
A MULTI-AGENT BASED APPROACH FOR SOLVING THE REDUNDANCY
ALLOCATION PROBLEM

THESIS

Submitted to

Temple University Graduate Board

in Partial Fulfillment

of the Requirements for the Degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

by

Zhuo Li

August 2011

Thesis Committee:

Dr. Li Bai (Thesis Advisor)

Dr. Saroj Biswas(Committee Member)

Dr. Joseph Picone(Committee Member)

Abstract

Redundancy Allocation Problem (RAP) is a well known mathematical problem for mod-

eling series-parallel systems. It is a combinatorial optimization problem which focuses on

determining an optimal assignment of components in a system design. Due to the diverse

possible selection of components, the RAP is proved to be NP-hard. Therefore, many

algorithms, especially heuristic algorithms were proposed and implemented in the past

several decades, committed to provide innovative methods or better solutions.

In recent years, multi-agent system (MAS) is proposed for modeling complex systems

and solving large scale problems. It is a relatively new programming concept with the

ability of self-organizing, self-adaptive, autonomous administrating, etc. These features

of MAS inspire us to look at the RAP from another point of view. An RAP can be

divided into multiple smaller problems that are solved by multiple agents. The agents

can collaboratively solve optimal RAP solutions quickly and efficiently.

In this research, we proposed to solve RAP using MAS. This novel approach, to the

best of our knowledge, has not been proposed before, although multi-agent approaches

have been widely used for solving other large and complex nonlinear problems. To demon-

strate the capability of this approach, we analyzed and evaluated four benchmark RAP

problems in the literature. From the results, the MAS approach is shown as an effective

and extendable method for solving the RAP problems.

Subject Category:

Natural, and Physical Sciences − Computer science

Key words:

RAP, Redundancy allocation problem, algorithm, combinatorial optimization, multi-agent

system.

ii

Acknowledgements

I would like to express my gratefulness to my academic advisor Dr. Li Bai, my program

advisor Dr. Olga Vilceanu, and thesis committee members Drs. Saroj Biswas, and Joseph

Picone. Thanks to their supports and every aspects of help. I really appreciate it. I would

also like to thank Department of Electrical and Computer Engineering, Temple University.

Thanks to my parents and all my lab colleagues James Ren, Michael Korostelev, Yaoyao

Huang, Zhao Cheng, etc. I will treasure my experience and friendship with everyone here

throughout my life.

iii

Table of Contents

Page

Abstract . ii

Acknowledgements . iii

List of Tables . vi

List of Figures . vii

Chapter

1 Introduction and Background . 1

1.1 Redundancy Allocation Problem . 1

1.2 Meta-heuristic . 5

1.3 Multi-agent Programming . 5

1.4 Proposed Approach . 6

1.5 Organization of the Thesis . 6

2 Mathematical Formulation . 7

3 Literature Review . 11

3.1 Literature Review . 11

3.2 Invested Methods . 12

4 Preliminary Investigation . 16

4.1 Brief analysis . 16

4.2 Initialization strategies . 18

4.3 Original proposed algorithm . 21

4.4 Test problems . 23

5 Proposed Method . 25

5.1 Determine reliability, cost and weight data sets 25

5.2 Trade among subsystems . 28

5.3 Winner determination . 33

iv

6 Simulation Results and Discussions . 35

6.1 Comparison . 38

6.2 Failure attempts and improvements . 40

6.3 Analysis of complexity . 40

7 Summary and Future Work . 43

7.1 Summary . 43

7.2 Future work . 44

References . 45

Appendix

A Notations . 50

B Data Sets . 51

v

List of Tables

4.1 Data for test problem 1. 17

4.2 Data for test problem 2,3,4. Provided in [1] 24

5.1 The feasibility table of trading between agent1 and agent2 proposed by

agent 1 . 32

6.1 Results in the literature for test problem 1 [2] 37

6.2 Comparison of results with Multiple Weighted Objectives Heuristic ap-

proach for test problems 2,3,4 . 38

vi

List of Figures

1.1 An Example of RAP application on server systems 2

1.2 Google data container center (left) and its server design (right) 3

1.3 Examples of RAP application on sensor networks and rockets 3

2.1 A series-parallel system configuration . 7

3.1 An example of neighborhood structure type I [2] 13

4.1 The improvement process of originally proposed approach 21

4.2 A schematic showing the search procedure stagnates at local optimum . . . 22

6.1 The schematic of iteration process 1 . 35

6.2 The schematic of iteration process 2 . 36

6.3 Comparison of results with Multiple Weighted Objectives Heuristic ap-

proach for test problems 2 and 3 . 42

vii

Chapter 1

Introduction and Background

This thesis addresses an important aspect of optimization search using multi-agent ap-

proach. The goal is to develop an efficient, simple and modulized algorithm which can be

extended in agents and concurrently on agent threads. This novel approach, to the best

of our knowledge, has not been proposed before, although multi-agent approaches have

been widely used for solving other large and complex nonlinear problems.

1.1 Redundancy Allocation Problem

As humans’ ordinary life more and more relies on advanced technology, e.g. GPS, internet,

and sensor networks, the reliability of either a hardware system or a software service

becomes one of the most critical concerns in a system design.

Generally, system reliability can be improved either by incremental improvements of

component reliability or by provision of redundancy components in parallel; both methods

result in an increase in system cost.

Redundancy Allocation Problem (RAP) is a mathematical model for evaluating system

reliability under some given constraints such as cost and weight. It is broadly used in

a variety of practical circumstances, especially in the field of electrical engineering and

industrial engineering. The practical application of RAP is usually involved in circuit

design, power plant components replacement, consumer electronics industry, etc. Take

the launch of rocket as an example. Engineers put redundancy at some critical parts to

ensure the success of launching. However, due to the budget and carrying capacity of a

rocket, the redundancy must be addressed with care.

1

Figure 1.1: An Example of RAP application on server systems

The consumer electronics industry is another such application where new system de-

signs are composed largely of standard component types. Shown in figure 1.1, a portal

web site like Yahoo which provides highly integrated services, cannot afford losing users

information nor suspending service resulted by the crash of servers. To guarantee the

quality of service, they separate the business of registration, downloading, email service

etc, onto different servers and use multiple servers to provide the identical functionality.

When purchasing these servers, they have vast choices of brands which vary on the as-

pects of capacity, price, power consumption, etc. The company would like to increase the

system reliability while limiting the redundancy to a certain level.

2

Figure 1.2: Google data container center (left) and its server design (right)

Google is famous of its data storage solution “Google data container center” 1.2. As

we read from some of their released technical reports for 2010 [3], they use three power

types for each of their data station: grid, generator and a 12-v battery in each server.

When they unlocked this once-secret server design, Microsoft and Intel were all amazed

with saying “it is really a unique design”. From this, we can see how much these IT

companies emphasize on redundancy.

Figure 1.3: Examples of RAP application on sensor networks and rockets

Another practical scenario is sensor networks in figure 1.3. Engineers may deploy

dozens of functionally identical sensors to a part of a building or a water dam because

after construction, some parts are sealed with cement which makes it extremely hard

3

to replace the broken sensors by reconstructing. Hence, a well designed combination of

sensors will both increase the system reliability and reduce the cost of future maintenance.

From these examples, we can see that redundancy allocation is usually helpful and

sometimes even necessary in ordinary life. RAP is a mathematical model abstracted

from the physical world, whose goal is to maximize the reliability of a system under

multiple constraints. Conventionally, constraints specify cost and weight of the available

components.

The RAP is classified into combinatorial optimization problem [4]. Due to the diverse

combination of components, RAP is known to be NP-hard, proved in [5]. To solve this

type of problems, conventionally, there are three types of algorithms: exact algorithms,

approximate algorithms and heuristics.

1) Exact algorithms are able to determine the global optimum. However, since the RAP

is NP-hard, one challenge for exact algorithms is, as the input size of the RAP increases,

they are powerless to find the optimization in limited time because the computation

required increases exponentially [6]. Another challenge which prevents the implementation

of regular exact algorithms is that the objective function of RAP is nonlinear.

2) Approximation algorithms seek an approximation that is close to the optimal solution.

It may use either a deterministic or a random strategy.

3) Heuristics are a family of algorithms which try to solve a problem by “hypothesis →

examining → hypothesis → examining ⋅ ⋅ ⋅ ” mechanism. Instead of promising to provide

an optimal solution, they usually find reasonably good solutions reasonably quickly.

One major difference between exact algorithms and heuristic algorithms is that, given

a certain initial condition, one can always predict the result obtained by exact algorithm

in each round of iteration. Thus, if we run the program several times using the same initial

condition, we will get the same results in same amount of steps. In contrast for heuristic

algorithms, one cannot do so because heuristic involves guessing and randomization. For

example, if we run a word puzzle programm based on genetic algorithm twice for the

same input, we may get the same output in totally different steps or even get a different

4

output.

1.2 Meta-heuristic

In computer science, a heuristic is a technique designed to solve a problem that ignores

whether the solution can be proven to be correct, but which usually produces a good

solution or solves a simpler problem that contains or intersects with the solution of the

more complex problem.

A meta-heuristic is a set of concepts which are used to define heuristic methods that

can be applied to a wide set of different problems, In other words, a meta-heuristic can be

seen as a general algorithmic framework which can be applied to different optimization

problems with relatively few modifications to adapt them to a specific problem. [7]

Heuristic search techniques becomes a hot topic beginning in the 1990’s. There are a

family of heuristic search algorithms, including genetic algorithm(GA), Tabu Search(TS),

Simulated Annealing(SA), ant colony optimization(ACO), and Neural Networks, etc.

1.3 Multi-agent Programming

The definition of multi-agent system(MAS) in the book “Multi-agent system” [8] is a sys-

tem composed of multiple interacting intelligent agents. Multi-agent systems can be used

to solve problems which are difficult or impossible for an individual agent or a monolithic

system to solve. Examples of problems which are appropriate to multi-agent systems

research include online trading, [9] disaster response,[2] and modeling social structures,

etc.

Multi-agent systems are also referred to as “self-organized systems”. They usually

consist of multiple autonomous entities having different information and/or diverging

interests. [8] MAS tends to find the best solution for their problems “without intervention”,

which have a high similarity to physical phenomena. The applications of MAS touch all

5

aspects from artificial intelligence to algorithms, robotics to game theory, control theory

to logic, just to name a few.

