telling the subjects to fall asleep. 

The time that it takes them to fall asleep is measured by an electroencephalogram 

(EEG) [2]. 

Approximately 12,000 formant frequencies were analyzed, and 19 of them 

showed significant correlation with reaction time. Several showed good correlation with 

the sleep latency tests as shown in Table 1. The results from the table show that the 

formant frequencies are related to the subject’s reaction time. 
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Because of the promise shown by Phase I data, a more extensive data collection 

effort was undertaken, referred to as the Phase II database. The data was collected during 

a three-day military exercise. The recording instrument used was a Personal Digital 

Assistant (PDA), and the recordings were made in an outdoor environment. The twenty 

three participants were allowed sleep only in small fixed time intervals in order to induce 

fatigue. The subjects were asked to recite eight prewritten phrases and undergo reaction 

Table 1   Correlation between formant frequency and performance 

Sound F1 F2 F3 F4 

 R
 
(P)   slope R

 
(P)   slope R

 
(P)   slope R

 
(P)   slope 

[o] clock 0.486 (0.001) + 0.339 (0.010) + 0.710 (0.001) + 0.565 (0.001) + 

[^] upper 0.416 (0.001) + 0.352 (0.010) + 0.689 (0.001) + 0.680 (0.001) + 

[ay] highly 0.356 (0.001) + 0.359 (0.001) + 0.332 (0.010) + 0.682 (0.001) + 

[iy] keep 0.511 (0.001) - 0.241 (0.050) + 0.396 (0.001) + 0.228 (0.050) + 

[m] matter 0.574 (0.001) - 0.567 (0.001) - 0.343 (0.010) - 0.118 

[o] coughing 0.367 (0.001) + 0.071 0.487 (0.001) + 0.310 (0.010) + 

[n] note 0.386 (0.001) - 0.114 0.071 0.000 

[n] night 0.389 (0.001) - 0.095 0.095 0.192 

[^] fuzzy 0.324 (0.010) + 0.187 0.388 (0.001) + 0.243 (0.050) + 

[uw] two 0.360 (0.001) + 0.122 0.205 0.298 (0.010) + 

[ae] chatter 0.359 (0.001) + 0.152 0.316 (0.010) + 0.351 (0.001) + 

[ay] time 0.326 (0.010) + 0.045 0.326 (0.010) + 0.045 

[ae] cabin 0.313 (0.010) + 0.105 0.310 (0.010) + 0.164 

[y] yet 0.308 (0.010) - 0.045 0.210 0.152 

[U] took 0.055 0.344 (0.01) + 0.705 (0.001) + 0.612 (0.001) + 

[iy] serene 0.205 0.623 (0.001) - 0.182 0.071 

[n] now 0.164 0.538 (0.001) + 0.576 (0.001) + 0.460 (0.001) + 

[r] rather 0.036 0.032 0.310 (0.010) + 0.517 (0.001) + 

[o] not 0.045 0.265 (0.050) - 0.164 0.109 

 



 

   

20 

testing at regular intervals. Reaction time testing was performed to measure the level of 

fatigue. Various studies on fatigue have identified reaction time as one of the main side 

effects of fatigue [1]. Reaction time can be measured easily and one such method is 

described at the beginning of this section. The recorded data was also time-stamped. The 

Phase II data had some drawbacks when used with an ASR system, and this issue will be 

dealt extensively in Chapter III. 

2.3 Using MFCCs for Fatigue Analysis 

Initial Phase I analysis confirmed a dependence between formant frequencies and 

fatigue. It was found that not all phonemes in human speech were affected equally by 

fatigue. This was shown in Table 1. It was necessary to analyze the formants of specific 

phones of interest. An ASR system was used to determine the phone alignments. The 

ASR system used standard feature vectors [6] for training and decoding. The standard 

features used with the ASR system captures the formant information present in the 

speech signal [6]. Therefore, further analysis to detect fatigue was performed in the 

feature domain. 

Mathematically, the speech signal is a convolution of the excitation signal and the 

filter characteristic function (vocal tract response) in the time domain and a multiplication 

of the two in the frequency domain. It is possible to extract information about either 

component mentioned above using conventional signal processing techniques. For 

example, the spectral characteristics of the speech signal are obtained by taking a Fourier 

Transform and calculating the logarithm of the resulting amplitudes. This provides a 
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measure from which excitation and vocal tract response can be separated. Picone [6] 

covers feature extraction in greater detail. 

The log magnitude spectrum is then transformed back to the time domain using a 

Discrete Fourier Transform. This process results in the calculation of a discrete number 

of coefficients called cepstral coefficients. Isolation of either the excitation or vocal tract 

response is accomplished by selection of required cepstral coefficients. With this, the 

entire human speech production process can be described by only a few cepstral 

coefficients [6]. 

During the feature extraction process, the linear frequencies are mapped to a Mel 

frequency scale [6], because it models the perception of the human ear. This is essential if 

the features are used for ASR applications. For this reason the cepstral coefficients are 

referred to as the Mel Frequency Cepstral Coefficients (MFCCs). The standard feature 
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Figure 5   A comparison of three MFCC vectors observed over a four-day period 
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vector is comprised of 12 cepstral coefficients, along with their first and second time 

derivatives. Hence, the standard feature vector contains 36 coefficients. Also of interest is 

how the feature vectors changes as a function of the subject’s level of fatigue. Figure 5 

shows an example of how the MFCC vector changes over a four-day period of sleep 

restriction. 

There is value in analyzing the MFCCs of different phonemes present in human 

speech, since it is known that formant variations are dependent on phonemes. The 

MFCCs for various sounds were analyzed, and the sounds that were most affected by 

fatigue were determined. The analysis was performed on the MFCCs of utterances 

recorded at different instants of time. The database for this analysis was collected by 

inducing speakers with fatigue. The process of collecting this data is described in 

previous sections. 

