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CHAPTER I

INTRODUCTION

One of the most complex and least understood properties of human percept

its ability to carve the world into various categories. The plethora of signals that pound

sensory system do not necessarily confuse the brain, rather are segmented into

chunks of information related to various experiences we have had in the past [1].

does our brain achieve this amazing performance? This is a cognitive scien

perception of the question —“Is representation better than discrimination?”. We face

this same situation in speech research. Before we start to delve into this issue, we n

brief overview of speech technology, which a few decades back many people probab

a glimpse of in “Star Trek”.

Speech Recognition Background

The process of speech recognition in humans can be represented in a r

simplistic fashion as an interaction between distinct knowledge sources as sho

Figure 1. We say this is simplistic, because various experiments suggest that huma

not recognize speech this way. However this is a nice framework to cast the proble

speech recognition as one of statistical pattern recognition. The speech signal th

speaker articulates is sampled and is transformed to a feature domain which we th

more reasonable for recognition (instead of the sample data domain). The feature d

has traditionally been the frequency domain. However the most commonly used fea
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in current recognizers are in the cepstral domain [2,3,4,5,6]. This module of the sp

recognizers typically called the Front-end. This is by the lowest level of knowledge

we incorporate into the system.

At a much higher level is the knowledge about the language that can be app

The Language Model (LM), can take several forms. When the recognition tasks are s

the languages can be expressed as a set of re-write rules [7]. However when the

become more complex, one has to pose the LM in a more probabilistic framew

N-gram language models are one such commonly used methodology where the lan

is encoded as a probability distribution of a word given its predecessor words [6,8].
Figure 1. Schematic overview of a statistical speech recognition system
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N-gram LM can take various forms depending on the representation of the his

words — cache LMs, long-range LMs to name a few [6,8].

At the core of the recognizer is the Acoustic Model (AM). In the early days

speech research when the tasks being handled were relatively small vocabulary

hundred words), the AM typically represented the whole word and was used to mode

various renditions of the word spoken by different people. As the recognition ta

became more complex, whole-word modeling became restrictive and systems transi

to modeling sub-word units like phonemes and syllables [9,10,11,12,13,14].

Where does pattern recognition come into play? Once the input speech sig

converted into features, the system has to decode the underlying symbol sequence

most likely symbol sequence to be precise. This mapping of features to the symb

what makes a speech recognition and pattern recognition problem. The AM, to whic

input data is compared to, must be robust enough to account for the natural variation

articulatory process which varies from person to person. This variation is accounted f

estimating the parameters of the AM using information theoretic measures like Maxim

Likelihood (ML) [16]. Some of the commonly used formulations for the patte

recogn izers are Hidden Markov Models (HMM) [2 ,4 ,5 ,6 ] and Neura l

Networks [15,47,56,58].

Complexity of Recognition Tasks

As mentioned in the previous section, the tasks to which speech recognitio

being applied to have changed significantly as the technology progressed. Recog
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tasks can be categorized based on several features.

• Vocabulary Size: This is by far the most important feature that differentiates

the resource usage (memory and time) by a recognizer. On one end of spectru

is the two-word task of yes/no. On the other end is the task of automatically

transcribing broadcast news where the vocabulary size could be as high as

few hundred thousand words.

• Speaker Dependence: One of the driving forces for current speech research is

the possibility of giving speech interfaces to data retrieval tasks where user

can get the data they need from a large database. By definition this warrants th

speech interface to be speaker-independent. On the other hand speech dictat

systems on our personal computers are designed to perform well as they lea

the speaking characteristics of the user. The jump in modeling complexity

when we go from speaker-dependent systems to speaker-independent syste

is very significant.

• Recording Conditions: The effectiveness of the features extracted by the

front-end is dependent to a large extent on the inherent noise in the raw dat

This noise could have been added to the speech signal as part of the recordi

system or the ambience. For example features extracted from speech record

over the telephone have to deal with the degradation imposed by the telephon

channel bandwidth and echo. Speech recognition of data recorded via th

cellular network has to cope with severe ambient noise. On the other extreme

early speech research was based on speech recorded in a sound room w



5

f

re

s

k

d

th

r

amut

ease in
controlled ambience.

• Style of Speech: Another important issue while comparing various recognition

tasks (and part of the problem this thesis is trying to address) is the style o

speech. Early speech research started with recognizing isolated words whe

there is a clear pause between utterances. With continuous speech like new

broadcasts, the systems need to deal with artifacts like coarticulation and lac

of clear segmentation between words. However this can still be considere

“read speech”. With conversational speech systems need to start dealing wi

non-speech sounds, in ter jec t ions, res tar ts and a s lew of o the

disfluencies [18,19].

Figure 2 shows the performance degradation on typical tasks that cover the g

of present speech recognition systems. Though there has been a tremendous incr
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Figure 2. State-of-the-art performance on tasks of varying complexity starting with
lated words all the way up to unconstrained conversational speech.
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compute power over the years, the trend in the plot clearly indicates a need to solve s

problems in core technology before the systems become more prevalent.
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CHAPTER II

HIDDEN MARKOV MODELS - CURRENT TECHNOLOGY

Hidden Markov models (HMM) provide an elegant mathematical framework

represent the time sequential nature of speech as well the variability in the speech s

HMMs are by definition represent a doubly stochastic process where one stoch

process represents the temporal behavior (via state sequences) and the other p

represents the variability in speech [2,4,5,6]. At the core of the HMM is a Bayes class

where classification is done using a simple likelihood ratio. Other classifiers

Multi-Layered Perceptrons (MLP) and Support Vector Machines (SVM) differ fro

HMMs in their inability to model temporal evolution of speech [21,44]. HMMs can u

discrete or continuous output probability distributions depending on the input symbo

In this thesis only continuous density HMMs will be described.
1 2 3 4 5

a22 a33 a44

a13 a35a24

b2 ot( ) b4 ot( )b3 ot( )

a11 a55

b1 ot( ) b5 ot( )

ost
Figure 3. A simple continuous density HMM structure which is used commonly in m
speech recognition systems.
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Basic Definition

HMMs are finite state machines in their basic form. They differ from regular fin

state machines in that each state also has a probability of emitting a symbol. Apart

this there is a probability distribution representing the probability of a transition from

state to another [4]. The complete description of the model can be provided usin

following quantities:

• N — the number of states

• The state-transition probability distribution

• The output probability distribution , where is the input

observation vector

The output probability distribution gives the probability of observing a vector

the given state. The most commonly used form of the output distribution is a multiva

Gaussian. Other distributions like Laplacians have been used in some systems [20

multivariate Gaussian can be written as:

, (1)

where is the observation vector at time and the subscript indicates tha

Gaussian under consideration belongs to the state. Figure 3 shows an examp

five state HMM with skip transitions. A few terms need to be defined in order to be

understand the use of HMM in recognizing speech. The following formulation assu

A aij{ }=

B bj o( ){ }= o

bj ot( ) 1

2π( )n Σ j

--------------------------- 1
2
--- ot µ j–( )'Σ j

1–
ot µ j–( )– 

 exp=

ot t j

jth
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Forward Probability

The forward probability gives us the probability of generating the observati

from time 1 to  and the model ending in state  at time .