The main feature which is achieved when developing multi-agent systems, if they work,

is flexibility, since a multi-agent system can be added to, modified and reconstructed,

without the need for detailed rewriting of the application. These systems also tend to be

rapidly self-recovering from failure, usually due to the heavy redundancy of components

and the self-managed features referred to the above.

1.4 Proposed Approach

By analyzing the problem and investigating the multi-agent programming technique, we

propose an approach based on multi-agent programming, hoping to reach the optimization

in competitive time or shorter time using simple computation logics. Also, the extend-

ability of MAS can be used for other RAP systems without any modification of source

codes of MAS core logic reasoning engines in order to find a good optimal allocation of

redundancy components.

1.5 Organization of the Thesis

The overall thesis is organized as follows. firstly we will give an introduction to RAP

and multi-agent concept, in which mathematic formulation and literature review will be

covered, I will then discuss in detail using our multi-agent based approach to solve the

RAP. Comparison of results and analysis will be provided at the end.

6

Chapter 2

Mathematical Formulation

According to (Fyffe 1968) [6], the original mathematical formulation of RAP is as follows:

It is assumed that the system under consideration consists of s functional units. (In

this proposal, we treat each unit as a subsystem as shown in Figure 2.1) Different func-

tional units are connected in series. The failure of any functional unit will cause system

failure, and failure of any unit in the system is assumed to be independent. For each of

the s functional units there exist several choices of design alternatives that the system

designer can employ in order to meet the allocated reliability requirement, which means

there are multiple, functionally equivalent components available to be used in each subsys-

tem. Such scheme is referred to as a serial-parallel system. Specifically, each component

has a reliability associated with a certain amount of cost and weight.

Figure 2.1: A series-parallel system configuration

In the original formulation, it is modeled as only a single type of identical components

are allowed to selected in one subsystem configuration. Once a component type is selected

7

to provide a required function, only components of the same type can be used to provide

redundancy. Let m i denote the number of design alternatives or say number of types

of components available for the ith subsystem with a specified inherent unit reliability

r ji , x ji denote the number of components used in subsystem i, and use Ri to denote the

known reliability function of the ith subsystem. So, according to the above schematic,

the system reliability is:

R =
s∏
i=1

Ri =
s∏
i=1

[1− (1− rji)
xji] (1)

where s denotes the total number of subsystems, and 1 ≤ ji ≤Mi.

The constraints are:
s∑
i=1

cji × xji ≤ C

s∑
i=1

wji × xji ≤ W (2)

In some developed formulations, e.g. Coit et al. [1], multiple components may be

selected and arranged in parallel for a subsystem configuration. Thus, the formulation

for computing the reliability of subsystem differs a little bit.

In this proposal, we follow the formulation in [1], and still use m i to denote the

number of design alternatives available for the ith subsystem with a specified inherent

unit reliability r ij for each component. We use x ij to denote the number of components

of type j used in subsystem i, where (1 ≤ j ≤ mi, and 1 ≤ i ≤ s). We let Ri(r ij,x ij)

denote the known reliability function of the ith subsystem. Thus, the reliability of ith

subsystem is:

Ri(rij, xij) = 1−
mi∏
j=1

(1− rij)
xij (3)

and the reliability of the whole system can be depicted in the form of the following

function:

R =
s∏
i=1

Ri(rij, xij) =
s∏
i=1

(
1−

mi∏
j=1

(1− rij)
xij

)
(4)

8

The main goal of solving the RAP is to find an assignment of components, which

maximizes the reliability of the system while keeping the total cost and weight of the

components to meet the constraint requirements. This is expressed in the following for-

mulations:

max
s∏
i=1

(
1−

mi∏
j=1

(1− rij)
xij

)

subjected to the constraints:
s∑
i=1

mi∑
j=1

cij × xij ≤ C

s∑
i=1

mi∑
j=1

wij × xij ≤ W

xij ∈ Z+

From the formulation, we can see that the decision variables are the component choices

(from the available discrete choices), and the redundancy levels (the number of function-

ally identical components used in one subsystem).

There are more variant RAPs proposed in the past decades than presented here. Before

we go any further, we would like to specify the RAP we are investigating.

What is redundancy? As shown in the figure, units in parallel are referred to as

redundant units [10]. There are two redundancy schemes, named active and standby. If

all redundant components operate simultaneously from time zero, even though the system

needs only one at any given time, such an arrangement is called active redundancy [11].

Otherwise, the redundancy scheme is called standby redundancy. There are three variants

of the standby redundancy, referred to as cold standby, warm standby, and hot standby.

In cold standby redundancy, the component does not fail before it operates. In warm

standby redundancy, the component is more prone to failure before operation than the

cold standby components [1]. In hot standby redundancy, the failure pattern of component

does not depend on whether the component is idle or in operation [12]. Most Reliability

design problems are formulated considering active redundancy.

9

On the aspect of component operating state, there are different cases of the series-

parallel allocation problem. Explained in [13], components can be multi state other than

just binary, thus, the system can have a range of different performance states. The RAP

we consider in this proposal only involves components with binary state, that is operate

or fail.

Thus, the specification is followed by the typical assumptions:

∙ The states of components and the system are either good or failed;

∙ Failure of any unit in the system is assumed to be an independent event;

∙ Failed components do not damage the system, and are not repaired;

∙ The failure rates of components when not in use are the same as when in use

(i.e., active redundancy);

∙ Component attributes (reliability, weight, and cost) are known and

deterministic;

∙ The supply of components is unlimited. [1] [14] [2]

10

Chapter 3

Literature Review

3.1 Literature Review

As mentioned previously, there are usually several approaches to increase system reliabil-

ity, including enhancement of component reliability, provision of redundant components

in parallel or a combination of both. The first approach has been well developed in the

1960s and 1970s as is documented in [15]. The second approach is the concern of RAP

which is going to be discussed in this thesis.

The redundancy allocation problem dates back to the 60’s last century and was ap-

peared as reliability allocation problem in [6]. A dynamic programming formulation of

the RAP was given in 1971 [16] and a hybrid “dynamic programming/depth-first search”

algorithm is presented by Kevin et al. [17]. A stochastic formulations of the RAP was pro-

posed by Coit et al. in 1996 [18], and a linear approximation formulation was proposed in

2002 [19]. Different algorithms have been implemented to solve the RAP. Fyffe et al. gives

an optimal solution by using dynamic programming with Lagrange multiplier [6]. How-

ever, since dynamic programming is unsuitable for problems with multiple constraints,

there are some inconvenience of using it, which will be discussed in next section. Luus [20]

gives an exact nonlinear integer programming method in 1975. used a Billionnet gives an

approximate feasible solution by linearization method and integer programming [10].

A varieties of heuristic algorithms are utilized as well. Coit et al. utilized genetic

algorithm (GA) in different ways to solve RAP in [21], [22], [23], and implementing Tabu

search (TS) is discussed in [24], [25], and [26]. Besides these, other heuristics have been

attempted in the past decades, such as variable neighborhood search algorithm (VNS)

11

[2] [27] [28], ant colony optimization algorithm(ACO, introduced by Dorigo in his Ph.D.

thesis) [14] [29] [30], surrogate constraint method [31], scaling method [32], Max-Min

approach [33], etc. Most of these algorithms uses the test problem given by Fyffe et

al. in [6] and the modified version given by Nakagawa et al. in [34] as benchmarks and

contribute solutions or better solutions in shorter time.

In recent years, as new programming techniques and algorithms develop, a Multi-

Agent Ant System for RAP was introduced by Bendjeghaba et al. in [35]. This algorithm

concerns more on ant system.

More detailed literature surveys on this problem are presented in Kuo’s review Refs.

[11] and [36]

3.2 Invested Methods

Among the methods in the literature, we chose some representative approaches and ad-

dressed further investigation in order to learn some experience about how other algorithms

solve the RAP.

3.2.1 The VNS algorithm

In the paper [2], Y.C Liang et al. proposed a variable neighborhood search(VNS) algorithm

to solve the RAP. By “neighborhood”, they mean the set of components allocation derived

from an existing set under certain rules. Hence, these generated sets are “around” the

original set which titles this algorithm with the name “VNS”. They proposed 3 types of

structures for constructing neighborhoods and a well defined penalty function to guide

the search procedure. They use a so called shaking operator to add randomization to

the algorithm. Thus the perturbation of the current solution provides the VNS a good

opportunity to escape from the local optimum while a deterministic algorithm usually has

no such luck on this issue. The following figure shows an example of type I method for

building a neighborhood structure. In this structure type, based on the initial allocation

12

Figure 3.1: An example of neighborhood structure type I [2]

which is the set of one type I component and one type II component, nine different

neighboring sets are generated by adding, deleting, or replacing one component in the

initial set. The other 2 types of structure varies in the way that two or three components

are exchanged simultaneously.

The procedure of the algorithm is as follows:

I. Construct a set of neighborhood structures Nl according to the rules;

II. Generate an initial solution denoted by y;

Repeat the following steps until the maximum number of iterations is reached:

III. Shaking: Randomly generate a solution from the neighborhood;

IV. Neighborhood search: Find the best neighboring solution y’ from the

neighborhood with the penalty function applied;

V. If y’ is better than y, y’ → y, reset l=1 and go to Step III

else set l = l + 1 and go to Step III.

They use a “shaking” operator to add the randomization to the algorithm. Thus,

with this perturbation, they provided VNS a good opportunity to escape from the local

optimum while a deterministic algorithm usually has no such luck on this issue.

The penalty function designed in this algorithm is:

Rup = Ru ×
(
C

Cu

)
c
×
(
W

Wu

)
w
13

Where Ru denotes the unpenalized reliability with the corresponding cost and weight

consumption, and
c,
w are derived from the feasible solution ratio in each round of

iteration.

This penalty function is reasonable because the search procedure increases the mag-

nitude of penalty heavily on infeasible solutions in order to move toward the border of

the feasible region; Otherwise, encourage movement further into the infeasible region.

Intuitively, the optimal solution usually happens approaching the infeasible region.

3.2.2 The dynamic programming approach

We also investigated the dynamic programming approach provided in [6]. Generally, since

dynamic programming is more appropriate to deal with single constraints optimization

problems, they interpreted the weight constraint into the objective function by using a

Lagrange multiplier. Thus the problem is converted into the following form:

Rn =

[
s∏
i=1

Ri(mi, xi)

]
⋅ e−�

∑s
i=1Wi(mi,xi)

subject to the constraint:
s∑
i=1

Ci(mi, xi) ≤ C.

where � is the Lagrange multiplier [37].

Then they carry out dynamic programming for this converted problem.