The correlation was calculated between two sets of MFCC vectors. One set was 

obtained during the initial phase of recording and the other when the subject was 

fatigued. For example, the variations of the MFCCs were observed for the sound ‘t’ over 

a four-day period of sleep restriction. The variation of the different components of the 

MFCC vector can be observed in Figure 5. There is an indication that the MFCC 

components change as the subject gets increasingly fatigued. A correlation metric can be 

used as a prediction metric to determine fatigue. The correlation can be computed 

between the MFCC vectors obtained during initial phase of recording and the MFCC 

vectors obtained during testing. 
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As discussed in Chapter V, the ASR system did not give good performance with 

the Phase II data, as there were challenging issues such as ambient noise and disfluencies, 

and dealing with such challenges is outside the scope of this thesis. Another data set, 

known as the FAA data, was collected in a clean studio quality environment. This data 

set was used for ASR experiments described in the remainder of this thesis. 

2.4 Fatigue Analysis Using the FAA data 

During a 34-hour period of sleep deprivation, six non-medicated subjects were 

asked to recite a list of 31 words at six testing times (10:00 AM, 4:00 PM, 10:00 PM, 

4:00 AM, 10:00 AM, and 4:00 PM) [22]. These testing times were selected to represent 

circadian high and low points in performance [2]. Also measured during these testing 

times was Sleep Onset Latency (SOL), which is the gold standard for sleepiness testing. 
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Time Awake (Hours)

0 5 10 15 20 25 30 35

S
O

L
 (

m
in

u
te

s
)

6

7

8

9

10

11

12

13

14

V
o

ic
e
 C

o
rr

e
la

ti
o

n

0.75

0.80

0.85

0.90

0.95

1.00

1.05

SOL 

Sound  'p' 

Sound  't' 

 

Figure 6   Change in the voice correlation metric for the sound ‘p’ and ‘t’, along with 

                 the sleep onset latency observed at various time instants 
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This test involves having the test subject lie on a bed in a quiet, darkened room and 

telling the subjects to fall asleep. The time that it takes them to fall asleep, as measured 

by an electroencephalogram (EEG), is the sleep onset latency (SOL) [2]. Between tests, 

subjects were allowed low arousal activities such as reading and watching TV. 

Figure 6 shows the group average change in both SOL and our voice correlation 

metric for the sounds ‘p’ and ‘t’ over the 34-hour testing period. The correlation 

coefficient between SOL and time awake is -0.825, and between voice correlation of 

sounds ‘p’ and ‘t’ to time awake is -0.89, and -0.67 respectively. It was estimated that 

time awake accounts for 68%, 79%, and 45% of the variation of SOL, voice correlation 

of sounds ‘p’ and voice correlation of ‘t’ respectively [5]. 

Circadian means “exhibiting periodicity in a 24-hour period.” For example, our 

sleep cycle is considered to have a circadian trend (.i.e., humans sleep better at night than 

during the day.) All three metrics show a circadian peak at 16 hours. However, the SOL 

peak is significantly larger than the voice metric peak. Fatigue levels were observed to be 

higher during normal sleep hours than at regular working hours, which explained the 

circadian trend. The circadian pattern has been observed in many alertness 

experiments [23][24][25]. This difference in circadian sensitivity tends to reduce a 

correlation coefficient-based quantitative comparison. 

In order to automate the task of fatigue detection, an approach is described in the 

following chapters use an ASR system. The ASR system is used to determine phone 

hypotheses, and these hypotheses are post-processed to predict fatigue. Fatigue prediction 

was accomplished by using the software developed by Greeley, et al. [5]. The fatigue 
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software extracted the required MFCC vectors from the input feature set. The selected 

MFCC vectors were correlated with MFCC vectors that were collected when the speaker 

was less fatigued. The computed correlation metric was used to predict the fatigue level 

of the speaker. 
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CHAPTER III 

USING AN LVCSR SYSTEM FOR FATIGUE DETECTION 

Fatigue detection from speech is one example of a growing application area for 

speech processing systems known as metadata extraction [26][27]. This chapter discusses 

various approaches to the task of fatigue detection using an ASR system. Several 

approaches to fatigue detection were evaluated including speaker verification, word 

spotting, and LVCSR. Only the LVCSR approach was found to be effective. 

The chapter also discusses the various challenges involved in applying an LVCSR 

system to this task, including how to improve robustness. A confidence measure was 

used to increase the reliability of the phonetic alignments provided to the fatigue 

detection system by making the system more robust to OOVs [5]. The confidence 

measure algorithm will be described in 0. 

3.1 Motivation 

Using voice to detect fatigue is a challenging task and that requires large amounts 

of data and sophisticated pattern recognition techniques. An LVCSR system is essentially 

an application of machine learning that is capable of processing huge data sets that often 

comprise thousands of hours of speech. There are many ways such a system can be 

applied to fatigue detection, including the three approaches as discussed in Chapter I.
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Through experimentation, it was determined that the phonetic labeling approach 

was most effective [5]. It was determined that only a small subset of the phonemes could 

be useful for fatigue detection since the spectral and temporal characteristics of these 

phones varied significantly as the subject became increasingly fatigued [5]. 

Chapter II describes the details of the fatigue detection approach used by Greeley, 

et al. [5]. An LVCSR system automates the process by providing phonetic alignments for 

a subject’s utterance. Phonetic alignments can be generated in two ways, and these two 

techniques will be discussed in the chapter. There are several challenges that have to be 

overcome to obtain accurate phonetic alignments. For example, obtaining accurate 

phonetic alignments for unseen speakers under noisy conditions and in the presence of 

OOVs are both difficult problems even for the most advanced systems [27]. 

While it is reasonable to focus on a subset of the phones for fatigue detection, one 

cannot assume these phones will be recognized perfectly. The system described in this 

chapter includes a metric that specifies the confidence value for each hypothesized 

phone. This confidence metric can be used to filter out false hypotheses. In this chapter 

let us look at alternate approaches to this problem that share a common Gaussian mixture 

model (GMM). 