(2)

The above computation can be efficiently done using the following recurs

formulation.

(3)

, for  and, (4)

(5)

Backward Probability

The backward probability is the probability of generating the observations fr

time  to  if the model was in state  at time .

(6)

Similar to the forward probability computation, a recursive formulation exists

the backward probability computation.

T

t j t

α j t( ) Pr o1 o2 … ot x t( ), j=, , ,( )=

α j 1( ) aij bj o1( )=

α j t( ) αi t 1–( )aij
i 2=

N 1–

∑ bj ot( )= 1 t T≤<

αN T( ) αi T( )aiN
i 2=

N 1–

∑=

t 1+ T j t

β j t( ) Pr ot 1+ ot 2+ … oT x t( ) j=, , ,( )=
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, for  and, (8)

(9)

Utterance Likelihood

The total utterance probability, , given the model , can be written in term

 and  as:

, (10)

where  is the sequence of observation vectors.

Assumptions and Limitations in HMMs

Though the HMM paradigm is very attractive for speech recognition, seve

assumptions need to be made about the structure of the process (speech in this ca

they are modeling [29]. Some of these assumptions blatantly violate our knowledge o

speech production process.

Stationarity

For the speech production process to be modeled by a state machine we n

βi t( ) aiN=

βi t( ) aij bj ot 1+( )
i 2=

N 1–

∑ β j t 1+( )= 1 t T<≤

β1 1( ) a1 jb j o1( )
i 2=

N 1–

∑ β j 1( )=

P M

α β

P O M( ) α j t( )β j t( )
j 1=

N

∑
t 1=

T

∑=

O
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assume that during the period the model is in a particular state the complete process

represented by one feature vector. This implies that we assume stationarity for the du

of a frame of speech data. Typically we use a frame analysis rate of 20-100 frames/se

Independence of Observations

In the HMM, the likelihood of generating an observation is dependent only u

the state and is independent of all other observations. This is not true of speech te

change slowly compared to the frame rate which makes observations dependent o

another. The very fact that the human speech production system is a complex dyna

system incapable of sudden transitions, makes this assumption significant. To allo

correlation between data from adjacent frames, most speech recognition systems au

the input feature vectors with their derivatives.

State Transition Probability

From the definition of the transition probabilities between states in an HMM,

note that the probability of staying in a state decreases exponentially with time. This i

something we see in real data where the state distributions take the form of a Ga

distribution. The work around this problem is to explicitly model state durati

probabilities along with the observation probabilities [22]. This has however not prove

be effective.
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Parameter Estimation

The goal of the HMM parameter estimation process is to maximize the likelih

of the data given the model, traditionally known as Maximum Likelihood (M

estimation [6,16,17]. In effect ML tries to maximize the a posteriori probability of t

training data given the model. Note that this implies that other models are not part o

optimization process. One of the most compelling reasons for the success of ML

HMMs has been the existence of iterative methods to estimate the parameters

guaranteeing convergence. Expectation-Maximization (EM) is one algorithm that is

extensively to perform ML estimation.

EM Theorem and Maximum Likelihood

If,

(11)

then,

(12)

The gist of the above theorem is that, if we start with a model and find a mo

such that equation 11 is satisfied, then the observed data is more probable und

model than under [6]. This is a very powerful theorem in that it guarante

convergence at least to a local minimum. In the above formulation is the interme

random variable that depends on the model parameter settings. For example, co

Pθ' t y( ) Pθ t y( )log
t

∑ Pθ' t y( ) Pθ' t y( )log
t

∑>

Pθ y( ) Pθ' y( )>

θ'

θ y

θ θ'

t

t



13

LHS

and

he

ct to

e state

led

[24].

tric

tion.

large

h.

ated

odels

nce.

e the

y are

es a

still
the state sequence in an HMM which is not something we observed. The terms on the

and RHS of equation 11 can be represented as the auxiliary functions

. Since we are maximizing the auxiliary function in the EM framework, t

parameter update equations can be obtained by differentiating with respe

each of the parameters and setting the derivative to zero. When , is chosen as th

sequence, the EM formulation is called the Baum-Welch algorithm [23]. A detai

explanation of the update equations for each of the HMM parameters can be found in

The ML approach works well if the assumption that the form of the parame

probability model that computes is the same as the true underlying distribu

This is a very restrictive assumption is many cases and assumes the availability of a

amount of training data to estimate the parameters of a complex process like speec

Another drawback of the ML approach is that the model parameters are estim

based on the data belonging to that model only. It is independent of all the other m

being estimated. This is however not the best way to improve recognition performa

Some form of discrimination needs to be added to the estimation process to improv

performance. MLPs and SVMs estimate parameters discriminatively. However the

not tractable to model temporal variation in their basic form. The next section describ

couple of commonly used discriminative training techniques, at the core of which is

an HMM parameter optimization problem.

Q θ' θ,( )

Q θ' θ',( )

Q θ' θ,( )

t

P O M( )
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Discriminative Estimation Techniques

The primary difference between HMM parameter estimation via ML and ot

discriminative techniques is that the objective criterion in the latter includes

probability of the data given that the wrong model was used [24,25,26]. This provide

optimization process with the negative examples of the data being generated by the m

The motivation for discriminative techniques could be either based on some inform

theoretic concept or directly trying to minimize the ultimate goal of speech recognitio

reduced classification error [28].

Maximum Mutual Information

The mutual information, , between variables and is defined as the ave

amount of uncertainty about the knowledge of given knowledge of [17

Mathematically this can be defined as:

(13)

The conditional entropy of  given  is given by

(14)

Having defined mutual information, we now pose the speech recognition prob

in the same framework. Let , denote the random variables corresponding to

words and observation vectors. The uncertainty in the word sequence given the ac

observations is the conditional entropy of  given ,

I X Y

X Y

I X Y;( ) H X( ) H X Y⁄( )–=

X Y

P x y,( ) P x y⁄( )log
x y,
∑ E P x y⁄( )log[ ]–=

W O

W O
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Note that we do not know in general and need to estimate a param

fit. The conditional entropy of the words given the acoustic observations can be show

confirm to the following inequality:

, (16)

where denotes a particular parametric fit to the actual distribution [17,24,

The equality holds only if . Thus by minimizing 15, we can g

an optimal estimate of the conditional distribution. This minimization can also be don

a maximization of the mutual information and hence the name maximum mu

information (MMI) to this optimization technique.