The advantages of this approach is that it generates results which associate with each

Lagrange multiplier. So, in industry, when sub optimums or a big pool of alternative

solutions are needed, this approach will reveal its superiority. The drawbacks of this

approach are that it is very trivial to pick an appropriate Lagrange multiplier and the right

range for cost constraint in each optimization step. There is no easy way to do this but

to manually try lots of times. Since the real optimum only appears when the appropriate

Lagrange multiplier is hit, the step of varying the Lagrange multiplier needs to be small

14

enough to avoid missing the right one, which make this approach more computationally

complex.

15

Chapter 4

Preliminary Investigation

In this chapter, we will present our analysis of the RAP, some comprehension on the

approaches in the literature, and introduction of our approach.

4.1 Brief analysis

The search space for the RAP is huge, and it is difficult to implement traversing. As the

problem scale goes big, it is impractical and impossible to traverse the solution space in

finite time. We evaluate the time complexity for traversing the RAP by the following

approximation.

To guarantee the conduction of the whole system, at least one component needs to be

used in each subsystem. To satisfy this basic condition, the number of possible allocation

is
∏s

i=1mi. Then the rest of the cost and weight can be allocated freely onto other

components. Thus, we convert the approximation to compute the number of non-negative

solutions of the following equation:

x1 + x2 + ⋅ ⋅ ⋅+ xk + ⋅ ⋅ ⋅+ xt = x̄

where t =
∑s

i=1mi denotes the total number of component types, and x̄ denotes the

average amount of components if only one type of identical components are put into the

whole system. x̄ is derived by (x1max + x2max + ⋅ ⋅ ⋅ xkmax + ⋅ ⋅ ⋅+ xtmax)/t, and

xkmax = min

{
C −

∑s
i=1,i ∕=k min(cij)

ck
,
W −

∑s
i=1,i ∕=k min(wij)

wk

}
As an example, for test problem 1 in table 4.1,

the total number of component types t is 48, and x̄ is 40. We now compute the number

16

Table 4.1: Data for test problem 1.

Subsystem components components components components

i r c w r c w r c w r c w

1 0.90 1 3 0.93 1 4 0.91 2 2 0.95 2 5

2 0.95 2 8 0.94 1 10 0.93 1 9

3 0.85 2 7 0.90 3 5 0.87 1 6 0.92 4 4

4 0.83 3 5 0.87 4 6 0.85 5 4

5 0.94 2 4 0.93 2 3 0.95 3 5

6 0.99 3 5 0.98 3 4 0.97 2 5 0.96 2 4

7 0.91 4 7 0.92 4 8 0.94 5 9

8 0.81 3 4 0.90 5 7 0.91 6 6

9 0.97 2 8 0.99 3 9 0.96 4 7 0.91 3 8

10 0.83 4 6 0.85 4 5 0.90 5 6

11 0.94 3 5 0.95 4 6 0.96 5 6

12 0.79 2 4 0.82 3 5 0.85 4 6 0.90 5 7

13 0.98 2 5 0.99 3 5 0.97 2 6

14 0.90 4 6 0.92 4 7 0.95 5 6 0.99 6 9

17

of non-negative integer solutions of

x1 + x2 + x3 + ⋅ ⋅ ⋅+ x48 = 40

We use the technique in combinatorial mathematics, and treat the 40 component as “1”

and the 48 component types as “★”. Then, we are actually computing how many situations

can appear if we put all these ones and 47(48-1) stars in a row or say separate these ones

and stars into 48 heaps. As an example, for the circumstance of one type 1 component,

two type 3 components, etc:

1 ★ ★ 1 1 ★ 1 ★ ★ ★ ★ ★ 1 ★ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ★ 1 1 ★ ★

that is (8740). So magnitude of the total number of feasible solution is :

[(8740) + (8639) + (8538) + ⋅ ⋅ ⋅+ (481)]× 38 × 46

So, we estimate the search space to have the magnitude of 1.08 × 1033 by incomplete

estimation.

In [14], it is estimated that the the search space size is larger than 7.6 × 1033. For

more explicit illustration about the complexity, refer to [5].

4.2 Initialization strategies

We referenced Coit’s linearization in [1], and a linear approximation for RAP in [19], and

decomposed the problem in the following procedure.

From the assumption “failure of any unit in the system is assumed to be an independent

event”, we can divide the objective function into:

max {R1(r1j, x1j), R2(r2j, x2j), ⋅ ⋅ ⋅ , Rs(rsj, xsj)}

Since Ri(rij, xij) = 1−
∏mi

j=1(1− rij)
xij , the objective function is transformed to:

min

{
m1∏
j=1

(1− r1j)x1j ,
m2∏
j=1

(1− r2j)x2j , ⋅ ⋅ ⋅ ,
ms∏
j=1

(1− rsj)xsj
}

18

By taking natural log to each expression in the braces above, we further transform the

problem to:

min

{
m1∑
j=1

x1j ln (1− r1j),
m2∑
j=1

x2j ln (1− r2j), ⋅ ⋅ ⋅ ,
ms∑
j=1

xsj ln (1− rsj)

}

with the same overall constraint functions.

If we divide the overall cost and weight constraints into s shares in a reasonable way,

we can decompose the overall objective function into s part as well. Thus, for arbitrary

ith subsystem, the objective function can be expressed in the form of:

min ai1xi1 + ai2xi2 + ⋅ ⋅ ⋅+ aimi
ximi

where aij = ln (1− rij). The constraints functions are:

ci1xi1 + ci2xi2 + ⋅ ⋅ ⋅+ cimi
ximi

≤ c̃i,

wi1xi1 + wi2xi2 + ⋅ ⋅ ⋅+ wimi
ximi

≤ w̃i

Up to now, we have decomposed the big non-linear optimization problem into a set

of small scale linear optimization problem. So, for each subsystem, if we assign a certain

amount of cost and weight, the optimization can be performed by implementing mixed

integer linear programming(MILP). It is this decomposition that enables us to implement

multi-agent programming concept to solve this problem. Since there are different kinds

of integer linear programming tools or softwares for LP problems available such as CPlex,

Matlab LP function, etc. [38] [39], it is not a difficult job to solve the LP problem. It

becomes our main concern to find out which is a proper way to assign rationally right

cost and weight constraints.

In that the RAP is a two constraints optimization problem, we can not evaluate the

cost-effectiveness of a component as what we do to the items in some other problems, for

instance, the Knapsack Problems(evaluating the ratio of profit to weight) [40]. Hence,

we tested the following strategies for initially allocating the cost and weight, in order to

eliminate some unnecessary attempts and get a good start:

19

1. an intuitive thinking is to divide the cost and weight equally by 14 and assign them to

the 14 subsystem;

2. computing
rij

C
C+W

cij+
W

C+W
wij

to express the cost-effectiveness of the components, meaning

the reliability which lies on a weighed cost and weight constraints, and afterwards, pick

the component with the highest cost-effectiveness in each subsystem;

3. computing
∣∣∣ cijwij
− C

W

∣∣∣ and pick the components with lowest value which means they

have a cost-weight pattern more coherent to the cost and weight constrains. The term

of “weight tight” was introduced in the paper [21]. Here we explain “cost tight” and

“weight tight” with our own comprehension. A problem is cost tight if the optimal

solution consumes all the cost constrains with some weight quota not being used and vice

versa.

Next, we adjust the cost and weight assignment for each subsystem and carry out the

MILP for the subsystem iteratively. As a matter of fact, in the beginning, the bottleneck

which restricts the overall performance of the whole system is the subsystem with the

lowest reliability. The logic is simple, even if all of the rest 13 subsystems achieve a

reliability approaching 100%, as long as a subsystem with a reliability of 0.95 exists, the

overall reliability is determined right by that subsystem. Hence, we let the subsystem with

higher reliability share some cost and weight quota as a compromise to the subsystem with

lower reliability so as to get overall improvement. We do obtain significant improvement

at the first few rounds of iterations. The following figure shows the rapidly rising in the

beginning using this strategy.

However, two problems of this intuition are:

1. After some iterations, as the reliability of subsystems tend to balance, each round

of iteration does not promise to provide improvement, which results in waste of compu-

tational resource and ineffectiveness of the algorithm;

2. for some specific subsystems like subsystem 7 and 13 in test problem 1, components

are so “heavy” that if one more is used, it becomes a subsystem with highest reliability

20

Figure 4.1: The improvement process of originally proposed approach

while vicely, if one component is not used, that subsystem becomes the one with lowest

reliability. In this case, the iteration would goes into a dead loop and has no chance to

jump out. The following figure is a schematic showing that the iteration stagnates at

some local optimal:

The reason for these problems is that this proposed strategy is not mathematically proved

to converge to the global optimal. The search procedure is able to get a good solution

in some extent, however, it tends to stagnate at a level (usually not the optimal) and

hard to clime up. To address this issue, we come up with the main part of our proposed

multi-agent based approach and the detail will be discussed in Chapter 5.

4.3 Original proposed algorithm

Our originally proposed strategy can be organized into three stages: initialization, ad-

justment, and multi-agent trading. The previously stated strategy can be modulized as

21

Figure 4.2: A schematic showing the search procedure stagnates at local optimum

an algorithm below:

INITIALIZATION

Compute the cost-effectiveness ce of each component .

Pick the component with highest ce for each subsystem as an initial solution and compute

the total cost and weight consumed.

ADJUSTMENT:

Iterate the this section for a pre-fixed times.

Compute Cleft and Wleft ;

Pick the subsystem with the highest reliability subRmax;

Compute Cshare and Wshare under the strategy;

IF the subsystem with subRmax falls to the lowest subR after adjusting,

pick the subsystem with the 2nd highest reliability;

Pick the subsystem with the lowest reliability subRmin;

22

Add Cleft+Cshare and Wleft+Wshare to its cost and weight constrains respectively.

Perform mixed integer LP for the changed two subsystems and get the optimal solution

and allocation set for this subsystem;

Compute the overall reliability R;

IF R is improved

Update the record of R and optimal set.

MULTI-AGENT TRADING

Repeat the following steps until the preset number of iterations is reached

Create a “broker” agent and an agent for each subsystem, and compute the LP solution

under a predefined range of cost and weight constraints around the result derived from

last stagy;

Agents compute the trade of Cshare and Wshare, and sent the matching result to the

“broker” agent;

The broker agent pick the best pair and perform the trade.

Record the overall reliability.

With this algorithm, the best result we obtained is 0.9630, which is not as good as that

in the literature, shown in figure 4.1. We made big improvement in modified approach

and this will be discussed in next chapter.