3.2 Applications of Speaker Verification 

Various approaches to detect fatigue were analyzed using a public domain ASR 

toolkit [14]. The first approach was based on a GMM-based speaker verification system. 

In general, a speaker verification system can use one of two modeling techniques. The 
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simplest technique is to use a template model [28]. This approach works well for highly 

constrained applications, but is not as popular for more advanced applications such as 

text-independent speaker verification. Campbell has presented some good examples of 

template modeling techniques in his tutorial [28]. 

The second approach is based on stochastic models, and GMM is one such 

stochastic approach. During the verification or pattern matching phase, the likelihood of 

the observation given the speaker model is computed. The observation consists of a 

sequence of random vectors whose conditional density (speaker model) is estimated 

during training, and this is achieved by using a set of training vectors. This estimated 

density is represented by a mixture of Gaussians (GMM). Using the estimated GMM, one 

can compute the probability of an observation given the claimed model as shown in 

equation (3). 

∑
=

=

=

N

i

ixP
N

1

model)speaker  |(log
1

                            

model)speaker |logP(X   score   utterance

 , (3) 

N corresponds to the number of observation vectors. A decision to accept or reject a 

speaker is made based on the overall utterance score. For speaker verification, one can 

use a better decision making strategy by using impostor models [28]. This thesis did not 

use impostor models for our fatigue experiments, and hence this technique will not be 

discussed in this thesis. 

A speaker verification system such as the one described above can be used to 

model the long-term speech characteristics of a speaker. The system builds a model for 
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each individual speaker (in this case, one speaker) and then computes the likelihood, 

defined as the conditional probability of the acoustic data given the speaker model, of a 

test subject’s data [7]. By using an empirically determined threshold, it is possible to 

discriminate between a true speaker and an impostor. The basic structure of a speaker 

verification system is shown in Figure 7. The system used in this thesis was based on a 

speech recognition system described in [14]. 

 

Figure 7   Basic speaker verification system architecture 
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A speaker verification system was used to build speaker independent fatigue 

models. Preliminary experiments were conducted using the FAA data [5]. Models were 

created using data that was obtained during the initial phase of recording. The FAA data 

consists of six recording times spread over 36 hours. The training data contained a subset 

of utterances recorded during the first recording phase. The remaining subset of the first 

recording phase, and the data recorded from Phase 2 through Phase 6 were used for 

testing. The distributions of the likelihood scores for fatigued and non-fatigued utterances 

are shown in Figure 8. 

There was very little difference in the likelihood scores, and hence setting a 

threshold to discriminate fatigued and non-fatigued utterance was impossible. A 

Detection Error Trade-off (DET) curve was also plotted to judge the usefulness of this 

system. From the DET curve shown in Figure 9 one can see that the system performs 

 

Figure 8   Distribution of the likelihood scores of fatigued and non-fatigued speakers 
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with an EER of 47%, which is unacceptable. The discouraging results could be attributed 

to two main reasons: 1) data was insufficient for training which led to poor acoustic 

models; and 2) not all phonemes in human speech are affected by fatigue in the same 

manner [5]. 

3.3 Word Spotting 

Greeley, et al [5] found that certain phonemes show more variations in the 

spectral domain due to fatigue than others. There was a need for a system that could spot 

these phones of interest from the utterance. The spotting of specific phonemes was made 

easier by spotting the words that contained the phones of interest. An LVCSR system 

with a loop grammar [16] was used. A loop grammar allows any word in the lexicon to 

be followed by any other word. The loop grammar for the word spotter contained the 

target words of interest defined by the system designer. 

 

Figure 9   Detection error trade-off curve for a speaker verification-based fatigue 

                 detection system 
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The loop grammar also contained a garbage model token. A garbage model is 

trained by labeling all the words in the transcription by a single token. The garbage model 

represents the most likely choice in the final hypothesis if none of the other words in the 

grammar is chosen as the best choice. For example, if one wants to spot the word “tall” in 

the sentence “The tall women ate my donut,” the output from the word spotter can look 

something like this: “<starting silence> garbage tall garbage garbage garbage garbage 

<ending silence>”. The advantage of using a word spotting system is that one can use a 

fixed lexicon with words specific to the domain and not worry about OOVs appearing in 

the hypothesis for the test utterance. 

The word spotting system designed in this manner spotted the required words 

with reasonable accuracy, but also inserted many false alarms in the final hypothesis. 

This was unacceptable because it forced the fatigue software to perform analysis on data 

that was labeled incorrectly. For example, an experiment to spot the word “keep” on the 

FAA data produced a miss-recognition rate of 4%, but the false-alarm rate was as high 

as 82%. Such a high false alarm rate produces unacceptable performance for the fatigue 

detection module that post-processes this output. 

The acoustic models for this experiment were trained using 80% of the FAA data 

while the remaining 20% was used for testing. The WER of the system was 12%. 

Another practical problem with this word spotting system was that retraining was 

required whenever new words were added to the list of keywords. Due to the drawbacks 

mentioned above, another approach was investigated and was found to be more robust. 
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3.4 Large Vocabulary Speech Recognition 

An LVCSR system was used to provide phonetic alignments to the fatigue 

detection system. There are two methods to obtaining alignments for an utterance. The 

first method is to perform a forced alignment of the reference transcription with the 

utterance. Forced alignment uses a Viterbi algorithm [16] with transcription data and 

MFCCs as inputs. Forced alignment is much simpler than conventional decoding since 

the reference transcription is already known. It is called “forced” because the best path is 

forced to contain the required reference word sequence. The output of the forced 

alignment process is time-aligned phonetic labels for the input utterance. Usually, a 

forced alignment technique is used to retrain models during parameter re-estimation [16]. 

For fatigue analysis, this approach had a drawback, which is that the subject had to speak 

predetermined phrases. Hence, this was not practical for operational environments. 

