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ABSTRACT 

Evaluation of Space Time Block Codes  
Under Controlled Fading Conditions 

Using Hardware Simulation 
 

Leonard R Colavito 
Doctor of Philosophy 

Temple University, 2009 
Doctor Advisory Committee Chair: Dennis Silage, PhD 

Space time block codes (STBC) are a type of multiple input multiple output (MIMO) 

communications system that encode a block of information into a sequence of symbol 

sets that are simultaneously sent from multiple transmit antennas to one or more receive 

antennas.  MIMO communications systems are of interest because of their potential for 

great channel capacity improvement in multipath digital communications environments.  

The STBC class of MIMO communications systems has the property of being easily 

decoded using linear combination of the received signals.  These systems are resilient in 

the face of multipath channel effects. 

These types of systems have traditionally been studied using theoretical analyses, 

software simulations based on probabilistic channel models and real signal based 

experiments.  Probabilistic models simulate channel effects as random variables, but are 

only estimates of actual conditions.  Real signal experiments seek to evaluate system 

performance under real-world conditions, but are not readily repeatable as the channel 

conditions are not easily controlled.  Both of these modeling methods evaluate system 

performance in terms of the aggregate results.    
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This dissertation research presents an approach that introduces deterministic attenuation 

and delay to probabilistic channel models to allow the evaluation of MIMO system 

performance under extreme or unusual channel conditions.  The approach is 

demonstrated by constructing a hardware accelerated STBC system model.  The model is 

then used to evaluate the performance of the STBC under controlled path fading 

conditions.  

The STBC system model utilizes a Xilinix® programmable gate array (PGA) device as a 

hardware accelerator.  The model exploits the parallel processing capability of the PGA 

to simulate a nine path channel model and a three antenna rate 1/2 STBC.  Each of the 

channel paths allows for deterministic adjustment of attenuation and delay in addition to 

the additive white Gaussian noise (AWGN) and multipath fading effects.   The signal 

paths can be attenuated and delayed both individually and in combination.  The model 

evaluates performance of the communications system in terms of bit error rate (BER) 

versus signal-to-noise ratio (SNR).   

The use of hardware to accelerate the simulation greatly reduces the time required to 

obtain results.  Reduced simulation time improves the use of the model and allows for 

evaluation under a greater number of conditions, greater number of points for each 

performance curve or evaluation of lower BER points.  The processing rate of the 

hardware accelerated model is compared to that for an equivalent software model. 

The system model provides an extensible platform for future research in communications 

theory.  The system model can be extended by replacement of the STBC, the 
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implementation of more sophisticated channel models, addition of channel estimation or 

by increasing the number of signal paths.   
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CHAPTER 1  
INTRODUCTION 

MIMO Systems 

Space time block codes (STBC) are a class of multiple input multiple output (MIMO) 

systems that are of interest because of their potential for high channel capacity in 

multipath digital communications environments [1].  A simple STBC wireless system, 

illustrated in Figure 1-1, employs two transmit antennas and two receive antennas.  The 

system transmits a data stream as a time sequence of symbols sets.  During each symbol 

time, one symbol is transmitted from each antenna simultaneously.  At the receive 

antennas, the STBC allows the original data stream to be reconstructed from the arriving 

signals [2].   

Figure 1-1 MIMO System Diagram 

Space time block code wireless systems exploit the spatial diversity of the signal paths 

between each transmission antenna and each receiving antenna and the decorrelation of 

the signals that results due to multipath.  For a given transmitter power and received 

signal-to-noise ratio (SNR), there is a theoretical maximum rate at which information can 

be sent over the channel without error [3].  Systems exploiting spatial diversity can 

achieve a greater error-free information rate than traditional single-input single-output 
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(SISO) systems.  Thus, utilizing spatial diversity increases the channel capacity in the 

Shannon sense [4].     Furthermore, this channel capacity is proportional to the number of 

antennas utilized at the transmitter and receiver, so that even greater channel capacity can 

be achieved by utilizing more antennas [4]. 

The increased channel capacity can be utilized either to provide a greater data rate for a 

single user or to provide equivalent data rates to a greater number of users [5].  The 

former is of interest to telecommunication providers who want to offer “high bandwidth” 

services, such as video to mobile customers, while the later has been of interest for 

wireless networking application and is now under consideration for several emerging 

wireless standards [6].   

The inherent potential of MIMO digital communications systems has prompted 

considerable study, consisting of theoretical analyses, simulations based on probabilistic 

channel models and real world experiments.  Work by Telatar [4], Foshini [7] and 

Gans [8] provided the mathematical foundation that predicted the capacity improving 

potential of MIMO.  Seshadri [3] provided methods and criteria for the design of optimal 

space-time codes.  Alamouti [9] demonstrated how a second order (2 transmit antennas 

and 2 receive antennas) STBC could out perform a traditional (1 transmit and 1 receive 

antenna) transmission over a Rayleigh fading multipath transmission channel.  Higher 

order codes, those utilizing three or more transmit and receive antennas, have also been 

proposed using the same technique [1] [10].   
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Evaluation and proof of the theoretical performance of STBC based communications 

systems has been attempted through simulation and experimentation.  Simulations based 

on Rayleigh and Rican fading channel models where initially used to validate the 

predicted performance of STBC codes and MIMO systems [1] [9] [10] [11] [12] [13].   