4.4 Test problems

Although Problem 1 is a well-known test problem, and it has been extensively used in the

literature to evaluate alternative approaches to solve the RAP, it has some drawbacks as

a test problem. For example, some of component options clearly dominate others, i.e., in

subsystem 3, type III components have lower cost nd weight, but higher reliability than

type I components. Moreover, as illustrated previously, it has a tight weight constraint.

In fact, some component options can be eliminated if the problem data are carefully

analyzed. This feature of Problem 1 favors meta-heuristic & heuristic approaches that

23

Table 4.2: Data for test problem 2,3,4. Provided in [1]

Problem2 Problem3 Problem4

i c(i1)...c(i4) wi1...w(i4) ri1...r(i4) c(i1)...c(i4) wi1...w(i4) ri1...r(i4) c(i1)...c(i4) wi1...w(i4) ri1...r(i4)

1 3,5,8,10 3,5,8,10 .71,.82,.9,.99 3,5,6,10 9,7,4,1 .92,.9,.91,.92 3,4,7,10 4,3,10,7 .81.8.96.98

2 2,5,8,10 4,6,8,10 .7,.82,.92,.98 2,5,7,10 10,6,5,3 .92,.9,.92,.91 3,5,7,8 4,2,10,7 .82,.82,.97,.98

3 3,5,7,10 2,6,8,10 .7,.83,.91,.97 1,5,7,9 9,6,4,1 .91.93.93.92 1,5,6,9 4,1,10,7 .82,,.82,.97,.98

4 4,6,8,9 2,6,7,9 .72,.82,.93,.97 1,5,7,9 9,7,5,3 .93,.93,.92,.9 2,5,6,9 5,2,8,7 .83,.8,.96,.97

5 2,5,7,9 2,5,7,10 .73,.81,.92,.97 1,5,6,9 10,7,4,2 .93,.91,.9,.91 3,5,7,8 5,2,10,7 .82,.81,.96,.98

6 3,5,7,9 3,5,8,10 .71,.81,.92,.99 2,4,7,9 8,7,5,1 .91,.9,.9,.92 1,4,7,10 5,3,10,6 .8,.82,.98,.98

7 2,6,8,9 4,5,7,10 .73,.83,.92,.98 1,5,6,9 10,7,4,3 .93,.9,.9,.9 1,4,6,8 5,2,9,7 .81,.83,.98,.98

8 4,5,7,10 4,5,8,10 .73,.8,.91,.98 2,5,7,9 8,7,5,3 .92,.92,91,.92 3,4,6,9 4,1,19,7 .8,.83,98,98

9 4,6,7,9 4,6,8,10 .72,.82,.91,.99 1,4,6,8 8,7,5,2 .9,.91,.93,.9 2,4,6,10 5,3,9,6 .83,.82,.97,.96

10 3,6,8,10 2,6,7,9 .72,.83,.91,.99 1,5,7,9 10,7,5,1 .93,.91,.92,.91 2,4,6,9 4,3,9,7 .81,.81,.96,.98

11 4,5,7,9 2,5,7,10 .71,.83,.93,.97 1,4,6,9 10,6,4,2 .93,.93,.9,.91 1,5,6,8 5,1,10,6 .82,.81,.97,.98

12 2,5,8,9 3,6,8,9 .71,.81,.91,.97 1,5,7,8 9,6,4,1 .9,.93,.93,.9 2,5,6,8 5,3,9,6 .83,.83,.98,97

13 2,6,8,9 2,5,7,10 .72,.83,.91,.98 1,4,6,10 9,6,4,1 .93,.9,.91,.92 1,5,6,8 4,3,8,6 .81,.81,.96,.98

14 2,6,7,10 4,6,8,10 .73,.83,.9,.98 2,5,6,9 10,6,5,1 .93,.92,.91,.91 3,5,6,9 5,3,8,6 .81,.8,.97,.96

15 3,6,8,10 2,5,8,10 .73,.83,.93,.98 2,4,6,9 8,7,5,3 .93,.93,.91,.9 2,4,6,10 5,1,8,7 .8,.82,.98,.98

16 4,6,7,10 4,5,8,10 .71,.83,.92,.98 2,4,6,10 9,6,4,3 .91,.9,.93,.91 1,5,6,8 4,2,9,7 .82,.82,.98,.98

17 3,5,7,10 2,6,7,9 .7,.8,.92,.97 2,5,7,9 10,6,4,3 .9,.9,.92,.92 1,4,7,8 5,2,10,7 .8,.83,.97,.96

18 2,6,7,10 3,5,8,9 .72,.8,.93,. 1,5,6,9 8,7,5,2 .91,.92,.9,.91 3,5,6,10 4,2,9,7 .8,.8,.97,.96

19 2,6,8,9 4,5,8,10 .71,.8,.93,.97 3,5,7,8 8,6,4,3 .92,.9,.9,.93 2,4,7,9 4,2,8,6 .81,.83,.98,.98

20 4,6,8,10 3,5,8,9 .7,.83,.9,.99 1,5,6,8 9,7,5,2 .91,.91,.9,.93 1,4,6,9 5,3,9,6 .8,.8,.98,.98

depend on local perturbation operators because difficult tradeoffs do not exist among the

component options.

Thus, Nakagawa et al. [34] extended the test problem to vary the weight constraint

form 159 to 191. Coit gives other 3 sets of components as refined test problems. As shown

in table 4.2, each problem has 20 subsystems with four available component options for

each subsystem. The maximum number of components allowed in each subsystem is 8.

These problems have an even larger solution space with possible configurations, which is

more qualified to be a challenge for newly developed algorithms.

24

Chapter 5

Proposed Method

In the problem analysis section, the linearization and decomposition of computing the

reliability of subsystems make it possible to perform optimization autonomously in each

subsystem, which furthermore makes it possible to implement multi-agent programming

to the RAP. Logically, we can actually carry out parallel computing on different com-

puting devices simultaneously. For simplicity, we will use test problem 1 as our example

throughout the chapter. As proposed previously, besides assigning an agent for each sub-

system, in addition, we have a centralized broker agent (CBA) to inform all agents how

trading should be performed. Here, we consider all agents to be honest and delivery all

authenticate messages to other agents. Once a decision is made by the CBA, all agents

are conceded with the decision. For the trading procedure, there are three steps:

1. Determine reliability, cost and weight data sets,

2. Trade among subsystems, and

3. Winner determination

5.1 Determine reliability, cost and weight data sets

As we know, we have mi types of components in the i-th subsystem. In this chapter, we

express their parameters in the form of set Ψi:

Ψi = {(ri1, ci1, wi1), (ri2, ci2, wi2), . . . , (rimi
, cimi

, wimi
)},

where rij, cij and wij are the components’ reliability, cost and weight respectively, for

j = 1, 2, . . . ,mi and i = 1, 2, . . . , s. For example, we have Ψ1 for the first subsystem and

25

Ψ2 for the second subsystem in test problem 1 as

Ψ1 = {(0.93, 1, 3), (0.93, 1, 4), (0.91, 2, 2), (0.95, 2, 5)},

Ψ2 = {(0.95, 2, 8), (0.94, 1, 10), (0.93, 1, 9)}.

From component parameter sets, we now define three parameter extracting functions ℛs,

Cs and Ws as

ℛs(Ψi) = {ri1, ri2, . . . rimi
},

Cs(Ψi) = {ci1, ci2, . . . cimi
}, and

Ws(Ψi) = {wi1, wi2, . . . wimi
}.

Continued from the previous example, we have

ℛs(Ψ1) = {0.90, 0.93, 0.91, 0.95},

Cs(Ψ1) = {1, 1, 2, 2}, and

Ws(Ψ1) = {3, 4, 2, 5}.

From these parameter sets, we can find each subsystem’s permissible performance set

Γi, and it can be determined by solving

min

{
mi∑
j=1

xij ln(1− rij)

}
(5.1)

subject to

mi∑
j=1

xijcij ≤ c̃′i and (5.2)

mi∑
j=1

xijwij ≤ w̃i, (5.3)

where

c̃i = min (C(Ψi)) ,min (C(Ψi)) + 1, . . . , C −
s∑

l=1
l ∕=i

min (C(Ψl))

26

and

w̃i = min (W(Ψi)) ,min (W(Ψi)) + 1, . . . ,W −
s∑

l=1
l ∕=i

min (W(Ψl))

As we can see, by varying c̃i and w̃i, there are

(C −
∑s

i=1 min (C(Ψi)))×(W −
∑s

i=1 min (W(Ψi))) linear integer programming problems

that we need to solve to get all possible xij for each subsystem, and the permissible

performance set Γi can be denoted as,

Γi = {(r(i)1 , c
(i)
1 , w

(i)
1 ,X

(i)
1), . . . , (r

(i)
l , c

(i)
l , w

(i)
l ,X

(i)
l), . . . , (r

(i)
Li
, c

(i)
Li
, w

(i)
Li
,X

(i)
Li

)},

where l = 1, 2, . . . , Li, and

r
(i)
l = 1− e

{∑mi
j=1 X

(i)
l (j) ln(1−rij)

}

= 1−
mi∏
j=1

(1− rij)X
(i)
l (j),

c
(i)
l =

mi∑
j=1

cijX
(i)
l (j), and

w
(i)
l =

mi∑
j=1

wijX
(i)
l (j),

r
(i)
l is actually the reliability of subsystem i when the l -th performance set is used. X

(i)
l

is a vector of the component assignment (xi1, xi2, ..., ximi
)l.

For any 1 ≤ l1 < l2 ≤ Li, 0 < r
(i)
l1
≤ r

(i)
l2
≤ 1. In other words, the set Γi is sorted

according to the ascending order of reliability. The cost and weight in the data set are

not exactly placed in the ascending order likewise, however, they satisfy the following fact

c
(i)
l ≤ c

(i)
k and w

(i)
l ≤ w

(i)
k ⇒ r

(i)
l ≤ r

(i)
k

because logically, we can find a more reliable or at least equivalently reliable assignment

if higher cost and weight constraints are given.

From equation 5.1 to 5.3, we can determine cost and weight ranges for subsystem 1 as

c̃1 = 1, 2, . . . , 97 and w̃1 = 2, 3, . . . , 104. We then solve all

min {x11 ln(1− 0.9) + x12 ln(1− 0.93) + x13 ln(1− 0.91) + x14 ln(1− 0.95)}

27

for each c̃1 and c̃1, subject to

x11 + x12 + 2x13 + 2x14 ≤ c̃1, and

3x11 + 4x12 + 2x13 + 5x14 ≤ w̃1,

By varying cost and weight constraints (c̃1, w̃1) 97 × (104 − 1) = 9, 991 times, (e.g.