The second approach was to perform one-best decoding [16] and obtain phone 

alignments, but the accuracy of such a system relies heavily on the attributes of the 

speech data. The recognition performance on the Phase II data was only 50% when a 

bigram language model [17] was used. On the FAA data, which was relatively noise-free 

data, the WER was 12%. On closed-loop tests, in which one evaluates on the training 

data, the WER was 0.1%. Such low error rates are expected on closed-loop tests. 
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Initial fatigue experiments were based on the closed-loop experiments. A block 

diagram showing the integration of the ASR system with the fatigue detection system is 

shown in Figure 10. There are three main challenges that must be overcome to obtain 

accurate phonetic alignments using one-best decoding approach. The main obstacles are 

enumerated in the proceeding subsections. 

3.4.1 Out-of-vocabulary Words 

The test subject should not be restricted to a specific vocabulary set. The goal of 

this thesis was to make the system as easy to use as possible, and hence, minimize any 

constraints on a user’s speech. In fact, the test subject should not be aware of the fatigue 

detection system, as it should run in the background and serve as an automatic alerting 

system. Manual addition of new words is not a viable option, particularly when N-gram 

language models are used. This creates additional complexities because language model 

probabilities need to be carefully balanced to take into account new words, and acoustic 

models need to be generated automatically. 

 

Figure 10   Integration of the fatigue detection system with an ASR system 
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3.4.2 Unseen Speakers in the Test Data 

The system has to work for any speaker, which is a characteristic one refers to as 

speaker independent. The enrollment time must be minimized and preferably be restricted 

to establishing a baseline non-fatigued state. Acoustic models should not need to be 

retrained for each speaker, though some adaptation can be allowed. For example, the 

fatigue system should be able to detect fatigue levels of different pilots without having 

any prior information about the voice characteristics of every pilot that flies the aircraft. 

3.4.3 Noise and Channel Characteristics 

This is the most challenging of the three main obstacles for building a robust ASR 

system. It is very unlikely that noise conditions will remain same during training and 

testing. Also the system can be deployed onboard an aircraft, over a telephone network or 

over the Internet, so it is likely there will be a significant mismatch between the training 

and testing acoustic environments. For example, it is very difficult for an ASR system to 

decode an utterance spoken from a cell phone in a subway when the models were trained 

on utterances that were spoken over a land line phone from a typical business office 

environment. Though such problems have been heavily researched, this problem remains 

an active area of research and is beyond the scope of this thesis. This thesis describes a 

method to combat the first of the three obstacles – OOVs. This was achieved by using 

confidence measures to prune away less probable hypotheses. The confidence measure 

algorithm is discussed in 0. 
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CHAPTER IV 

CONFIDENCE MEASURES AND WORD POSTERIORS 

The fatigue software developed by Greeley, et al. [5] assumes the phonetic 

alignments to be accurate. As described in Chapter III, this is not a reasonable assumption 

as one has to deal with three practical problems mentioned in Chapter III. To make the 

system robust to OOVs, a confidence score was annotated to every word in the output 

hypothesis. A confidence score is a numeric value that represents the confidence the ASR 

system has that a particular word hypothesis is correct. This metric will be used by the 

fatigue detection software to focus on words with high confidence, and hence eliminate 

false alarms that negatively impact the accuracy of fatigue detection. 

4.1 Word Posteriors as a Confidence Measure 

The initial approach was to use the likelihood score of the words in the output 

hypothesis as a confidence measure. After analyzing the likelihood score histograms for 

correct and false words during a recognition experiment, it was found that the likelihood 

score from the ASR’s output could not be used directly as a confidence measure. The 

variation in the likelihood score was random, and consequently, a reliable threshold could 

not be set. Figure 11 shows the likelihood score histogram comparison for output words 

when the WER was 0% and when there were errors in the hypothesis (i.e. WER 
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of 42.9%). From Figure 11 it can be observed that the likelihood scores were 

insensitive to the errors and could not be used as a measure of confidence. 

A confidence measure can be computed by taking into account various probable 

word sequences in the search space. This can be done by either using N-best lists or word 

graphs [13]. This thesis used a confidence measure computed from word graphs because 

these have been shown to yield better results compared to the N-best list technique [13]. 

Specifically, the word posteriors computed from word graphs [13] were used. 

Mangu, et al., [13] defines a word posterior as “the sum of the posterior 

probabilities of all word sequences of which the word is a part.” If the WER on the data 

is poor, then the word posteriors may not be a good confidence estimate [29], because the 

posteriors are overestimated as the words in the word graph are not the full set of possible 

words. In the case of a poor WER, the word graph will contain many wrong word 

 

Figure 11   Likelihood score distribution of the words in the final hypothesis 
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sequences. In such a case, the depth of the word graph becomes a critical factor in 

determining the effectiveness of using the confidence measure. The depth of the word 

graph can be adjusted by varying parameters such as MAPMI threshold and search 

beams [30] during decoding. Before performing a posterior computation, it is important 

to observe the WER on a particular data set. The recognition performance on FAA data 

was found to be 12%, which is acceptable and hence the word graph depth will not be a 

major factor. 

There is an elegant method to compute posterior probabilities from word graphs 

using a forward-backward type algorithm [29]. The equation to compute word posteriors 

from a word graph is shown below [29]. 

 

Figure 12   A section of a word graph showing preceding and succeeding nodes 
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Equation (4) can be better understood by examining Figure 12. The probability of 

passing through the link W is calculated by determining the probability of reaching the 

start node of the word from the preceding nodes and the probability of transitioning from 

the end node to any of the succeeding nodes. The former is referred to as the forward 

probability and the latter as the backward probability. A forward-backward type 

algorithm is used to traverse through the word graph and compute probabilities. 