The objective function for the MMI estimation of the parameters

nothing but the mutual information of the words given the acoustic observations unde

parametric distribution .

(17)

Replacing the expectations by the sample averages and assuming the trainin

to comprise of  utterances,

H W O⁄( ) H W( ) I W O;( )–=

P w o,( )

Hλ W O⁄( ) H W O⁄( )≥

λ

Pλ w o⁄( ) P w o⁄( )=

LMMI

λ

LMMI λ( ) I λ X Y;( ) Hλ W( ) E Pλ w o⁄( )log[ ]–= =

R
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In the above equation is the word sequence in the utterance wi

corresponding composite model . are the set of observation vectors correspo

to the utterance. The first term in the above equation is equivalent to the

optimization criterion and the second term is what makes this a discriminative framew

LMMI λ( ) 1
R
--- Pλ wr( )log

r 1=

R

∑–
1
R
---

Pλ or Mr( )Pλ wr( )

Pλ or( )
----------------------------------------------log

r 1=

R

∑+=

1
R
--- Pλ or Mr( ) Pλ or( )log–log{ }

r 1=

R

∑=

wr r
th

Mr or

r
th
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CHAPTER III

SUPPORT VECTOR MACHINES

Empirical risk minimization is one of the most commonly used optimizati

procedures in machine learning. In this regime, the goal is to arrive at a parameter s

that gives the smallest value for,

(19)

where is the set of adjustable parameters. Note that this risk computatio

done over the training examples only. Neural network training (back-propagatio

particular) is a direct consequence a similar optimization process. There are no proba

computations involved in the above definition of risk. Another form of risk common

used is,

(20)

This is the estimated risk. Vapnik proved that bounds exist for this expected

such that,

, (21)

where is called the Vapnik Chervonenkis (VC) dimension [21,32,37]. In gen

we cannot compute the left hand side of 21. However, if we know , we can comput

right hand side. Thus when we are given several learning machines with a given emp

Remp α( ) 1
2l
----- yi f xi α,( )–

i 1=

l

∑=

α

R α( ) 1
2
--- y f x α,( )– P x y,( )d∫=

R α( ) Remp α( ) f h( )+≤

h

h
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risk, we can choose the machine that minimizes the right hand side. This princi

approach is called Structural Risk Minimization [21]. Support Vector Machine (SV

theory is built on top of this founding principle.

Linear Hyperplane Classifiers

The power of SVMs lies in transforming data to a high dimensional space

constructing a linear binary classifier in this high dimensional space. Construction

hyperplane in a feature space requires transformation of the -dimensional input vec

into an -dimensional feature vector, i.e.

(22)

n x

N

Φ: ℜn ℜN→( )
Figure 4. Definition of a linear hyperplane classifiers. SVMs are constructed by maxi
ing the margin.
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A -dimensional linear separator and a bias are then constructed for th

of transformed vectors. Classification of an unknown vector is done by f

transforming the vector to the feature space and then computing

. (23)

The above formulation is based on the fact that among all hyperplanes sepa

the data, there exists a unique one that maximizes the margin of separation betwe

classes. Figure 4, shows a typical 2-class classification example where the exampl

perfectly separable using a linear decision region. and define two hyperpl

the distance between which needs to be maximized. Let be the normal to the de

reg ion . Le t the t ra in ing examples be represen ted as the tup

where . The points that lie on the hyperplane, th

we assume, to separate the data satisfy,

(24)

where is the distance of the hyperplane from the origin. Let the “margin” of

SVM be defined as the distance between closest positive and negative example fro

hyperplane. The SVM looks for the separating hyperplane which gives the maxim

margin. Once the hyperplane is obtained, all the training examples satisfy the follo

inequalities.

(25)

N w b

x

w x⋅ b+( )sgn

H1 H2

w

N

xi yi,{ } i, 1 … N, ,= 1 yi 1≤ ≤–

w x⋅ b+ 0=

b

xi w⋅ b+ +1≥ for yi +1=
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The above equations can be compactly represented as a single inequality,

(27)

Looking at the above equations with respect to Figure 4, we see that all po

satisfying 25 lie on and the points satisfying 26, lie on . The distance betw

and is . Note that for a completely separable data set, no points

between and . Thus for maximizing the margin, we need to minimize . T

reason we choose the square of the norm is that there are elegant techniques to op

convex functions with constraints. The training points for which the equality in 27 ho

are called Support Vectors. In Figure 4, they are indicated by concentric circles. So,

we face with a minimization problem given a set of inequality constraints. The theor

xi w⋅ b+ 1–≤ for yi 1–=

yi xi w⋅ b+( ) 1– 0≥ i∀

H1 H2

H1 H2 2 w⁄

H1 H2 w
2

ial
s in-
Figure 5. Sample classification by the Royal Holloway SVM applet using a polynom
kernel. This data cannot be classified by a linear separating margin. This i
teresting in the sense that SVMs handle multi-modal data effectively.



21

4].

n be

tive

are

ives

ect

ts

n to
Lagrange multipliers has been in existence for such problems for several decades [3

The functional for the above optimization problem, called the Lagrangian, ca

written as,

(28)

This is clearly a convex quadratic programming problem since the objec

function itself is convex. The above is called the primal formulation. Since we

minimizing , its gradient with respect to and should be equal to zero. This g

the conditions,

, and (29)

. (30)

Substituting the above equations into 28, we get the dual formulation,

(31)

SVM learning can thus be treated as the problem of maximizing with resp

to  subject to their positivity and the constraints 30.

In const ra ined opt imizat ion problems wi th inequal i ty const ra in

Karush-Kuhn-Tucker (KKT) are necessary and sufficient conditions for a solutio

LP
1
2
--- w

2
αi yi

xi w⋅ b+( )
i 1=

N

∑ αi
i 1=

N

∑+–=

LP w b

w αi yi
xi

i
∑=

αi yi
i

∑ 0=

LD αi
i

∑ 1
2
--- αiα j

yi y j
xi x j⋅

i j,
∑–=

LD

αi
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Karush-Kuhn-Tucker Theorem[31,34]

Let be three functions. Let be a regular point and a local minimiz

for the problem of minimizing subject to , . Then there exi

 and  such that:

(32)

, and (33)

. (34)

Using the third of the KKT conditions, we get

(35)

Equations 29 and 35 are the solutions for and respectively. Thus far we

seen the case where the training data is completely separable using a linear m

However, we know very well that this is not the case with real-world data. Most of

classification problems involve non-separable data. Given such a training set, we still

to get the best classifier possible. The optimal-margin classifier can be extended t

non-separable case by using a set of slack variables. In this situation, the ineq

constrains become,

f h g, , x
*

f h x( ) 0= g x( ) 0≤

λ*
: ℜm∈ µ*

: ℜp∈

µ*
0≥

Df x*( ) λ* T
Dh x*( ) µ* T

Dg x*( )+ + 0
T

=

µ* T
g x*( ) 0=

αi yi xi w⋅ b+( ) 1–( ) 0=

w b
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, (36)

, and (37)

. (38)

A close look the above inequalities shows that for an error to occur,

corresponding needs to be greater than 1. This implies that the upper bound o

number of errors on the training data is . The optimization process in the new

setting needs to minimize this quantity also. The new term that is added to the obje

function is , where is used to control the penalty for a training error. T

solution of the optimization now includes the constraint,

(39)

The higher this value the harder the optimization process will try to minim

training errors. However this could mean increased time for convergence and in

cases a larger support vector set.