(1, 2), (1, 3), . . . , (1, 104), (2, 2), (2, 3), . . . , (97, 104)), and after eliminating identical results,

there are 3, 720 uniquely optimal allocations based on different cost and weight constraints

in subsystem 1, expressed as

Γ1 = {(0.9, 1, 3, (1, 0, 0, 0)), (0.91, 2, 2, (0, 1, 0, 0), (0.93, 1, 4, (0, 0, 1, 0)),

(0.95, 2, 5, (0, 0, 0, 1)), . . . , (≃ 1, 96, 102, (4, 0, 30, 0))}. (5.4)

Similar, we get 428 optimal allocation for subsystem 2 as

Γ2 = {(0.93, 1, 9, (1, 0, 0)), (0.94, 1, 10, (0, 1, 0)), (0.95, 2, 8, (0, 0, 1)),

(0.9951, 2, 18, (0, 0, 2)), . . . , (≃ 1, 26, 104, (13, 0, 0))}.

A complete list of possible permissible data set for subsystems I and II can be found in

Appendix B. The data set of subsystems 3∼14 optimal allocation can be obtained using

similar approach.

5.2 Trade among subsystems

Many MAS systems are implemented in computer simulations, stepping the system through

discrete “time steps”. There is a typical introduction about multi-agent system on

“wikipedia” gives the following example of agent behavior paradigms:

The MAS components communicate typically using a weighted request matrix,

e.g. A challenge-response-contract scheme is common in MAS systems, where

First a “Who can?” question is distributed. Only the relevant agents respond:

“I can, at this price”. Finally, a contract is set up, usually in several more

short communication steps between agents.

28

According to this paradigm, we incorporate trading procedure in the agents’ behavior.

Suppose each subsystem has chosen a performance set
i(l) among its own Γi where

i(l) =
(
r
(i)
l , c

(i)
l , w

(i)
l ,X

(i)
l

)
,

In fact,
i(l) can be considered as the l-th element in Γi. Thus, CBA can compute system

reliability R, used cost Cu and weight Wu, remained cost Cr and weight Wr in the following

way

R =
s∏
i=1

r
(i)
li

Cu =
s∑
i=1

c
(i)
li

Wu =
s∑
i=1

w
(i)
li

Cr = C − Cu, and

Wr = W −Wu.

The i-th agent broadcasts its performance set above its current determination li(including

i(li)) Γlii = {
i(1),
i(2), . . . ,
i(li)} to other subsystems. As an example, if the first and

second agents choose their performance indexes l1 = 7 and l2 = 7 for the subsystem they

represent, the broadcast messages are

Γ7
1 = {(0.9, 1, 3, 1), (0.91, 2, 2, 1), (0.93, 1, 4, 1)

(0.95, 2, 5, 1), (0.99, 2, 6, 2), (0.991, 3, 5, 2)

(0.9919, 4, 4, 2)}, and

Γ7
2 = {(0.93, 1, 9, 1), (0.94, 1, 10, 1), (0.95, 2, 8, 1)

(0.9951, 2, 18, 2), (0.9958, 2, 19, 2), (0.9964, 2, 20, 2)

(0.9965, 3, 17, 2)}.

Without losing generality, assume that all other agents choose their performance indexes

li = 7 as well, for i = 3, 4, . . . s and s = 14 in test problem 1. The CBA can determine

29

the initial solution by

R =
s∏
i=1

r
(i)
li

= 0.9919× 0.9965 . . .× 0.9950 = 0.90265118

Cu =
s∑
i=1

c
(i)
li

= 98

Wu =
s∑
i=1

w
(i)
li

= 169

Cr = C − Cu = 130− 98 = 32, and

Wr = W −Wu = 170− 169 = 1.

Next, every agent enters the proposing trading procedure. We say the trading has

direction because from each agent’s point of view, the “interest”, or say “desire” is to

make self improvement, which means that it only cares about how much cost and/or

weight it can obtain from other agents to increase its own reliability. Thus, it only takes

into consideration other agents’ permissible performance sets above their current position

while looking up its own set below its current position. For example, agent j uses the

received messages to determine whether it would trade with another agent i or not by

evaluating different performance set indexes q and p according to:

max
{
r(i)p × r(j)q

}
subject to

c(i)p + c(j)q ≤ c
(i)
li

+ c
(j)
lj

+ Cr,

w(i)
p + w(j)

q ≤ w
(i)
li

+ w
(j)
lj

+Wr,

p < li, and q > lj.

30

We define the trading function to be:

For arbitrary agent j,

�(
j(q),
i(p)) =

⎧⎨⎩

1 if r
(i)
p × r(j)q ≥ rili × r

j
lj
,

c
(i)
p + c

(j)
q ≤ cili + cjlj + Cr, and

w
(i)
p + w

(j)
q ≤ wili + wjlj +Wr

0 otherwise

This trading function works as a comparator between a proposed trading with the

current components assignment. We evaluate the proposed trading (
j(q),
i(p)) to be

feasible if it makes improvement, which means it provides higher reliability than current

assignment (
li(i),
lj(j)) while the sum of cost and weight not exceeding the sum of

current cost and weight plus the remained cost and weight quota. If there is improvement,

then the attempt is feasible; otherwise, the attempt is infeasible. The input of this function

is an attempt of trading (
j(q),
i(p)) proposed by agent j with agent i, and the output

of this function is the feasibility of the attempt, which is 0 or 1.

For example, if agent 2 receives a message Γ7
1 from agent 1, we can compute from

performance data set 5.4 that

c
(2)
l2

+ c
(1)
l1

+ Cr = 4 + 3 + 32 = 39,

w
(2)
l2

+ w
(1)
l1

+Wr = 4 + 17 + 1 = 22.

Under these constraints, one can apply the trading function to check the feasibility

of a proposed trading. Table 5.1 shows the results for the example. In this table, the

involved agents are i = 1 and j = 2, representing the subsystem respectively. The current

position of agent 1 is l1 = 7, and that of agent 2 is l2 = 7. From the results of feasibility,

we can see that (
9(2),
6(1)) is a feasible proposed trading. If multiple feasible trading

proposals exist for some agents, they select the trading which yields the highest reliability

among all the feasible ones.

31

Table 5.1: The feasibility table of trading between agent1 and agent2 proposed by
agent 1

attempts of trading reliability sum of cost sum of weight feasibility

current 0.988428 7 21 -

(
6(1),
8(2)) 0.988027 6 23 0

(
5(1),
8(2)) 0.987030 5 24 0

...

(
6(1),
9(2)) 0.9885225 7 21 1 ←

(
5(1),
9(2)) 0.9875250 6 22 0

...

(
6(1),
10(2)) 0.9906600 6 32 0

...

Explicitly, One can find that when p = 6 and q = 9, it will result a maximum reliability.

r(i)p × r(j)q = 0.991× 0.9975

= 0.9885225 > r
(i)
li
× r(j)lj ,

c(i)p + c(j)q = 3 + 4 = 7 < 39,

w(i)
p + w(j)

q = 5 + 16 = 21 < 22.

We record the feasible proposed trading in the message form:

�(
q(j),
p(i)) = (r(i)p × r(j)q , c(i)p + c(j)q , w(i)
p + w(j)

q).

Note: the order in the brackets indicates roles in this trading, which means that trading

is proposed by the former agent and latter one is passive.

The checking feasibility procedure completes when both sum of cost and sum of weight

exceed the current sum of cost and sum of weight plus the remaind cost and weight

quota, which means no more trading is possibly feasible to make improvement even if the

attempts continue.

32

It is evident that if agent 2 performs trading with agent 1, the overall system will

benefit with a higher reliability. However, to be more efficient, we design to perform the

trading after evaluating all s−1 messages received from all other agents in order to decide

which potential trading gives highest reliability. That means when agent 2 derives the

following feasible proposed trading,

�(
9(2),
6(1)) = (0.988522, 7, 21), �(
9(2),
6(3)) = (0.98710, 9, 26),

�(
9(2),
6(4)) = (0.995006, 14, 24), �(
9(2),
6(5)) = (0.993909, 8, 24),

�(
9(2),
6(6)) = (0.996303, 8, 25), �(
9(2),
6(9)) = (0.996602, 8, 32),

�(
9(2),
6(11)) = (0.995106, 12, 27), �(
9(2),
6(13)) = (0.997492, 10, 31).

it selects the one that produces the highest reliability, which is �∗(
9(2),
6(13)) here, and

sends the message to CBA. If an agent i has no feasible proposed trading, which means

that all the evaluated trading result 0 output for � function, then it send out a failure

message �∗ = 0.

5.3 Winner determination

After autonomous computation, any agent who has feasible proposed trading will transmit

a messages to CBA, for example, agent i will transmit �∗(
p(i),
q(j)). We call this agent

behavior as bidding. After receiving all the bidding information from agents, CBA will

then decide a trading as the winner of bidding by picking the one which produces highest

overall system reliability:

Φ∗(
p(i),
q(j)) = �∗(
p(i),
q(j))

wℎere arg max
i,j

{
ℛs(�∗(
p(i),
q(j))×

s∏
k=1,k ∕=i,j

r
(k)
lk

}

= arg max
i,j

{
r(i)p × r(j)q ×

s∏
k=1,k ∕=i,j

r
(k)
lk

}

33

Note: the CBA can distinguish the sender of message by checking the first field in �∗ =

(
p(i),
q(j)).

For test problem 1, the CBA will receive the messages from all the agents, and evaluate

the improvement to the whole system respectively in the following way:

�∗(
28(1),
5(13)) max(R) = 0.9099, �∗(
9(2),
6(13)) max(R) = 0.9036,

�∗(
18(3),
5(13)) max(R) = 0.91121, �∗(
26(4),
5(13)) max(R) = 0.92249,

�∗(
17(5),
5(13)) max(R) = 0.90572, �∗(
18(6),
5(13)) max(R) = 0.90338,

�∗(
18(7),
5(13)) max(R) = 0.9068, �∗(
18(8),
5(13))max(R) = 0.90761,

�∗(
18(9),
5(13)) max(R) = 0.90287, �∗(
18(10),
5(13)) max(R) = 0.90429,

�∗(
18(11),
5(13)) max(R) = 0.90429, �∗(
18(12),
5(13)) max(R)=0.92781,

�∗ = 0(failure message) �∗(
18(14),
5(13)) max(R) = 0.90665.