 

Figure 13   Alternate paths in a word graph entering and exiting a node 
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The reason for using forward-backward algorithm can be better understood by 

examining the example in Figure 13. There are six different ways to react the start node 

and two different ways to leave node N from the end node. The probability of passing 

through node N can be obtained by knowing the forward probability and the backward 

probability of the node. The forward probability is the probability of reaching the node N 

from the start node, and backward probability is the probability of leaving the node N and 

reaching the last node. To calculate the probability through a link, one needs to know the 

forward probability of the start node and the backward probability of the end node. 

In equation (4), the right-hand side term cannot be computed directly. Hence, it is 

decomposed into likelihood and priors using Bayes rule as shown below: 
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The numerator term of equation (5) is calculated by the forward-backward 

algorithm. The denominator term is the byproduct of the forward-backward computation 

and is defined as the sum of all paths through the word graph [29]. The purpose of the 

denominator term is to normalize the posterior values. The posteriors computed in this 

manner can be used as a confidence measure. 
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To test the effectiveness of word posteriors over likelihood scores, one needs to 

test the posterior values that were annotated to the same word hypothesis that generated 

Figure 11. As shown in Figure 14, a distinction in the distribution of the word hypothesis 

that gave 0% WER and the words that gave 42.9% WER can be seen. This was a 

promising observation that leads us to believe that word posteriors are better confidence 

estimators than likelihood scores. Experiments with the fatigue software are discussed in 

Chapter V. 

4.2 An Example Confidence Measure Calculation 

A word graph consists of nodes and arcs connected together to represent various 

alternate hypothesis. The nodes in a word graph are sorted in time and the arcs represent 

the word hypotheses. The decoder saves the word graph in a text format. The text file 

contains information about the node indices, node times, arc indices, word labels, 

 

Figure 14   Peaks of posterior distributions for two WERs 
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language model probabilities and the acoustic model probabilities. A textual 

representation of the word graph is shown in Figure 15. The size of the word graph can 

be controlled by varying search parameters during decoding [30]. The size of the word 

graph can be judged by observing the number of nodes and arcs in the word graph. The 

word graphs used in this thesis were generated using a speech recognition system, known 

as the prototype system, developed at Mississippi State University [14]. 

 

Figure 15   Textual representation of a word graph 
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The computation of the posterior probability was briefly described in Section 4.1. 

The posteriors are computed for every link by using a variation of the forward-backward 

algorithm. The forward-backward algorithm used on a word graph is explained in greater 

detail in this section using an example. The word graph used in this example is depicted 

in Figure 16 with the probabilities as shown on the links. The nodes in red signify that 

they appear at the same time instant. The first step is to compute the forward probabilities 

(commonly referred to as alphas). This computation is described in the next section. 

4.2.1 Computing Alphas 

Step 1: Initialization – In a conventional HMM based forward-backward algorithm 

one would perform the following calculation: 

 

Figure 16   A word graph showing the acoustic likelihood on every arc 
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The α for the first node is taken as 1: 
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The alpha values computed in the previous step (t) are used to compute the alphas for the 

succeeding nodes (t+1). Unlike in an HMM, where one moves from left to right at fixed 

intervals of time, on a word graph one has to move from one node to the next based on 

node indices which are time aligned. 

Let us demonstrate the computation of the alphas from node 2. The alpha for 

node 1 was initialized as ‘1’ in the previous step. 

Node 2: 

0.5      

1*)6/3(*1
2

=

=α
 , (9) 

Node 3: 
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0.5025      
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3
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+=α
 , (10) 

Node 4: 

03-1.675E      

)1*)6/2(*5025.0(
4

=

=α
 , (11) 

The alpha calculation continues in this manner for all the remaining nodes. The forward-

backward calculation on word graphs is similar to the calculations used on the trellis 

during Baum-Welch training, but in word graphs the transition matrix is populated by the 

language model probabilities and the emission probability corresponds to the acoustic 

score. In this example a constant language model probability of 0.01 was used. 

4.2.2 Computing Betas 

Once the alphas using the forward algorithm are computed, one can begin 

computation of probabilities using the backward algorithm. This thesis refers to the terms 

computed in this calculation as betas, since these are related to the alphas computed in the 

 

Figure 17   The forward probabilities computed for the first four nodes 
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forward calculation. The backward algorithm is similar to the forward algorithm, but one 

has to start from the last node and proceed from right to left. 

Step 1: Initialization: 

N1                /1)( ≤≤= iNi
T

β  , (12) 

The number of nodes N at the final instant is 1 and hence β  at the final node is 1. 

Step 2: Induction: 
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Let us demonstrate the computation of the beta values from node 14 to node 11: 

Node 14: 

0.1667      

1*1*)6/1(
14

=

=β
 , (14) 

Node 13: 

833.0      

1*1*)6/5(
13

=

=β
 , (15) 

Node 12: 
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 , (16) 

Node 11: 
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 , (17) 
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In a similar manner, one has to obtain the beta values for all the nodes until node 1 is 

reached. The alpha for the last node should be the same as the beta for the first node. 

The posterior probability of a link is computed by simply multiplying the alpha of 

the start node and the beta of the end node. For example, in Figure 18 the probability of 

the link between nodes 3 and 4 is obtained by multiplying alpha of node 3 and beta of 

node 4. The posterior probabilities are normalized by dividing the product of alpha and 

beta by the sum of all paths through the word graph. The sum of all paths in the word 

graph is represented by the denominator term in equation (5), )( 1
T

xp . The value of the 

sum of all paths through the word graph is a by-product of the forward-backward 

calculations. The denominator tern of equation (5) is either the alpha on the last node or 

the beta on the first node. Chapter V will discuss experimental results obtained using 

word posteriors as a confidence measure. 

 

 

Figure 18   Word graph with alphas and betas computed for every node 
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CHAPTER V 

EXPERIMENTAL RESULTS AND ANALYSIS 

This chapter discusses various experiments that were run to assess the impact of a 

confidence measure on fatigue detection. Experiments were run on three different data 

sets. The first of the three data sets, the Phase II data, was collected during a military 

exercise [31]. This data was primarily collected for use with an ASR system. As 

described in Chapter II, the Phase II data had some issues regarding quality of recording. 