Furthermore, some real world experiments have also been attempted to verify the 

practical use of MIMO systems [14] [15].  In addition, several programmable gate array 

(PGA) hardware accelerator simulations have been constructed to allow for the rapid-

prototyping of MIMO systems for the evaluation of new codes and implementations [16] 

[17] [18] [19] [20] [21]. 

However, all of these systems only consider the aggregate performance of the system 

under evaluation.  One salient contribution of this dissertation research is to present a 

system model in which specific extreme or unusual conditions may be specifically 

created and evaluated.  Such conditions include the total loss of one or more channel 

paths or additional phase delay experienced by some paths.  This approach is 

demonstrated by constructing a model that allows such control of channel conditions. 

Modeling MIMO Systems 

The other salient contribution of this dissertation research is the construction of a PGA 

hardware accelerated model to study a three antenna STBC under such controlled channel 

conditions.  The MIMO system simulation model is based on a third-order space-time 

block code.  The model consists of a transmitter, a multipath channel, a receiver and a 

BER evaluation module as illustrated in Figure 1-2. 
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Figure 1-2 MIMO System Model 

The transmitter, shown in Figure 1-3, employs quadrature phase shift keying (QPSK) as 

the base modulation scheme. The QPSK symbols inherently have equal symbol energy 

that facilitates evenly distributing the transmitter power across the antennas [1].  The 

transmitter accepts a data stream that is configured as two-bit codewords, which are then 

mapped to the QPSK symbols.  The symbols are sent from the transmitting antennas as 

blocks by utilizing the STBC. 
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Figure 1-3 Transmitter Model 

The channel model simulates a multipath fading environment with additive white 

Gaussian noise (AWGN) and allows attenuation and phase shift to be controlled for each 

signal path as shown in Figure 1-4.  The channel model simulates nine signal paths 

between three transmit antennas and three receive antennas.  Each signal path 

independently experiences random fading and phase delay. The channel model allows the 

variance of these effects to be controlled.  The channel model also allows for an 

additional attenuation and phase delay for each signal path.  These parameters allow for 

evaluation of the system under specific conditions such as the complete loss of one or 

more signal paths.   
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Figure 1-4 Channel Model 

The channel model provides for the introduction of noise to the signals arriving at the 

receiver.  Assuming a constant transmitter power and equal energy symbols, the variance 

of the noise is synonymous with the SNR.  Typically, the performance of a digital 

communications system is evaluated in terms of the bit-error-rate (BER) verses the SNR.  

Thus, the model allows for the BER to be evaluated as the SNR is progressively changed. 

Figure 1-5 illustrates the receiver that includes a decoder and a detector.  The decoder 

computes estimates of the transmitted symbols using the STBC and knowledge of the 

channel characteristics.  The receiver model assumes complete knowledge of the channel 

state information (CSI), that is, the decoder has perfect knowledge of the channel 

characteristics, including attenuation and phase shift, at every instant in time [1].  After 

the symbol estimates are computed, a maximum likelihood (ML) detector is used to 
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select the most probable symbols sent from the transmitter.  The receiver then maps 

symbols into codewords and reconstructs the data stream.   

Figure 1-5 Receiver Model 

The receiver model can be augmented in the future with a channel estimator so that the 

CSI need not be assumed.  Furthermore, the detector may be replaced with another 

detection techniques such as maximum a posteriori probability (MAP) detection [32].  

The performance of the STBC system is evaluated in terms of the BER verses the SNR 

under the given channel conditions.  The transmitter input data bits are directly compared 

with the corresponding output bits from the receiver.  The total bits transferred and the 

total bit errors detected are tallied.  The BER can then be computed at any time by taking 

the ratio of these values. 

Hardware verses Software Implementation 

The inherent parallel structure of the STBC system model make it well suited for 

implementation in PGA hardware.  Since each signal path is independent of all others, it 

is theoretically possible to compute all signal paths simultaneously.  Thus, a parallel 
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computational hardware implementation can be beneficial for the evaluation of such 

systems considering the following: 

1. In order to evaluate the system performance across changing conditions, it is 

necessary to compute a BER verses SNR curve for each set of channel conditions.   

2. The statistical evaluation of a BER curve requires the repeated processing of a 

data set for a series of SNR values. 

3. Low BER values, such as those achievable by MIMO systems, require the 

processing of a large number of bits in order to obtain sufficient precision.  For 

example, for a BER on the order of 10-6 it is necessary to process at least 108 data 

bits to achieve a precision of 1%. 

Since evaluation of system performance across varying channel conditions can require a 

large number of computations, this research implements the system model in PGA 

hardware.  A software based implementation is also created as a reference.  The hardware 

implementation provides a computational speed advantage over software implementation, 

allowing for larger data sets and finer resolution of analysis points. 