The CBA will decide Φ∗(
18(12),
5(13)) = �∗(
18(12),
5(13)) in this circumstance as

the winner among bidding messages received from all agents.

To summarize the logic of trading rules in short, each agent picks the best feasible trad-

ing �∗ autonomously among all the feasible ones � between itself and all other agents, and

reports to CBA in the form of a message �∗. The CBA selects Φ∗ among all the received

bidding messages by picking the one that yields the highest improvement and perform the

actual trading. After trading, the involved two agents update their current performance

sets. Since all other subsystems remain unchanged, the overall system reliability R can

be updated by

R =

⎛⎜⎝ s∏
k=1

k ∕=i,k ∕=j

r
(k)
lk

⎞⎟⎠ r(i)p r
(j)
q ,

34

Chapter 6

Simulation Results and Discussions

In this chapter, we will discuss the results obtained by the multi-agent based approach.

Currently, the best result we get for test problem 1 is R = 0.97076, which equals the best

result shown in the literature.

The computation is performed in Matlab and the agent framework used is Jade [41].

Compared with the results in the literature, this result is satisfying and encouraging.

Figure 6.1 and 6.2 shows the iteration process:

Figure 6.1: The schematic of iteration process 1

From these two figures, we can see explicitly how trading takes place between two

agents in each round. To show the bit picture, we plot the procedure in the 3D bar figure,

the X-axis is the subsystem index, Y-axis is the reliability respectively, and the Z-axis is

the iteration rounds.

35

Figure 6.2: The schematic of iteration process 2

For reference, table 6.1 is the results obtained by different algorithms in the literature.

36

Table 6.1: Results in the literature for test problem 1 [2]

W VND GA LP ACO TS VNS RAP

191 0.98506 0.98675 0.98671 0.98675 0.98681 0.98681

190 0.98358 0.98603 0.98632 0.98591 0.98642 0.98642

189 0.98348 0.98556 0.98572 0.98577 0.98592 0.98592

188 0.98302 0.98503 0.98503 0.98533 0.98538 0.98487

187 0.98131 0.98429 0.98415 0.98469 0.98469 0.98467

186 0.98082 0.98362 0.98388 0.98380 0.98418 0.98418

185 0.98034 0.98311 0.98339 0.98351 0.98351 0.98351

184 0.98046 0.98239 0.98220 0.98299 0.98299 0.98299

183 0.97919 0.98190 0.98147 0.98221 0.98226 0.98226

182 0.97940 0.98102 0.97969 0.98147 0.98152 0.98147

181 0.97850 0.98006 0.97928 0.98068 0.98103 0.98103

180 0.97732 0.97942 0.97833 0.98029 0.98029 0.98029

179 0.97670 0.97906 0.97806 0.97951 0.97951 0.97951

178 0.97600 0.97810 0.97688 0.97840 0.97840 0.97838

177 0.97540 0.97715 0.97540 0.97760 0.97747 0.97760

176 0.97379 0.97642 0.97498 0.97649 0.97669 0.97669

175 0.97389 0.97552 0.97350 0.97571 0.97571 0.97571

174 0.97275 0.97435 0.97233 0.97493 0.97479 0.97493

173 0.97039 0.97362 0.97053 0.97383 0.97383 0.97381

172 0.96945 0.97266 0.96923 0.97303 0.97303 0.97303

171 0.96872 0.97186 0.96790 0.97193 0.97193 0.97193

170 0.96770 0.97076 0.96678 0.97076 0.97076 0.97076

169 0.96495 0.96922 0.96561 0.96929 0.96929 0.96929

168 0.96374 0.96813 0.96415 0.96813 0.96813 0.96813

167 0.96302 0.96634 0.96299 0.96634 0.96634 0.96634

166 0.96200 0.96504 0.96121 0.96504 0.96504 0.96504

165 0.96128 0.96371 0.95992 0.96371 0.96371 0.96371

164 0.96051 0.96242 0.95860 0.96242 0.96242 0.96242

163 0.95942 0.96064 0.95732 0.96064 0.95998 0.96064

162 0.95515 0.95912 0.95555 0.95919 0.95821 0.95919

161 0.95682 0.95804 0.95410 0.95804 0.95692 0.95804

37

6.1 Comparison

We implemented the approach on test problems 2, 3, and 4, and got excellent performance

on testproblem2, satisfying results on testproblem3 and to some extend good results

on testproblem4. The data for test problems 2,3, and 4 were presented in Preliminary

Investigation Chapter. Several problems were encountered and we will discuss this after

the comparison. We compared our proposed method with Weighted Objectives Heuristic

approach [1]. The results are shown in the following table. For short, we label our

proposed approach with the name MABA.

Table 6.2: Comparison of results with Multiple Weighted Ob-

jectives Heuristic approach for test problems 2,3,4

Problem 2 Problem 3 Problem 4

i Cost Weight MWO MABA MWO MABA MWO MABA

1 100 100 0.05268 0.0478 0.17265 failed 0.14722 0.1424

2 100 130 0.07702 0.0838 0.25035 0.1871 0.32840 0.3267

3 100 160 0.07702 0.0838 0.31659 0.2833 0.55503 0.5577

4 100 190 0.07702 0.0838 0.39429 0.3635 0.64773 0.6375

5 100 220 0.07702 0.0838 0.48209 0.4944 0.72987 0.7335

6 100 250 0.07702 0.0838 0.58655 0.5869 0.76426 0.7750

7 130 100 0.08091 0.0650 0.24129 0.1600 0.31355 0.2060

8 130 130 0.26884 0.2707 0.31593 0.3004 0.56078 0.5563

9 130 160 0.31506 0.3317 0.39476 0.3526 0.66594 0.6582

10 130 190 0.31061 0.3352 0.48277 0.4696 0.74961 0.7499

11 130 220 0.31470 0.3357 0.59041 0.5821 0.83421 0.8358

12 130 250 0.31061 0.3357 0.71971 0.7182 0.89123 0.8921 ∗

13 160 100 0.08091 0.08091 0.30389 failed 0.53033 0.4696

14 160 130 0.28595 0.28595 0.38961 0.3806 0.64802 0.6474

15 160 160 0.52941 0.55183 0.48297 0.4549 0.74884 0.7470

38

Table 6.2 – continued from previous page

16 160 190 0.65762 0.6576 0.59047 0.5955 0.82922 0.8318

17 160 220 0.65762 0.6576 0.75473 0.7282 0.89751 0.8975

18 160 250 0.65762 0.6576 0.88177 0.8417 0.92416 0.9228

i Cost Weight MWO MABA MWO MABA MWO MABA

19 190 100 0.08091 0.08091 0.38067 0.3591 0.60364 0.5313

20 190 130 0.28595 0.2827 0.48074 0.4541 0.72425 0.7167

21 190 160 0.60371 0.6159 0.61995 0.6196 0.82697 0.8239

22 190 190 0.75847 0.7616 0.75809 0.7657 0.89718 0.8972

23 190 220 0.79847 0.8205 0.88293 0.8881 0.89718 0.9247

24 190 250 0.80097 0.8129 0.90783 0.9083 0.94725 0.9485

25 220 100 0.08091 0.08091 0.46579 0.4407 0.63909 0.5894

26 220 130 0.28595 0.2827 0.58585 0.5772 0.79882 0.7951

27 220 160 0.60371 0.6081 0.72885 0.7260 0.88788 0.8755

28 220 190 0.79824 0.8081 0.88214 0.8797 0.92239 0.9174

29 220 220 0.87281 0.8702 0.90616 0.9148 0.94678 0.9412∗

30 220 250 0.89454 0.90005 0.92302 0.9327 0.96779 0.9651

31 250 100 0.08091 0.08091 0.54857 0.5704 0.63909 0.5607

32 250 130 0.28595 0.28594 0.71172 0.7222 0.84744 0.8374

33 250 160 0.60371 0.60806 0.87444 0.8332 0.91345 0.9118

34 250 190 0.79824 0.80807 0.90171 0.9047 0.94285 0.9338

35 250 220 0.88581 0.89061 0.92388 0.9240 0.96401 0.9616

36 250 250 0.92957 0.92800 0.94080 0.9461 0.98031 0.9775

∗: multiple equivalent results were founded for this case.

As shown in table 6.2, and figure 6.3, we got better results in 21 out of 36 cases for

test problem 2, with 8 other cases equivalent, which is very encouraging results. 13 out of

36 cases are better for test problem 3. The results are not so outstanding for test problem

4, but still, exceed in some cases.

39

More explicit results which include the final configuration of each subsystem (combi-

nation of components) are available in web page ℎttp : //tℎotℎ.eng.temple.edu/?p = 392

6.2 Failure attempts and improvements

As mentioned previously, the original program does not run perfectly under some cases.

For example, if the initially picked solution uses more cost or weight (Cu,Wu) quota

than the constraints, the remained cost and become negative, which results in problems

to our program as an input. To fix this error, we added an initial solution adjusting

function with randomization. Thus, the previously discussed strategies on how to pick

cost-effective components as initial solution reveals its usefulness.

Thus, it makes sure that the used cost and weight of initial solution do not exceed

the constraints directly. On the other hand, if one round of simulation fails to provide

satisfying solution, it will begin from a new initial solution which could avoid stagnates

at local optimization.

As a note of our approach, when the overall cost and weight constrains are very loose,

for example, (250, 250). the remained cost weight (Cr,Wr) will be large at the first round.

For instance, when the initial pick is 1 for every agent, the used cost Cu may be little,

say 100, thus, Cr would be 150. In this case, each agent would look up a long list under

its current position to check whether potential trading exists. This will expect relatively

longer time for the first several iterations. As the iteration process goes, the used cost

and weight (Cu,Wu) increase, and remaind cost and weight decrease. Each agent spends

less time searching for potential trading compared with in earlier iterations.

6.3 Analysis of complexity

The correctness of this approach is discussed in Chapter 5. Here, we will analyze the

complexity. The computational time of this procedure is rational. We can break the

40

whole process into three phases.

1. In the first phase, agents are created, one for each subsystem. These agents will

take the components attributes as input, and carry out mixed linear programming

autonomously under different cost and weight constraints. Thus, the possible per-

missible data sets are constructed. This phase is traverse computation, however, it

is guaranteed to be linear time because there are at worst C ×W × s mixed integer

linear programming problems to be solved. The scale of each linear programming

is tiny. All of those are mi variables, 2 constraints LP problems.