ASR experiments run using the Phase II gave a word error rate of 50%. A detailed 

tabulation of results on Phase II data is provided in this chapter. 

Another data called as the FAA data [31], was used with the ASR system. The 

WER on this data was 12%. The FAA database contained 31 words spoken in a studio 

environment. The speakers were subjected to controlled sleep cycles, as this was 

necessary to induce fatigue. The data recorded from this experiment contained very long 

utterances, and therefore had to be carefully chopped for better acoustic model training 

and faster decoding [32]. The results from recognition experiments run on the FAA data 

are also discussed in this chapter. 

A third data set similar to the FAA data, which was called the Bravo data, was 

used for fatigue prediction experiments by Greeley, et al. [31]. Fatigue prediction using 
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voice was compared with other standard fatigue metrics such as SOL [25] and 

SAFTE [33]. Fatigue prediction from voice was also tested with and without a confidence 

measure. It was found that the confidence measures helped in bringing the voice based 

fatigue prediction closer to other metrics of fatigue detection such as SOL and SAFTE. 

5.1 Recognition Experiments on Phase II Data 

During the data recording process, there was constant monitoring of each 

speaker’s level of fatigue followed by a recording of the subject’s speech. The subjects 

were asked to recite eight fixed phrases and one spontaneous phrase. Phonetic alignment 

of the data was needed to analyze signs of fatigue, and these alignments were obtained 

using an ASR system. The Phase II data required segmentation in order to make it 

suitable for use with an ASR system [31]. The original set of utterances had variable 

durations and contained significant amounts of silence and noise between words. The 

average duration of the original utterance was 45 seconds. The segmented utterances had 

lengths of approximately 5 seconds each. 

The segmented utterances were used to build an ASR system. The feature 

extraction block produced MFCC [6] features from the raw speech data. The features 

were extracted every 10 msec using a 25 msec analysis window. The experiments in this 

thesis used standard 39-dimensional MFCC features [6]. 
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The acoustic modeling block uses a GMM model with a standard left to right 

HMM topology [16]. Only 50% of the data was used for training, and the remaining was 

used for testing. The number of mixtures used for building the GMMs was varied from 

one to sixteen. A cross-word triphone model was used as the fundamental acoustic 

model [30]. It was found that an 8-mixture GMM model was optimum for this task. 

Experimental results on optimization of this parameter are shown in Table 2. 

The grammar used for this experiment consisted of a loop grammar, with the 

sentence transcription embedded into a single node. During decoding, the ASR system 

requires a language model. The language model helps in constricting the search 

space [30]. The ASR system was run using both a loop grammar [16] and a bigram 

language model [34]. The Phase II data set contained eight fixed phrases and one 

spontaneous phrase from each speaker. The initial experiment used a loop grammar with 

the sentence transcription embedded into the grammar (only the fixed phrases were used 

for this experiment). The grammar contained loops of eight sentence sequences, with 

each sentence representing a node in the grammar. With this grammar the ASR system 

gave 100% accuracy. 

Table 2   WER as a function of the number of mixtures 

No. of Mixtures WER % 

1 10.1 

2 5.3 

4 1.1 

8 0.0 

16 0.0 
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The grammar had to be changed when the test data included spontaneous phrases. 

New sentence sequences were added to the grammar and the ASR system was run with 

the updated test set that included spontaneous utterances. This time, the WER of the 

system increased to 34% compared to 0% for fixed phrases. This increase was because 

the words in the spontaneous phrases did not occur as often in the training data as the 

words in the fixed phrases.  

One way to improve performance of an ASR system is by strengthening the 

language model. In order to strengthen the language model, an interpolated bigram 

model [34] was used, instead of a loop grammar. New words were added to the lexicon 

and the bigram language model was interpolated [35] from a Switchboard bigram 

language model [34]. The perplexity [34] of the interpolated language model was kept 

close to the perplexity of the Phase II language model. Language model interpolation was 

performed using the SRILM toolkit [36]. 

Experiments with a bigram language model gave a WER of 52.4% on unseen 

fixed phrases. When spontaneous phrases were included in the test set, the WER 

increased to 74.5%. The WERs were much worse than that found using a loop grammar. 

But note that in this case the system did not use the sentence transcription in the 

grammar, so it is a more generic system than the loop grammar system. Experiments 

were run in order to tune the parameters for optimizing the WER. The results of these 

experiments are shown in Table 3. 
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The goal of running these experiments was to obtain robust ASR models that 

could be used for obtaining phonetic alignments for previously unseen utterances (open-

loop testing). Apparently, this was not possible because the size of the database was 

small, and also the quality of the data was very poor. The challenge to make the system 

robust to noise conditions is beyond the scope of this thesis. The Phase II data could not 

be used for building an automated fatigue detection system because of its high WER, and 

hence no further analysis was pursued using this data. 

5.2 Recognition Experiments on FAA Data 

For the experiments on the FAA data, the ASR system used a loop grammar for 

the language model and used cross-word triphones for acoustic model. The first set of 

experiments was conducted to determine the optimum model type. The WERs for word, 

monophone, and cross-word models are shown in Table 4. All the states in the model 

were represented by a single-mixture Gaussian model. These experiments were 

Table 3   Experimental results on the Phase 2 data using a 16-mixture cross-word 

               triphone system 

Grammar Type WER % 

Sentence level grammar (Fixed phrases) 0.0 

Sentence level grammar (Fixed+ 

Spontaneous phrases) 

34.0 

Word level grammar (Fixed phrases) 60.0 

Word level grammar (Fixed + 

Spontaneous phrases) 

82.0 

Bigram model (Fixed phrases) 52.4 

Bigram model (Fixed + Spontaneous phrases) 74.5 
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conducted in a closed-loop framework, .i.e. the training and the testing was performed on 

same data. 