Non-linear Hyperplane Classifiers

Now that we have seen the problem of estimating linear classifiers for cases w

data is both separable or non-separable. This however does not help us solve

real-world situations where the data warrants the need for non-linear decision surf

xi w⋅ b+ +1 ξi–≥ for yi +1=

xi w⋅ b+ 1– ξi+≤ for yi 1–=

ξi 0≥ i∀

ξi

ξi
i

∑

C ξi
i

∑ 
  2

C

0 αi C≤ ≤
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This section deals with extending the SVM paradigm to handle such cases.

In all the formulations of the optimization in the previous sections notice that

only place the data points occur is in the dot product. Suppose the data point

transformed to a higher dimension using

, (40)

where is the dimensionality of the new feature space. In this new space we

still construct optimum margin classifiers with the only difference being that the sim

dot product ill now have to be replaced by . If we can define a “kern

function that could compute this dot product for us using and as inputs, then

circumvent the need to know the form of explicitly. In this new formulation, o

decision function will take the form,

. (41)

Of course there are several issues one has to take into account before w

guarantee the existence of the kernel . Mercer’s theorem can be used to ascerta

the pair  exists for a given kernel where  defines the new feature space [3

Mercer’s Theorem

There exists a mapping  and an expansion

Φ : ℜd ℜD→

D

Φ xi'( ) Φ xj( )⋅

K xi xj

Φ

f x( ) αi yi
Φ xi'( ) Φ x( )⋅ b+

i 1=

N

∑=

K

H Φ,{ } H

Φ
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if and only if, for any  such that

 is finite, (43)

then

(44)

So, the Mercer’s conditions tells us if a kernel is a dot product in some spac

does not however directly tell us how we define or even the feature sp

[21,32,36]. Some of the commonly used kernel functions are:

 — polynomial with degree (45)

— sigmoid (46)

 — radial basis function (47)

SVM Training Process

Though a solution for the quadratic optimization is guaranteed, the numbe

computations required can get very high depending on the separability of the data a

number of training data points. Several heuristics need to be considered to make

training possible is a reasonable amount of time. This section will discuss some o

important modifications to the optimization problem formulation that make handling ta

K x y,( ) Φi x( ) Φi y( )⋅
i

∑=

g x( )

g x( )2
xd∫

K x y,( )g x( )g y( ) xd yd∫ 0>

Φ

H

K x y,( ) x y⋅ 1+( )d
= d

K x y,( ) Sigmoid sx y⋅( ) c+[ ]=

K x y,( ) ϒ x y–
2

–{ }exp=
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with thousands of training points and support vectors possible.

Optimizing the functional in 31 can be very expensive if the data set is large (

a few thousand training samples) and may not fit the physical memory even on

modern day computers. Choosing the right optimizing regime becomes that much

important in this case. Several approaches have been developed, based on som

properties of the functional and the constraints, to make this optimization possible.

Chunking

This method is based on the idea of dividing the optimization problem i

sub-problems whose solution can be found efficiently. This method divides the trai

data into chunks and optimizes the functional for each chunk. How does this guar

overall optimization? Osuna proves that the chunking algorithm does in fact give the

solution as a global optimization process but takes much less operating memor

time [38,39].

The functional to optimize, 31 and the constraints on the Lagrange multipliers

be written in a vector form as:

, subject to, (48)

(49)

 and (50)

. (51)

In the above defined form of the functional,

W Λ( ) Λ 1
1
2
---Λ DΛ⋅+⋅–=

ΛT
y⋅ 0=

Λ C1– 0≤

Λ 0≤–
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The above problem needs to satisfy the KKT conditions to guarantee optima

For constraints 49, 50 and 51, let the KKT multipliers be , and . The KK

conditions for this problem, based on 32, 33 and 34, are

(53)

Now we can simplify the above conditions to a simple form based on the ra

into which a Lagrange multiplier  falls.

1. : Since the multiplier is non zero, and should be zero to

satisfy the KKT conditions. This results in the following equation.

(54)

2. : This value for the multiplier implies that is zero, leading to

. If we define as the estimated label

value given by

(55)

Dij yi yjK xi x j,( )=

µ ϒ Π

W Λ( ) ϒ Π– µy+ +∇ 0=

ϒT Λ C1–( ) 0=

ΠTΛ 0=

ϒ 0≥
Π 0≥

λi

0 λi C< < πi νi

DΛ( )i 1– µyi+ 0=

λi C= πi

DΛ( )i 1– νi µyi+ + 0= g xi( )

g xi( ) αi yi
K xi x j,( ) b+

i 1=

N

∑=
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(56)

The support vectors that have their multipliers at are called Bounded Sup

Vectors (BSV) and are important in learning the inherent overlap in the data.

3. : This condition implies that is zero and hence,

Following a procedure similar to the previous

case it can be shown that for the multiplier in this range,

(57)

The conditions 56 and 57 are essential in deciding whether a multiplier is viola

the KKT conditions which in turn will be used to choose the best set to optimize so

the overall optimization is fast. The Chunking algorithm can be specified in three sim

steps [38]. Suppose we define the working set as and the non-working set (w

multipliers do not change while solving the sub-problems) as .

1. Choose  training points from the data set at random.

2. Solve the optimization problem defined by the set .

3. For some , such that:

•  and

•  and

yig xi( ) 1 νi–= νi

yig xi( ) 1≤

C

λi 0= νi

DΛ( )i 1– πi µyi+ + 0=

yig xi( ) 1≥

B

N

B

B

j N∈

λ j 0= yjg x j( ) 1<

λ j C= yjg x j( ) 1>
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replace and , , with  and the solve the new sub-problem given by:

Minimize , subject to, (58)

(59)

where,

(60)

The above algorithm is guaranteed to strictly improve the objective function ba

on the observations made by Osuna [38]. The convex quadratic form of the obje

function also guarantees that the algorithm will reach the global optimum solution w

a finite number of iterations. The challenge now is find the best working set at e

iteration and to device heuristics to avoid redundant computations. The work by Joac

addresses this issue of the SVM training algorithm [42].