2. The second phase is the initial solution selection. For most cases, this part is not

crucial and unnecessary, but it can improve efficiency. For the cases which need this

phase, as mentioned in the failure attempts part, it involves s2 comparison at worst.

So, it is also linear time.

3. The third phase is the trading part. each agent computes fixed few trading attempts

in each round, which is approximated to be O((li)
2(s−1)). The “broker” agent only

update the new overall reliability, which involves s multiplications. The total time

depends on the iteration rounds and the accuracy requirement.

41

Figure 6.3: Comparison of results with Multiple Weighted Objectives Heuristic ap-
proach for test problems 2 and 3

42

Chapter 7

Summary and Future Work

7.1 Summary

Although the proposed approach could reach an encouraging result, it is still in initial

investigation stage that need for improvement. The integer linear programming algorithm

we are using now for subsystem optimization is for solving generalized LP problems.

Since our problem is relatively more specific, that is decision variables x ij are certain to

be integer while the corresponding coefficients are certain to be fractional, we plan to

simplify it to a more efficient algorithm, aiming to eliminate unnecessary computing time.

we are going to stress more focus on investigating multi-agent trading. We plan to

test trading between multiple agents and explore how to improve efficiency. By intuition,

different ways of trading may yield same optimal results, but accomplish the task in

different steps and time span.

With experiences of the test problems, we know that to make the whole system func-

tionally operate, at least one component is guaranteed to be used; and to improve the

performance, no subsystem uses less than one component as redundancy in order to avoid

the ”bottleneck” situation which is discussed in the previous chapter. Thus, we propose

to document these experiences into rules and set up a rule base for the agents. For ex-

tending and universal modeling, each agent is relatively naive at the beginning of solving

one problem. As the time passes, the agent will become more sophisticated with this

specified problem and also, any other RAP data.

As a whole evaluation of an algorithm, RAM taken by it is also a critical criteria. We

will address focus on this issue in the future research.

43

To summarize, we addressed our research concern on the redundancy allocation prob-

lem. We proposed a novel approach based on multi-agent system.

7.2 Future work

For future extension, the agents can be deployed on different devices so that the com-

putation can be carried out in parallel. Currently, due to the limitation of equipment,

the program was run on one laptop. However, since the agent platform is utilized, the

communication between agents are in message form. So, the capability of distributing the

agents are out there.

If the computation is carried out on physically separated devices, the delay of trans-

mitting and receiving messages will be involved. A problem we can foresee is the asyn-

chronization and message loss. For example, due to the delay of propagating the bidding

messages, if a bidding message regarding the previous bidding round arrives during the

current round, the bidding process would fall into a mess. Hence, more perfect trading

mechanism and bidding protocols need to be carefully designed.

The criteria of checking a trading feasibility could be refined. Currently, in the pro-

gram, the checking ends when Cu ≥ Cr and Wu ≥ Wr. However, Cu and Wu are updated

after the computation of attempted trading, which results in the case that sometimes

the finally returned solution exceeds the constraints. Only solution of last round can be

returned as feasible solution. To make the program more robust, more work can be put

on this issue.

As mentioned in the problem definition, there are many other variant RAPs. For

instance, the reliability of a component is multi-state or proportional instead of bi-state

(operates or fails). How to modify the agent framework to adapt other forms of RAP?

This can be an interested topic for further exploration.

44

References

[1] D. Coit and A. Konak, “Multiple weighted objectives heuristic for the redundancy

allocation problem,” Reliability, IEEE Transactions on, vol. 55, no. 3, pp. 551–558,

Sep. 2006.

[2] Y.-C. Liang and Y.-C. Chen, “Redundancy allocation of series-parallel systems us-

ing a variable neighborhood search algorithm,” Reliability Engineering and System

Safety, vol. 92, pp. 323–331, 2007.

[3] C. News, “Google uncloaks once-secret server,” ℎttp : //news.cnet.com/8301 −

10013 − 10209580− 92.ℎtml.

[4] P. A. l. R. K.Thangavel, M.Karnan and G.Geetharamani, “Ant colony algorithms

in diverse combinational optimization problems - a survey,” ACSE Journal, vol. 6,

no. 1, pp. 7–26, Jan 2006.

[5] C. MS, “On the computational complexity of reliability redundancy allocation in a

series system,” Operation Research Letter, vol. 11, no. 5, pp. 309–315, Jun 1992.

[6] D. E. Fyffe, W. W. Hines, and N. K. Lee, “System reliability allocation and a com-

putational algorithm,” Reliability, IEEE Transactions on, vol. R-17, no. 2, pp. 64

–69, Jun. 1968.

[7] R. B. Günther Zäpfel and M. Bögl, Metaheuristic Search Concepts, 1st ed.,

C. Rauscher, Ed. Springer, 2010.

[8] Y. Shoham and K. Leyton-Brown, Multi-agent Systems. Cambridge University

Press, 2009.

[9] E. D. Alex Rogers and N. R. Jennings, “The effects of proxy bidding and minimum bid

increments within ebay auctions,” University of Southampton and JEREMY SCHIFF

45

Bar-Ilan University, Department of ECE, Southampton University, Southampton,

SO17 1BJ, U.K, Tech. Rep., Aug 2007.

[10] A. Billionnet, “Redundancy allocation for series-parallel systems using integer linear

programming,” Reliability, IEEE Transactions on, vol. 57, no. 3, pp. 507 –516, Sep.

2008.

[11] W. Kuo and R. Wan, “Recent advances in optimal reliability allocation,” Systems,

Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on, vol. 37,

no. 2, pp. 143–156, Mar. 2007.

[12] R. Tavakkoli-Moghaddam and J. Safari, “A new mathematical model for a redun-

dancy allocation problem with mixing components redundant and choice of redun-

dancy strategies,” Applied Mathematical Sciences, vol. 1, no. 45, pp. 2221–2230, 2007.

[13] J. E. Ramirez-Marquez and D. W. Coit, “A heuristic for solving the redundancy

allocation problem for multi-state series-parallel systems,” Reliability Engineering

and System Safety, vol. 83, pp. 341–349, Oct 2004.

[14] Y.-C. Liang and A. Smith, “An ant colony optimization algorithm for the redundancy

allocation problem (rap),” Reliability, IEEE Transactions on, vol. 53, no. 3, pp. 417–

423, Sep 2004.

[15] L. T. Fan, C. S. Wang, F. A. Tillman, and C. L. Hwang, “Optimization of systems

reliability,” IEEE Transactions on Reliability, vol. R-16, no. 2, pp. 81–86, Sep 1967.

[16] K. MISRA, “Dynamic programming formulation of the redundancy allocation prob-

lem,” Int. Journal of Math. Edu. in Sci. and Tech., vol. 2, no. 3, pp. 207–215, 1971.

[17] K. Y. Ng and N. Sanch, “A hybrid ’dynamic programming/depth-first search’ al-

gorithm, with an application to redundancy allocation,” IIE Transactions, vol. 33,

no. 12, pp. 1047–1058, 2001.

46

[18] D. W. Coit and A. E. Smith, “Stochastic formulations of the redundancy allocation

problem,” 1996.

[19] Y.-C. Hsieh, “A linear approximation for redundant reliability problems with multiple

component choices,” Computer and Industrial Engineering, vol. 44, pp. 91–103, 2002.

[20] R. Luus, “Optimization of system reliability by a new nonlinear integer programming

procedure,” IEEE Transactions on Reliability, vol. R-24, no. 1, pp. 14–16, Apr 1975.

[21] D. Coit and A. Smith, “Reliability optimization of series-parallel systems using a

genetic algorithm,” Reliability, IEEE Transactions on, vol. 45, no. 2, pp. 254–260,

266, Jun 1996.

[22] D. W. Coit and A. E. Smith, “Solving the redundancy allocation problem using a

combined neural network/genetcic algorithm approach,” Computers Ops Res, vol. 23,

no. 6, pp. 515–526, 1996.

[23] L. Zia and D. W. Coit, “Redundancy allocation for series-parallel systems using a col-

umn generation approach,” Industrial and Systems Engineering, Rutgers University,

Tech. Rep., 2005.

[24] A. E. S. Sadan Kulturel-Konak and D. W. Coit, “Efficiently solving the redundancy

allocation problem using tabu search,” IIE Transactions, vol. 35, no. 6, pp. 515–526,

2003.

[25] M. N. Mohamed Ouzineb and M. Gendreau, “Availability optimization of series-

parallel multi-state systems using a tabu search meta-heuristic,” International Con-

ference Service Systems and Service Management, vol. 1, no. 4244-0451, pp. 953–958,

Oct 2006.

[26] S.-H. C. Tsen-I Kuo and J.-E. Chiu, “Tabu search in the redundancy allocation

optimization for multi-state series-parallel systems,” Journal of the Chinese Institute

of Industrial Engineers, vol. 24, no. 3, pp. 210–218, 2007.

47

[27] M.-H. L. Liang Y-C and Y.-C. Chen, “Variable neighbourhood search for redundancy

allocation problems,” IMA Journal of Management Mathematics, vol. 18, pp. 135–

155, 2007.

[28] L. Y-C and W. C-C, “A variable neighborhood descent algorithm for the redundancy

allocation problem,” Ind Eng Manage Syst, vol. 4, no. 1, pp. 109–16, 2005.

[29] Y.-C. Liang and A. Smith, “An ant system approach to redundancy allocation,”

in Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress on,

1999.

[30] M. Dorigo, “Optimization, learning and natural algorithms,” Ph.D. dissertation, Po-

litecnico di Milano, Italy, 1992.

[31] J. Onishi, S. Kimura, R. James, and Y. Nakagawa, “Solving the redundancy allo-

cation problem with a mix of components using the improved surrogate constraint

method,” IEEE Transactions on Reliability, vol. 56, no. 1, pp. 94–101, Mar 2007.

[32] C. Ha and W. Kuo, “Multi-path approach for reliability-redundancy allocation using

a scaling method,” Journal of Heuristics, vol. 11, pp. 201–217, 2005.

[33] R.-M. J and K. A. Coit D, “Redundancy allocation for series-parallel systems using

a maxcmin approach,” IIE Trans, vol. 36, no. 9, pp. 891–898, 2004.

[34] Y. Nakagawa and S. Miyazaki, “Surrogate constraints algorithm for reliability op-

timization problems with two constraints,” IEEE Transactions on Reliability, vol.

R-30, no. 2, pp. 175–180, Jun. 1981.