From the results shown in Table 4, it can be observed that the cross-word triphone 

model gave the lowest WER. The WER for cross-word models was further improved by 

using a larger number of mixture components. The improvement in WER as a function of 

the number of mixtures is shown in Table 5. It was found that an 8-mixture model was 

optimum for this data. The WER was still lowered by adjusting the state-tying 

parameters. The state-tying parameters have a significant effect on the WER [17]. 

Table 5   WER as a function of the number of mixtures for cross-word models on the 

               FAA data 

No. of Mixtures WER % 

1 47.3 

2 36.3 

4 23.6 

8 11.3 

16 11.3 

Table 4   WER as a function of the model type 

Model Type WER % 

Word 63.9 

Monophone 54.3 

Cross-word triphone 47.3 
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The changes in the state-tying parameters affect the number of tied states in the 

model [17]. Table 6 shows the WER as a function of the number of tied states in the 

model. A minimum WER of 0.1% was obtained on the closed-loop setup. Increasing the 

number of tied states poses the problem of over fitting the training data. To further 

analyze the effect of state-tying, this thesis tested the models using a cross-validation 

scenario in which performance was measured on held-out data. The unseen data consisted 

of 20% of the original data which was separated and was not used for training. The 

results of the experiments are shown in Table 7.  

It can be observed that the minimum WER is obtained when the number of tied 

states is 56. Increasing the number of tied states beyond 56 causes the model to overfit 

the training data and hence leads to increase in WER. The general idea behind state tying 

is to generalize the acoustic model by sharing parameters; however, if not done correctly 

it will yield negative results. 

Table 6   Effect of state-tying parameters on the WER 

Split threshold Merge threshold Occupancy threshold No. of states WER 

650 650 1400 20 11.3 

165 165 840 37 8.5 

150 150 900 34 8.4 

125 125 750 41 5.7 

110 110 660 47 4.8 

100 100 600 56 3.8 

75 75 550 57 3.6 

50 50 500 58 4.0 

25 25 450 62 3.0 

10 10 250 94 1.1 

10 10 100 118 0.5 

10 10 50 126 0.1 
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For fatigue analysis, this thesis used a closed loop system because the phonetic 

alignments were more accurate. This was an acceptable approach for initial pilot 

experiments. To build a real system, one needs the ASR to work on unseen data. One can 

broadly classify unseen .data into three categories: (a) seen speaker with OOVs, 

(b) unseen speaker with no OOVs, and (c) unseen speaker with OOVs. Discussion and 

analysis on noise and channel characteristics of the unseen data is beyond the scope of 

this thesis. This thesis addressed the problem described in category (a) since our goal was 

to determine the feasibility of the fatigue detection approach. 

Table 7   Effect of state-tying parameters on WER with unseen FAA data included in the 

               test set 

Split threshold Merge threshold Occupancy threshold Number of states WER % 

650 650 1400 20 11.5 

165 165 840 31 17.3 

150 150 900 29 19.8 

125 125 750 38 25.2 

110 110 660 42 14.8 

100 100 600 54 12.2 

75 75 550 56 9.8 

50 50 500 57 7.1 

25 25 450 56 3.9 

10 10 250 94 7.3 

10 10 100 119 12.5 

10 10 50 122 11.4 

10 0 0 131 25.3 
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Whenever there were OOVs in the test data, the ASR system generated many 

false hypotheses. To overcome this problem, a confidence measure algorithm was 

implemented and annotated each word hypothesis with a confidence score. The fatigue 

analysis software used the confidence measure to filter out false hypotheses. The 

effectiveness of confidence measures can be observed in Figure 19 which shows the 

distribution of correct and false word confidence scores. A clear difference in their mean 

values can be observed, and as a result one can use a threshold to select only the true 

words. 

5.3 Fatigue Detection Experiments 

The effectiveness of the confidence scores was evaluated by examining the effect 

of OOVs on the test set. Analysis was done on the voice data from two test subjects who 

underwent a night of sleep deprivation. At six test epochs, separated by 6 hours, these 

subjects each recited from two word lists. One of the lists contained words from the 
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Figure 19   Distribution of confidence scores for false and correct words 
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training data set and the second list contained words not seen during training. This thesis 

refers to the latter as the foreign list. Both the subjects were part of the training speaker 

set. 

The ASR system was trained to recognize words from the training list. During 

fatigue analysis, the speech recognition system was presented words from both the 

training list and the foreign list which contained words not seen during training. For both 

subjects, the confidence score observed when the speakers recited from the first list had a 

higher average value and smaller standard deviation than that observed when the speaker 

recited from the foreign list. Table 8 presents these results. It was observed that the 

average confidence measure score for falsely recognized words was 15% less than that 

for words spoken from within the training set. This was a positive indication, and hence 

one could use these confidence measures to filter out false alarms from an ASR system’s 

output. 

Table 8   An analysis of the confidence metric 

 Subject 6 

 Training Foreign 

Average CM -72.22 -81.51 

CM Standard Deviation 3.10 11.34 

 Subject 8 

 Training Foreign 
Average CM -70.24 -82.41 

CM Standard Deviation 3.50 15.16 
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The discriminative power of confidence measures was analyzed by using a 

receiver operating characteristic (ROC) curve. The area under the ROC curve is an 

indication of the discriminative power of the classifier. An area of 0.5 indicates a random 

classifier while an area of 1.0 indicates an ideal classifier. The area under the ROC curve 

for the system that incorporated a confidence measure was 0.85, which indicates good 

discrimination. The ROC plot is shown in Figure 20. A suitable operating point or 

threshold had to be determined for classification. A threshold of -75 was chosen because 

at that point the probability of false alarms was equal to the probability of true 

occurrences of words. This point is also called as the Equal Error Rate (EER) point [37]. 