Some Observations

A fallout of having BSVs as a solution to a sub-problem is that they can be g

low priority for being considered for choosing the next chunk of data. In fact in so

0 λ j C< < yjg x j( ) 1≠

λi i B∈ λ j

W ΛB( ) ΛB
T

1–
1
2
---ΛB

T
DBBΛB

T ΛB
T

qBN+⋅+=

ΛB
T

yN ΛN
T

yN⋅+⋅ 0=( )

ΛB C1– 0≤

ΛB 0≤–

qBN( )
j

y j λi yi
K xi x j,( )

i 1=

N

∑=
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cases where we know that the training data is mislabelled, we may decide to throw

the BSVs from the optimization process altogether. The very fact that they are at the

bound implies that they are maximally violating the KKT conditions. If they are n

handled carefully, they may end up becoming a support vector in the solution for e

sub-problem.

If, SVM optimization is a solved problem, why are they not more commonly us

The answer to this question is the — “It depends on the data”. The most important as

that users need to consider before using SVMs for an application are:

• Nature of the data: SVMs by definition are static classifiers. In order to handle

data that evolves with time and has features varying with time, we need to look

at hybrid methods

• Size of the data set: The larger the data set, the more the number o

computations involved in the optimization process. Though new algorithms

like Chunking have made SVMs capable of handling large data sets, this wa

one of the main bottlenecks in the past.

• Separability of the data: If the training data is separable, SVMs will learn the

decision region quickly and efficiently (in terms of the number of SVs that are

needed to represent the decision region). With separable data, training could b

a potential problem and most of the training vectors may end up becoming

SVs. This makes SVM based classification very inefficient. We do have some

control over the allowed errors in the training data with the use of the

parameter .C



31

,

e,
• Number of classes involved: Since SVMs are inherently two-class classifiers

they would require N classifiers in order to handle an N-class problem. The

resource usage in this case is much higher compared to other techniques lik

decision trees [43], HMMs or neural networks.
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CHAPTER IV

KERNEL-BASED DISCRIMINATION

The last two chapters saw us develop the theory behind HMMs and SVMs.

have also looked at some of the pros and cons involved in both the machine lea

techniques. This chapter probes into one possible way to tie HMMs and SVMs in ord

get better performance. This method is motivated by the fact the HMMs do a good

modeling the characteristics of a given class and SVMs learn the difference betwee

class and any other class.

Likelihood Ratio Tests

In HMM based continuous speech recognition, the output distributions in e

state of the HMM could be either discrete or continuous. In the case of continu

distributions, Gaussians are typically used to model the probabilities. The most com

computation in this setup involves the probability of the input sequence given the m

When we need to determine which model was more likely to have generated the

feature sequence, we do a likelihood ratio test, typically converting the probabilities t

log. domain for computational ease [15,44].

Let , be the observation sequence (cepstral coefficie

for example). The aim is to find if model or is more likely to have produced

observation sequence. In the probability space, this can pose as a likelihood ration t

O o1 o2 … o2, , ,{ }=

M1 M2
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(61)

The first term in the above equation is the classic definition of the maxim

likelihood criterion which is the premise on which HMMs are built. The second term is

a priori information and is ignored in most cases assuming a uniform prior. Thus

decision process simply involves looking at the sign of . When is positive, we cho

 as the model that generated  and vice-versa.

The parameters of the HMM are however estimated to maximize

individually using only the positive examples of data generated by a

respectively. In reality however it would be better if we could estimate t

probabilities by forcing the model to be more likely for positive examples and less lik

for negative examples. In chapter 2, we did see one such framework while discu

MMIE estimation of HMM parameters.

Equation 61 can be rewritten as,

, (62)

where is the probability of the input observations. an

are the posterior probabilities of belonging to the models and

respectively. The goal of the parameter estimation should be to optimize these pos

L
P O M1⁄( )P M1( )
P O M2⁄( )P M2( )
------------------------------------------log

P O M1⁄( )
P O M2⁄( )
-------------------------log

P M1( )
P M2( )
-----------------log+= =

L L

M1 O

P O M1⁄( )

P O M2⁄( ) M1

M2

L
P M1 O⁄( )P O( )
P M2 O⁄( )P O( )
--------------------------------------log

P M1 O⁄( )
P M2 O⁄( )
-------------------------log= =

P O( ) P M1 O⁄( )

P M2 O⁄( ) O M1 M2
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directly. ANNs do this inherently in their estimation process though the param

estimation is actually done via the least-squares method [15]. With SVMs, this nee

done explicitly by converting SVM distances to probabilities [46,59].

Kernels and Sufficient Statistics

From chapter 3, we saw that kernel methods provide a measure that can be u

compare any two input sequences unlike the likelihood in a traditional HMM that o

gives a measure of closeness of the sequence to the model itself. In fact it may hap

many cases that two different HMMs may give the same likelihood to two comple

different input sequences. This can happen because each of the HMMs was estima

isolation of the other. This section will try to develop the theory to build an SVM on top

the underlying HMMs. This mechanism will hopefully allow us to use the representa

power of the HMMs (as well as their ability to handle temporal variations) in conjunct

with the discriminative power of SVMs.

In order to describe the training data, all algorithms based on some form

stochastic optimization will need the gradient of an objective function with respect to

parameters of the HMM. It is the solution to these gradients that gives us the opt

estimated value. The vector of sufficient statistics describes the process of generati

underlying state sequence from the HMM. For example, the quantities in this vector w

include the posterior probabilities of taking a particular state transition or emanati

particular observation vector for a state. In traditional HMM parameter estimation, the

likelihood of the data given the model is the objective function. Thus any observa
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sequence can be converted to a fixed length feature vector comprising of the suff

statistics. Instead of dealing with the sufficient statistics directly, we can work with

gradients described above. These scores are also called the Fisher Scores [44].

scores are part of the commonly used definition for the Fisher Information Matrix [4

The Fisher matrix is often viewed as the information contained in the data set about

parameter.

HMMs parameter estimation is based on the maximization of wh

is the parameter set that defines the model and needs to be optimized. The F

information matrix , for this case is defined as,

, where (63)

(64)

and the expectation is over . is called the Fisher score. We

define a distance metric for two observation sequences and mapped to this m

 as,

(65)

in terms of the Fisher scores. The right-hand side of the above equation is po

definite and hence can be kernel as per Mercer’s conditions [21]. Note how the a

definition of a kernel ties in our notion of HMM parameter estimation with kernels t

P O M⁄( )

M

I

I EO UOUO
T

 
 
 

=

UO P O M⁄( )logM∇=

P O M⁄( ) UO

Oi Oj

M

K Oi Oj,( ) UOi
I

1–
UOj

=
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forma an integral part of SVM theory. The Fisher kernel defined above can be used a

other kernel defined in the previous chapter to determine a separating hyperplane

Fisher score space or a higher dimensional space. This method will perform at le

well as the underlying HMM model [44]. We now have a simple procedure where

advantages of the HMM model are available to the discriminative classifier, SVM, via

Fisher kernel. With logistic regression models, can be viewed as the covari

matrix of a Gaussian prior and is often discarded from 65. We do not however know if

is true in the case of traditional HMMs. This aspect will be explored further as part of

proposed research.