[35] O. Bendjeghaba and D. Ouahdi, “Multi-agent ant system for redundancy allocation

problem of multi states power system,” Dec 2008, pp. 1270–1274.

[36] W. Kuo and V. Prasad, “An annotated overview of system-reliability optimization,”

Reliability, IEEE Transactions on, vol. 49, no. 2, pp. 176 –187, Jun. 2000.

48

[37] R. Bellman, “Dynamic programming and lagrange multiplier,” Proc. Nat’l Acad. Sci.

(USA), vol. 42(10), pp. 767–769, 1956.

[38] I. S.A. and I. ILOG, ILOG CPLEX 10.0 Users Manual, ILOG S.A. and ILOG, Inc,

Jan 2006.

[39] T. S. Ferguson, Linear programming - A Concise Introduction.

[40] E. lawler, “Fast approximation algorithms for knapsack problems,” University of

California at Berkeley, and in part by the Mathematical Center, Amsterdam, Berke-

ley, California 94720, National Science Foundation grant MCS76-17605, January-

February 1977.

[41] G. C. Fabio Bellifemine and G. Rimassa, “Java agent development framework,” ℎttp :

//jade.tilab.com/.

49

Appendix A

Notations

s the number of subsystems connected in parallel;

m i the number of available component choices for the i-th subsystem;

cij,w ij the cost and weight of the j th component in the ith subsystem.

Ψi the parameter set for the i-th subsystem;

ℛs, Cs,Ws the extract function for reliability, cost and weight;

x̄ the average amount of identical components that can be used if all

other subsystems use only one component;

t the total number of component types in the overall system;

Γi the performance set of subsystem i;

�(
q(j),
p(i)) the bidding message sent by agent j;

R the overall system reliability;

C,W total cost and total weight constraints;

subC i,subW i the cost and weight constraints for subsystem i ;

c
(i)
l , w

(i)
l the actually used cost and weight in the i-th subsystem after

linear optimization;

X
(i)
l the component assignment of the l-th performance set in the i-th subsystem;

c̃, w̃ the cost and weight constraints which are used to in subsystem’s

optimization;

Cu,Wu the actually used cost and weight in the overall system optimization;

Cr,Wr the remained cost and weight that are not used after each round

of optimization.

50

Appendix B

Data Sets

The permissible performance data sets Γ1 for subsystem 1, where the bolded set is the

initially selected set

(0.9, 1 , 3 , 1) (0.91, 2 , 2 , 1)

(0.93, 1 , 4 , 1) (0.95, 2 , 5 , 1) (0.99, 2 , 6 , 2)

(0.991, 3 , 5 , 2) (0.9919, 4 , 4 , 2) (0.993, 2 , 7 , 2)

(0.9937, 3 , 6 , 2) (0.9951, 2 , 8 , 2) (0.9955, 4 , 7 , 2)

(0.999, 3 , 9 , 3) (0.9991, 4 , 8 , 3) (0.99919, 5 , 7 , 3)

(0.999271, 6 , 6 , 3) (0.9993, 3 , 10 , 3) (0.99937, 4 , 9 , 3)

(0.999433, 5 , 8 , 3) (0.99951, 3 , 11 , 3) (0.999559, 4 , 10 , 3)

(0.999595, 6 , 9 , 3) (0.999657, 3 , 12 , 3) (0.9999, 4 , 12 , 4)

(0.99991, 5 , 11 , 4) (0.999919, 6 , 10 , 4) (.9999271, 7 , 9 , 4)

(0.99993, 4 , 13 , 4) (.9999344, 8 , 8 , 4) (0.999937, 5 , 12 , 4)

(.9999433, 6 , 11 , 4) (0.999949, 7 , 10 , 4) (0.999951, 4 , 14 , 4)

(.9999559, 5 , 13 , 4) (.9999603, 6 , 12 , 4) (.9999636, 8 , 11 , 4)

(.9999657, 4 , 15 , 4) (.9999691, 5 , 14 , 4) (0.999976, 4 , 16 , 4)

(0.99999, 5 , 15 , 5) (0.999991, 6 , 14 , 5) (.9999919, 7 , 13 , 5)

(.9999927, 8 , 12 , 5) (0.999993, 5 , 16 , 5) (0.9999934, 9 , 11 , 5)

(0.9999937, 6 , 15 , 5) (0.9999941, 10 , 10 , 5) (0.9999943, 7 , 14 , 5)

(0.9999949, 8 , 13 , 5) (0.9999951, 5 , 17 , 5) (0.9999954, 9 , 12 , 5)

(0.9999956, 6 , 16 , 5) (0.999996, 7 , 15 , 5) (0.9999964, 8 , 14 , 5)

(0.9999966, 5 , 18 , 5) (0.9999967, 10 , 13 , 5) (0.9999969, 6 , 17 , 5)

(0.9999972, 7 , 16 , 5) (0.9999976, 5 , 19 , 5) (0.9999983, 5 , 20 , 5)

51

(0.999999, 6 , 18 , 6) (0.9999991, 7 , 17 , 6) (0.9999992, 8 , 16 , 6)

(0.9999993, 9 , 15 , 6) (0.9999993, 6 , 19 , 6) (0.9999993, 10 , 14 , 6)

(0.9999994, 7 , 18 , 6) (0.9999994, 11 , 13 , 6) (0.9999994, 8 , 17 , 6)

(0.9999995, 12 , 12 , 6) (0.9999995, 9 , 16 , 6) (0.9999995, 6 , 20 , 6)

(0.9999995, 10 , 15 , 6) (0.9999996, 7 , 19 , 6) (0.9999996, 11 , 14 , 6)

(0.9999996, 8 , 18 , 6) (0.9999996, 9 , 17 , 6) (0.9999997, 6 , 21 , 6)

(0.9999997, 10 , 16 , 6) (0.9999997, 7 , 20 , 6) (0.9999997, 12 , 15 , 6)

(0.9999997, 8 , 19 , 6) (0.9999997, 9 , 18 , 6) (0.9999998, 6 , 22 , 6)

(0.9999998, 6 , 23 , 6) (0.9999999, 6 , 24 , 6) (0.9999999, 7 , 21 , 7)

(0.9999999, 8 , 20 , 7) (0.9999999, 9 , 19 , 7) (0.9999999, 10 , 18 , 7)

(0.9999999, 7 , 22 , 7) (0.9999999, 11 , 17 , 7) (0.9999999, 8 , 21 , 7)

(0.9999999, 12 , 16 , 7) (0.9999999, 9 , 20 , 7) (0.9999999, 13 , 15 , 7)

(0.9999999, 10 , 19 , 7) (1, 7 , 23 , 7) (1, 14 , 14 , 7)

(1, 11 , 18 , 7) (1, 8 , 22 , 7) (1, 12 , 17 , 7)

(1, 9 , 21 , 7) (1, 13 , 16 , 7) (1, 10 , 20 , 7)

(1, 7 , 24 , 7) (1, 11 , 19 , 7) (1, 8 , 23 , 7)

The rest more than 3000 sets have reliability approximate to 1

The permissible performance data sets Γ2 for subsystem 1, where the bolded set is the

initially selected set

(0.93, 1 , 9 , 1) (0.94, 1 , 10 , 1)

(0.95, 2 , 8 , 1) (0.9951, 2 , 18 , 2) (0.9958, 2 , 19 , 2)

(0.9964, 2 , 20 , 2) (0.9965, 3 , 17 , 2) (0.997, 3 , 18 , 2)

(0.9975, 4 , 16 , 2) (0.999657, 3 , 27 , 3) (0.999706, 3 , 28 , 3)

(0.999748, 3 , 29 , 3) (0.999755, 4 , 26 , 3) (0.999784, 3 , 30 , 3)

(0.99979, 4 , 27 , 3) (0.99982, 4 , 28 , 3) (0.999825, 5 , 25 , 3)

(0.99985, 5 , 26 , 3) (0.999875, 6 , 24 , 3) (0.999976, 4 , 36 , 4)

(0.9999794, 4 , 37 , 4) (0.9999824, 4 , 38 , 4) (0.9999828, 5 , 35 , 4)

52

(0.9999849, 4 , 39 , 4) (0.9999853, 5 , 36 , 4) (0.9999870, 4 , 40 , 4)

(0.9999874, 5 , 37 , 4) (0.9999877, 6 , 34 , 4) (0.9999892, 5 , 38 , 4)

(0.9999895, 6 , 35 , 4) (0.9999910, 6 , 36 , 4) (0.9999913, 7 , 33 , 4)

(0.9999925, 7 , 34 , 4) (0.9999938, 8 , 32 , 4) (0.9999983, 5 , 45 , 5)

(0.9999986, 5 , 46 , 5) (0.9999988, 5 , 47 , 5) (0.9999988, 6 , 44 , 5)

(0.9999989, 5 , 48 , 5) (0.9999990, 6 , 45 , 5) (0.9999991, 5 , 49 , 5)

(0.9999991, 6 , 46 , 5) (0.9999991, 7 , 43 , 5) (0.9999992, 5 , 50 , 5)

(0.9999992, 6 , 47 , 5) (0.9999993, 7 , 44 , 5) (0.9999994, 6 , 48 , 5)

(0.9999994, 7 , 45 , 5) (0.9999994, 8 , 42 , 5) (0.9999995, 7 , 46 , 5)

(0.9999995, 8 , 43 , 5) (0.9999995, 8 , 44 , 5) (0.9999996, 9 , 41 , 5)

(0.9999996, 9 , 42 , 5) (0.9999997, 10 , 40 , 5) (0.9999999, 6 , 54 , 6)

(0.9999999, 6 , 55 , 6) (0.9999999, 6 , 56 , 6) (0.9999999, 7 , 53 , 6)

(0.9999999, 6 , 57 , 6) (0.9999999, 7 , 54 , 6) (0.9999999, 6 , 58 , 6)

(0.9999999, 7 , 55 , 6) (0.9999999, 8 , 52 , 6) (0.9999999, 6 , 59 , 6)

(0.9999999, 7 , 56 , 6) (0.9999999, 8 , 53 , 6) (1, 6 , 60 , 6)

(1, 7 , 57 , 6) (1, 8 , 54 , 6) (1, 9 , 51 , 6)

(1, 7 , 58 , 6) (1, 8 , 55 , 6) (1, 9 , 52 , 6)

(1, 8 , 56 , 6) (1, 9 , 53 , 6) (1, 10 , 50 , 6)

The rest more than 300 sets have reliability approximate to 1

53

