Here are some of the scenarios:
1) Programmer errors: Let’s consider the Speech analysis application for this scenario. We can create a scenario where the Speech analysis servers can fail under these circumstances:

a) When trying to write to a location which does not exist: This scenario can be tested using the data recorder which writes audio data to the hard disk. We can show how the Process Manager can handle the server failure and compare it to the old architecture that does not have the Process Manager module.
b) When trying to read a file that does not exist: This scenario can be simulated using the Signal Detector server which needs a parameter file to read the default values (eventhough these errors should be caught by programmer).

c) We can simulate a buffer overflow in the signal detector server while getting the audio data from the client.
2) Here is a scenario that can be used to illustrate the usefulness of the state machine architecture. In the Speech analysis demo, packets of data are sent from the speech analysis client to the signal detector server. If for some reason, during the data transfer state, the signal detector server receives a communicator frame that does not contain audio data then it should error out and exit. The process manager should handle the situation. This scenario can happen because of two reasons:

a) This can happen because the server (which sent the message) was programmed that way.
b) There was a wrong hub rule that prompted the communicator frame to be routed to the wrong server.
3) In this scenario, the program tries to access a key-value pair from a communicator frame that does not exist. This can happen due to two reasons:

a) For example in the speech analysis application, the programmer creates a communicator frame to send audio data but doesn’t wrap the audio data inside the frame. The Signal Detector server or the Audio Recorder server may try to access this key-value pair from the communicator frame and eventually lead to a server failure.
b) This can happen in a situation very similar to (2) scenario where the server gets an inappropriate frame and still tries to access the key-value pairs from the frame.

 Both of these cases can be simulated.
4) This scenario can be used to illustrate the ability of the process manager. Two speech analysis applications can be started and a port conflict can be illustrated that prevented the multiple users from using the same machine. Most of the time, this results in a server failure or some unexplained behavior as both the client programs try to listen to the same port.

5) The above scenario that has been discussed in (4) can be also illustrated using multiple applications. As most of the applications need the same basic servers like audio recorder server and signal detector server, this will in most cases lead to a port conflict which gives unpredictable results. There are a lot of chances that an unpredictable behavior can lead to wrong communicator frames sent to the wrong servers (as they are listening to the same port) which ends up in a scenario very similar to (3).
6) Handshaking: The handshaking code in the Speech analysis application can be illustrated by simulating a case, where the client application does not receive an acknowledgement from the server for the data packet it sent. At this stage, the whole process stops. We don’t have a mechanism to time out. But the states at which this happened are recorded in the log files which make debugging easier. In case of the old architecture, this will lead to loss of data packets. This can happen due to two reasons:
a) The data packet sent from the client never reached the server because of a hub did not reroute the message which is very rare.

b) The data was redirected to another server due to wrong hub rules.

c) The server failed and the frame did not get delivered. This case can happen in the old architecture but not in the new architecture as the process manager will detect it.

7) (This scenario needs to be checked). I think the Jdas audio server we used in our old architecture worked for a specific audio configuration and would probably crash if the audio configuration is not supported by the sound card. The new architecture has mechanism to check whether the audio configuration can be supported or not. This checking is done before the communication between servers is initiated. So there wont be any failure due to the servers.
Thesis Hypothesis:

H0 (null hypothesis): The enhancement to the communicator architecture, does not improve the overall robustness of the system.

H1 (alternate hypothesis): The enhancement to the communicator architecture, does improve the overall robustness of the system.