Computation of Fisher Scores

Having seen the definition of Fisher kernels we now move on to defining the Fi

scores in terms of the HMM parameters. We will see how these scores can be e

obtained with minor modifications to the Baum-Welch computations [24]. For simplic

we will derive the required quantities assuming single mixture Gaussian models

diagonal covariances.

Let us first define some of the terms we will use in defining estimates of all

constituents of the Fisher score vectors. Let be the observation sequence and let

the models under consideration with a parameter set . The likelihood of the observ

sequence given the model is defined as,

(66)

I
1–

O M

λ

Lλ O M⁄( ) Pλ O M⁄( )log=
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(67)

The posterior probability can be written in terms of the  and  as,

.

In order to introduce the other parameters in the model into the above equatio

can write it as,

(68)

Transition Probability

The transition probabilities need to be handled carefully in order to guarantee

the transitions out of any state sum to unity. For this reason, a regularization functi

used to redefine the transitions as,

 and (69)

which is also known as softmax is some literature [15]. Then,

λ∂
∂Lλ 1

Pλ O M( )
------------------------

λ∂
∂

Pλ O M⁄( )=

α β

Pλ O M( ) α j t( )β j t( )
j 1=

N

∑
t 1=

T

∑=

Pλ O M( ) αi t 1–( )aij
i 1=

N

∑
 
 
 
 
 

bj ot( )β
j

t( )
j 1=

N

∑
t 1=

T

∑=

aij

f a hij( )

f a hik( )
k
∑
--------------------------= f a x( ) e

x
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where  is the kroneker delta.

Since  depends on ‘s, applying the chain rule gives,

. (71)

Differentiating 68 with respect to  and using it along with 70 in 71 yields,

(72)

The above equations used in conjunction with 67 provide means to get

components in the Fisher score vector corresponding to the transition probabilities.

Mean

In order to get the contribution of the means towards the Fisher scores, we ne

start with the definition of a Gaussian as in 1. Differentiating this equation with respe

the  component of the mean of distribution corresponding to the  state, we g

(73)

From 68, we know that,

hik∂
∂aij aij δkj aik–( )=

δ

P aij

hik∂
∂

Pλ O M⁄( )
aij∂
∂

Pλ O M⁄( )
hik∂

∂aij

j
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aij

hik∂
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Pλ O M⁄( ) αi t 1–( )aij δkj aik–( )bj ot( )β
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j
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d
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j
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(74)

Using the chain rule for partial derivatives, we get,

, where, (75)

(76)

Using 75 and 76 in 67 gives the contribution of the mean vectors toward the Fi

scores.

Variance

As mentioned earlier, for simplicity we assume diagonal covariances in th

derivations. In the case of diagonal covariances, we need to constrain the values su

all of them are positive. In order to convert the constrained set to an unconstrained s

we did with the transitions), we use the following regularization.

 and (77)

We can start first by looking at the gradient of the output distribution with resp

to the variance.

bj ot( )∂
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Pλ O M⁄( ) αi t 1–( )aij
i 1=

N

∑
 
 
 
 
 

β j t( )
t 1=

T

∑=

µ jd∂
∂

Pλ O M⁄( ) C t j,( )bj ot( )
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Using 77, we can convert 78 in terms of the regularization variable  as,

(79)

Using 74 and the chain rule for partial derivatives, we get,

(80)

Using 80 in 67, we get the contribution of the variances towards the Fisher sc

The above quantities are also used in other discriminative techniques like M

training and MCE estimation [24,25,26,28]. These quantities can be easily extend

include multiple instances of the model and multiple mixture Gaussians.
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CHAPTER V

PRELIMINARY EXPERIMENTS

Since SVMs have proven to be effective on classical pattern recognition prob

[], a logical first step in this work was apply this technique to classification of phone

segments in speech at various levels. The main aim of the set of experiments descri

this chapter is to ascertain that SVMs can in fact provide good discrimination of ph

segments. This would then be followed by integrating this paradigm into a hyb

SVM/HMM system, similar to hybrid ANN/HMM systems that have had significa

success in the past [15,48]. All the SVM experiments described in this proposal were

using the publicly available SVM toolkit, SVMLight [42]. The system was modified a

places to accommodate the requirements of the experiments described here.

Some of the key features in SVMLight include:

• fast optimization algorithm based on Chunking described in the previous

chapter

• caching of kernel evaluations for speed
order/gamma/
hidden-units RBF Polynomial Gaussian

Node Network

2/0.025/22 32 42 46

3/0.05/88 31 44 47

4/0.1/528 32 45 45

ts
Table 1. Performance of various SVM kernels on the Deterding vowel data. The resul
for the Gaussian note network were obtained from [60].
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• handles many thousands of support vectors

• handles several ten-thousands of training examples

• supports standard kernel functions and lets you define your own

All experiments involving ANNs were performed using another publicly availa

toolkit, NICO [49]. This toolkit has been used successfully for simple classificat

experiments as well as more complex applications involving hybrid HMM/AN

technology. This toolkit supports recurrent connections as well as time-delay wind

which are essential for speech recognition. The topology of the networks can be

defined via a simple user interface.

All HMM based experiments were done using the ISIP ASR system [55].

Vowel Classification

In our first pilot experiment, we applied SVMs to a publicly available vow

classification task [47]. In this evaluation, the speech data was collected at a 10

sampling rate and low pass filtered at 4.7 kHz. The signal was then transforme

10 log-area parameters, giving a 10 dimensional input space. A window duratio
Order/Gamma RBF Polynomial

2/0.1 68 68

3/1 64 66

5/10 51 68
Table 2. Performance of SVMs on the SWB phone data.
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50 msec. was used for generating the features. The training set consisted of 528 f

from eight speakers and the test set consisted of 462 frames from the remaining

speakers. Table 1 shows the performance of two type of kernels on the test

Performance using both the kernels is better than most nonlinear classifica

schemes [46]. The best performance reported on this data set is, however, 29% erro

a speaker adaptation scheme called Separable Mixture Models [50]. Neural net

classifiers (Gaussian Node Network) produce a misclassification rate of 45% [47].