 

Figure 20   Receiver Operating Characteristic (ROC) 
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A Detection Error Tradeoff (DET) curve would be most suited for judging the 

performance of the fatigue detection system, but this requires large amounts of 

data. Greeley, et al. [5] are currently working on such a task. This thesis observed the 

effectiveness of confidence measures based on the error difference between standardized 

fatigue detection metrics and voice-based fatigue prediction metrics. Comparisons of 

various metrics are provided in Figure 21 and Figure 22. 

Figure 21 demonstrates a comparison between a subject’s normalized sleep onset 

latency (SOL) [3] and the voice-based fatigue prediction for the sound ‘p’ (Vc(p)). These 

metrics were obtained for each of the six trials. It can be observed that the error between 

the “SOL” metric and the closed loop (no OOVs) voice-based fatigue prediction metric is 

smallest. For analysis the SOL metric and the voice based fatigue metric were normalized 

to the same scale. The differences in the metrics at various test epochs were computed 
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Figure 21   Comparison of the trend between SOL and voice correlation for the sound 

                  ‘p’ with and without a confidence metric 
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and used that as a metric to judge the performance of the voice-based fatigue prediction 

system. The average error between the six test epochs for the closed loop voice based 

metric was 0.20. 

Using the voice input containing both training and foreign set words, with no 

confidence metric, the error between the metrics was found to be 0.33. However, by 

using the confidence measure, with a threshold setting of -75, the error rate decreased 

to 0.30, which represents a 9% improvement. A much more significant improvement was 

observed when the voice-based fatigue prediction was compared with Sleep, Activity, 

Fatigue, and Task Effectiveness (SAFTE) model [33], which is depicted in Figure 22. 

The cyclic pattern observed in Figure 21 and Figure 22 is due to circadian 

rhythms [25]. Over the 30 hours between trial number 1 and trial number 6, a full 

circadian cycle has elapsed. The SOL reflects the circadian influence of an individual’s 

need to sleep [3]. A more direct way to match a speaker’s overall performance and 
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Figure 22   Comparison of the trend between SAFTE and voice correlation for the 

                  sound ‘p’ with and without confidence metric 
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circadian influences is to use the speaker’s body temperature and his or her time without 

sleep. This is accomplished using the SAFTE model [33].  

Figure 22 shows speaker’s SAFTE score and the voice-based fatigue prediction 

for the sound ‘p’ (Vc(p)) at each of the six trials. As was the case with the SOL, the 

SAFTE model and the closed loop (no OOV) voice-based fatigue prediction had the 

lowest difference in metrics after normalization. The error difference was found to 

be 0.10 considering all six test epochs. Using voice input containing mixed words (with 

OOVs), the confidence measure-based system provides a significant improvement over 

the use of a system without confidence measures. The error difference between the 

SAFTE metric and the voice-based fatigue detection metric decreased from 0.15 to 0.12 

with the use of confidence measures, which represents a 20% improvement. This was 

observed when the test set had an OOV rate of 61.7%. 
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CHAPTER VI 

CONCLUSION AND FUTURE WORK 

Non-intrusive fatigue assessment systems are needed to successfully monitor the 

level of alertness of all personnel during critical mission or life-threatening activities. 

This thesis explores the first attempt at detecting fatigue from voice using an ASR 

system. Various approaches such as speaker verification, word spotting and LVCSR 

techniques were analyzed in this thesis, and the LVCSR approach was found to be 

superior for this particular task. The LVCSR approach did not require fatigue-dependent 

data for training and it used a fixed grammar. LVCSR approach was relatively more 

effective when dealing with OOVs, as compared to the word spotting approach. The 

OOVs caused insertion and substitution errors in the final output. The fatigue detection 

system treated the insertions and deletions generated by the LVCSR system as false 

alarms. The problem of false alarms was tackled by implementing a confidence measure 

algorithm. The LVCSR system output was annotated with a word posterior-based 

confidence measure. The confidence measure was used to filter out false alarms. Use of 

the confidence measure improved the robustness of the fatigue detection system to OOVs 

by 20%. 
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6.1 Thesis Contribution 

This thesis explored the use of an LVCSR system to automate the task of voice-

based fatigue detection. As discussed in Chapter II, Greeley, et al. [5] found that certain 

phonemes in human speech are more affected by fatigue than others. Hence, there was a 

need to obtain accurate phonetic alignments for those particular phonemes on test data 

and use those alignments for fatigue detection. Obtaining accurate phonetic alignments 

on a data set with OOVs is a challenge for any ASR system. In the case of fatigue 

detection, the greatest problem was to counter false alarms caused by insertions and 

substitutions in the LVCSR’s output. The false alarms caused errors in the fatigue 

detection system.  

This thesis explored a technique by which one can generate robust phonetic alignment for 

fatigue detection even when the test data contained OOVs. The improvement in 

robustness was achieved by using a word posterior-based confidence measure. The 

confidence measure algorithm computed word posteriors from a word graph. The word 

posteriors were computed using a forward backward type algorithm as described in 

Chapter III. The confidence measure algorithm was embedded into the core ASR system. 

This upgraded version of the ASR system was used by Creare, Inc. [5] to perform fatigue 

detection. Fatigue detection performance improved by 20% when 61.7% of the words in 

the test set were OOVs. 
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6.2 Future Work 

Though every effort was made to generalize the acoustic models built by the 

LVCSR system, it would definitely be better to use larger data sets for acoustic model 

training. Running the experiments on fatigue dataset with larger number and variety of 

speakers would enhance its value. The overall architecture of the system is currently 

suited only for laboratory analysis. The system could be made to perform in near real 

time if a one-pass strategy to compute confidence measures were employed. Also, 

computing confidence measures on the fly, rather than generating word graphs, would 

further enhance the usability of the system. The ASR system for fatigue detection used a 

loop grammar, in which case the word posteriors are entirely dependent on the acoustic 

score, and hence the scores are slightly biased towards the training data. By using a 

statistical language model word posterior scores that are more effective could be 

obtained.
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