Phone Classification

In our next experiment, 16 phones were extracted from selected utterances

Switchboard Corpus. The phones were chosen to represent vowels, the fricatives ‘
rmal-
uta-

Feature
Extraction

k-means
clustering normalization

SVM
estimation

voting scheme

classification

SVM models

test data

speech

class
information
Figure 6. Phone classification experiment organization. k-means clustering and no
ization are nor necessary if the classifiers can be made to “behave” comp
tionally.
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‘f ’ and the liquids ‘l’ and ‘r’ [51]. The segmentation was based on a 44 pho

context-independent HMM system where each phone was modeled as a 3-state HM

exemplars of each phone, we chose only the data that was mapped to the central s

the corresponding HMM. Feature vectors were generated by computing 12 mel-s

cepstra along with energy. A frame duration of 10 msec. and a window duratio

25 msec. was used for data generation. Though in most speech recognition syste

also use the derivatives and the acceleration counterparts of the base features, we d

to keep the data simple for these preliminary experiments.

To avoid dealing with problems associated with the optimization process invo

in training the database, we clustered the data for each phone into 200 clusters using

exemplars. A simple k-means algorithm with a mean-squared error distance measu

used for the clustering process. However, to avoid clusters representing features with

average values, we normalized the features to a [-1, +1] range before the clusters

generated. The test set was chosen from the normalized data to represent a s

independent portion. It consisted of 100 exemplars per phone to a total of 1600

vectors.

Table 2 shows the classification results obtained by using RBF and polyno

kernels. Though these misclassification rates are on the higher side, it is worth notin

the phone error rate on this data is about ~68% and one would expect a higher

mis-classification rate. Using a higher dimensional feature vector, which either incl

the derivatives and acceleration coefficients or uses concatenated frames could im

the performance significantly. Experiments along these lines have been using in
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systems with proven success [56,58]. Since dealing with high dimensional data is

concern with SVMs, the above technique will be studied as part of the proposed wo

Frame Classification

The previous set of experiments were performed on very highly confusable da

order for us to better analyze the performance of SVMs, we performed experiments

smaller task, Alphadigits. The OGI Alphadigit corpus [52] is a telephone datab

collected using a T1 interface with over 3000 subjects reading a list of either 19 o

alphanumeric strings (e.g., “8 h a 8 b h”). All experiments were performed on a trai

set of 51545 utterances from 2237 speakers and evaluated on 3329 utterances fro

speakers [54].

Its acoustic properties are similar to SWB corpus described below. The 1

unique strings comprising the prompted utterances were each six words long, and ea

was designed to balance the phonetic context of all word pairs.
phone pair
SVM

misclassification
rate

HMM
misclassification

rate

f <=> sil 14.6 13.1

r <=> l 11.9 17.8

s <=> sil 37.5 42.4

s <=> z 9.7 17.8

t <=> p 8.7 18.1

t <=> d 9.6 22.2
Table 3. Best performance of SVMs in the frame classification experiment. Only the
common confusable phone pairs were evaluated.
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The first experiment involved phone classification using single mixture HM

models. The primary motivation for doing this was to get a confusion matrix for phone

that the highly confusable pairs would be analyzed using SVMs. The most confus

phone pairs included, “s -> z”, “s -> f”, “t -> p” and “t -> d”. Notice these are the clas

minimal pairs encountered in most telephone speech data.

As part of the analysis we looked at the HMMs for the phones “s” and “f”. W

visually inspected the Gaussians in the trained models to find the dimensions with

discrimination and confusion. Dimensions 1 and 2 (cepstral coefficients 1 and 2) wer

most confusable. Figure 7 shows the incredible amount of confusion in these dimen
-1.0 -0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

s phone
f phone
+ve SV
-ve SV

rnels)
Figure 7. Training data for the s and phones and the support vectors (using RBF ke
are shown as data points with concentric diamonds and squares.
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Notice the number of overlapped f samples in the s region. We chose a test set tha

relatively clean (Figure 8). This was done in order to quantify the effect of the overlap

data. The first experiment done using SVMs failed in that the frame misclassification

was close to 40%. The training data clearly indicates why this would be the case

SVMs. The SVMs were trying to add all the overlapped data into the support vector 

In chapter 3 we defined a set of support vectors that were at the bounds c

BSVs. All the support vectors that were trying to model the overlapped data fell into

class. During optimization of the SVMs, we can throw away all the BSVs as case

inconsistent examples. This is as amazing feature of the SVMs — automatic
-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

s phone
f phone

d was
Figure 8. Test data for the s and f phones (note that the data is normalized) an
chosen to be easily separable.
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cleaning. We then trained the SVMs using the above property. In Figure 7, notice

there are no SVMs trying to model the overlapped data for the negative, i.e. f ph

examples. This system gave an frame mis-classification rate of 3%. In order to com

with other classification schemes, namely HMMs and neural networks, we constructe

same and tested on the same test set. The neural network system, a simple MLP w

hidden layer with 32 hidden units, gave a 9% mis-classification rate. The HMM sys

built using the above training data came in at 14% mis-classification rate. Having le

the effect of BSVs on training, we trained the SVMs forcing BSVs to be removed from

optimization process. With this setup, SVMs outperformed HMMs on almost

confusion pairs (except for f<=>sil) as shown in table 3. The difference is performan

very significant and encouraging.
Conventional
HMM

Feature
Vectors

N-best
Alignments

MLP
Likelihood

Computation

SVM
Classifiers

Feature
Vectors

Acoustic
Likelihood

ists

Conventional
HMM

Feature
Vectors

N-best
Alignments

MLP
Likelihood

Computation

SVM
Classifiers

Feature
Vectors

Acoustic
Likelihood
Figure 9. Hybrid HMM/SVM system. SVMs are used exclusively to reorder N-best l
generated by HMMs. All alignments are done by the HMM system.
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Rescoring Experiments

In the last few sections we have seen clear evidence of the classification pow

SVMs even while dealing with highly confusable data. Of course most speech recogn

are not simply frame level classifiers. They use a hierarchical approach to recogn

starting at the frame level and moving all the way up to the sentence level [55]. Any

machine learning technique needs to be integrated into this framework in order to be

to do a fair comparison with HMMs.

As a first step towards this integration process, we designed a simple setup w

we use information from conventional HMM systems. We then add information provi

by the SVMs to get to final solution. This setup is shown in Figure 9. Assuming that

have already trained the SVM classifiers, we start with N-best lists generated

conventional HMM system (a word-internal triphone system in this case).

The hybrid system we built was a context-independent system with 42 ph
N-Best SVM Rescore

1 —

5 48.5%

10 49.8%

15 52.4%

20 55.8%

25 55.4%

30 54.5%

.
Table 4. Performance of the SVM/HMM hybrid system on the N-best rescoring task
The traditional word-internal HMM systems comes in at 49.8% WER.
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classes (one classifier for each). The model level alignment for each of the hypothe

the N-best list was generated using a 32 mixture context-independent HMM sys

Based on these alignments the frames are classified using the 42 SVMs. However,

output distances and not posterior probabilities. In order to convert the distanc

posterior probabilities, a simple MLP with a softmax layer was used. The output o

MLP is a measure of the probability though only an approximation. These probabil

are used to compute the utterance likelihood of each hypothesis in the N-best list

N-best list is reordered based on the likelihood and the top hypothesis is used to com

the word error rate (WER).

Table 4 shows the performance of this HMM/SVM hybrid system on N-best l

for a standard test set of the Switchboard corpus [53]. This test set was developed

1997 Johns Hopkins Workshop [10]. These results are very interesting, especiall

performance on the 5-best lists. The word-internal context dependent system us

generate the N-best lists gave a WER of 49.8% on the test set. The 1.3% reduct

WER using the hybrid system is significant and encouraging.

There are however several issues that need to be addressed as part of the pr

work. One of the most compelling questions that arise here is — Is the confusable p

set the same for HMMs and SVMs?. If the answer is yes, then the experiment done h

valid. However, if the answer is no, then the N-best lists do not mean much for the S

system. The hybrid system could give more gains if the confusion pairs in the N-bes

matched those for SVMs. Another aspect that has not been addressed here is th

alignments. In real hybrid systems the time alignments should be obtained as part
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PROPOSED WORK AND EXPERIMENTS

The previous chapters described the theory behind HMMs and SVMs and

provided motivation to use SVMs in conjunction with HMMs. Results on prelimina

experiments described in the previous chapter are very encouraging. However, the

addressed the pattern classification component of the research. We need to perform

of experiments to ascertain that hybrid HMM/SVM systems do indeed give signific
-5.0 -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0
SVM Scores

0.0

100.0

200.0

C
ou

nt

ote
The
Figure 10. Histogram of SVM distances on the training set for phones “s” and “z”. N
the bimodal distribution corresponding to positive and negative examples.
class conditional distributions (each mode) is typically not Gaussian.
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improvement over traditional HMM based systems. This chapter describes experim

towards this end.

Training and Evaluation Data

The primary datasets that will be used for evaluating the work proposed here

be the OGI Alphadigit Corpus and the Switchboard (SWB) corpus [52,53]. For

alphadigit data all experiments will be performed on a training set of 51545 uttera

from 2237 speakers and evaluated on 3329 utterances from 739 speakers [54]. F

SWB based experiments we will use the training and test sets created during the

LVCSR Summer workshop at Johns Hopkins University [10]. The training set consis

60 hours of speech or 114000 utterances. The test set consists of 2427 utterances a

open-loop set, i.e. no speakers from the training set appear in the test set.

Frame Classification

In the last chapter we described preliminary frame classification experim

performed on alphadigit data. These experiments clearly indicate the power of SVM

learning decision regions on highly confusable data. This will be extended to a m

challenging task, SWB. Using a conventional HMM system a phone confusion matrix

be constructed and the most confusable pairs of phones will be evaluated using S

The performance of the system will be compared with the simple Bayes classifier

MLPs.

Another aspect of the machine learning techniques being compared here is

behavior towards input of dimension other than 13 cepstral coefficients augmente
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their derivatives and acceleration coefficients. In experiments not reported here, we

that the performance of HMMs using only the base features (no gradients) is signific

worse than while using the gradients. In order to build simple systems, this aspe

machine learning techniques will be studied in this work. An interesting observation f

the experiment mentioned above is that HMMs using acceleration coefficients along

the base features does better than the system using base and delta features. Th

indication of the need for a wider context in the acoustic space. Similar to experim

done with MLPs, we will investigate the effect of using feature vectors comprising

multiple frames of data on the classification rate with SVMs.

N-best Rescoring Experiments

We have previously described our first attempts at integrating SVMs into a

speech recognition system via an N-best rescoring paradigm. However, these exper

did not explore all the possible avenues. Notably absent was a clean method to co

SVM distances to likelihoods. Significant work on this topic has been done in the

couple of years. ANNs have a clear advantage over SVMs in this respect because

ease with which the outputs from the ANNs can be converted to poste

probabilities [56,57,58]. One simple way of handling this situation is to fit a Gaussian

the class conditional probabilities and . The posteri

probability will then be a sigmoid [59]. Unfortunately the Gaussia

assumption for the class-conditional probabilities is not typically true as show

Figure 10. In closer look at the figure tells us that any symmetric distribution is

p f y 1=⁄( ) p f y 1–=⁄( )

p y 1= f⁄( )
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appropriate for this case since the larger the distance from the margin the better it

terms of a distribution this would however mean that the farthest examples are the

probable for that class.

Platt suggests that instead of fitting the class-conditionals first, it is bette

parametrically fit the posteriors directly [21]. The posterior takes the form,

(81)

The free parameters and are estimated using the training data and si

prior estimates. In this work I plan on using the above method and incorporating it into

rescoring framework. It has also been seen that using a cross-validation scheme is

than estimates both the posteriors and the SVM parameters using the same set (esp

for non-linear kernels [59]).

Kernel Discrimination Experiments

As described in chapter 4, the key component of kernel discrimination are

Fisher scores. These scores can be obtained while training the HMMs using the fo

backward algorithm. The recipe to use this system is as follows:

Training

• Perform a Viterbi alignment on the training utterances in order to identify all

phone instances and their time information

• compute the fisher scores using a pass of forward-backward algorithm

• train the Fisher SVMs to discriminate between the positive and negative

p y 1= f⁄( ) 1
1 Af B+( )exp+
----------------------------------------=

A B
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Testing

• use N-best lists to start with

• For each utterance in the N-best list do a pass of forward-backward algorithm

in order to compute the Fisher scores for the models

• Compute the posterior probabilities of the phones based on the SVM

classifications and generate one probability for the complete utterance.

• Reorder the N-best lists using the probabilities generated in the previous step

The above experiments will be first performed on alphadigit data followed

SWB. Note also that all experiments above will be done using context-independent H

models. With context-dependent models we need to be worried about the numb

classes that need to be classified (typically there are about 8000 models in a SWB sy

A possible way to avoid this explosion is to follow a strategy followed in hybr

HMM/ANN systems where classifiers are built to first predict the context. The

probabilities can then be used in conjunction with classifiers for context-indepen

models to simulate a context-dependent framework [15]. This methodology wil

explored as part of the proposed work.

The baseline systems that will be used for comparing the systems described

will be context-dependent triphone systems for both alphadigits and SWB. These sy

perform at 9.7% and 45.6% WER respectively on the test sets described previously.
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