Development Tools 

The software implementation of the system is written in C# using the Microsoft® Visual 

Studio 2008 integrated development environment (IDE).  The Visual Studio IDE 

provides all the software tools and libraries required to write and debug the model.  No 

specialized software libraries other than the standard .NET libraries provided with Visual 
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Studio 2008 are utilized to construct the model and no special effort is made to optimize 

the code.  The model is executed on an AMD Athlon™ 64 Dual Core processor running 

at 2.66MHz. 

The hardware implementation is primarily developed using the MATLAB/Simulink® 

programming environment [24] [25] in combinations with the Xilinx System GeneratorTM 

[26].  Simulink allows the construction of system models, such as the MIMO system of 

this dissertation research, using a graphical development environment in which functional 

blocks are interconnected with signal lines.  Simulink solves the model at a series of time 

steps by evaluating each function block and propagating the results across the signal 

connections. 

Simulink function blocks are generally equivalent to MATLAB functions.  The Xilinx 

System Generator extends the Simulink block libraries with function blocks that can be 

automatically translated to Xilinx PGA hardware implementations.  The System 

Generator libraries also include a block that allows a custom function to be defined using 

a subset of the MATLAB scripting language that is also automatically translated into a 

hardware implementation.  The Simulink and System Generator blocks can be intermixed 

in a single model as long as special interface blocks are utilized. 

Simulink supports the direct exchange of data with the MATLAB environment.  This 

mechanism is utilized to set the model configuration before a simulation run, to monitor 

its progress and to retrieve the final results.  The Simulink environment is also utilized to 

perform off-line computations such as parameter conversion and the computation of BER 
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from the final tallies of bits transmitted and errors, eliminating the need to implement 

division and transcendental functions in hardware. 

System Generator supports the use of its block sets both in a software simulation and in a 

hardware assisted mode.  In software simulation the System Generator blocks are 

processed just as any other block by Simulink and produce results that are equivalent to 

that produced by a hardware implementation.  This mode can be time consuming for 

large models such as the MIMO model of this dissertation research, but is useful for 

detailed debugging.   

In the hardware assisted mode, also known as “hardware-in-the-loop”, a subsystem 

composed entirely of System Generator blocks is converted into an equivalent hardware 

implementation block [26].  The hardware block is then used to replace the subsystem in 

the Simulink model.  At the start of a simulation, the hardware implementation is 

downloaded to target hardware device for execution.  In the course of the simulation, data 

is passed to and from the hardware subsystem for processing.  The hardware subsystem 

executes with the speed and parallel execution capabilities of the PGA target device 

greatly improving the performance of the simulation. 

The PGA target device for the implementation is the Xilinx® Vertex-4 SX FPGA.  The 

Vertex-4 is the fourth generation in the Xilinx Vertex family and features XtremeDSPTM 

Slices that can perform 18x18 bit multiplication and additions, Block RAM for lookup 

tables and intermediate data storage and configurable logic blocks (CLB) for state 

machine and control logic [15].  These PGA resources are well suited to implement the 
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complex number computations and random number generation required by the STBC 

model. 

This research utilizes the Xilinx ML402 evaluation platform for the Vertex-4 SX FPGA.  

The ML402 platform is configured with the XC4VSX35 Vertex-4 FPGA and also 

provides an Ethernet port for downloading programming code and transferring data to 

and from the simulation [22].   

Problem Statement 

This dissertation research demonstrates a method for evaluation of STBC based MIMO 

communications systems under controlled channel condition by constructing a simulation 

model allowing individual control of signal path conditions in terms of attenuation and 

phase delay.  The simulation model is based on a third order STBC and is implemented 

both in sequential software and as a Simulink model with a Xilinx FPGA hardware 

accelerator.  Both model implementations are validated by confirming the predicted 

performance results for the STBC.  The software implementation is utilized primarily as a 

reference of model performance, while the hardware implementation is used to 

demonstrate how MIMO system performance degradation can be examined under 

controlled channel conditions. 

Additionally, the model itself provides a platform for future research in digital 

communications theory by allowing substitution of the base modulation, the STBC, the 

base channel model, the number of signal paths, the detector and the decoder.  



 12 

Furthermore, the model is extensible so that components such as channel estimation can 

be in incorporated. 

Outline of the Dissertation 

This chapter provides an introduction to STBC systems and discusses the applicability of 

a PGA hardware assisted system model.  Chapter 2 describes the historical precedent of 

the development of MIMO focusing on STBC systems.  Chapter 3 provides the digital 

communications theory behind the system model constructed.  Chapter 4 presents the 

general design of the system model implementation that applies to both the software and 

hardware models.  Chapter 5 discusses details specific to the software model 

implementation.  Chapter 6 discusses details specific to the hardware model 

implementation.  Chapter 7 describes the method for validating the model.  Finally, 

Chapter 8 discusses the results obtained from the simulation models, compares their 

performance and indicates the significance and extension of this dissertation research. 
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CHAPTER 2  
HISTORICAL BACKGROUND 

Multiple-input-multiple-out (MIMO) digital communications systems grew out of the 

desire to improve the performance of cellular wireless service [27][29].  Investigations 

leading to MIMO began with an examination of antenna diversity to overcome the effects 

of multipath encountered by mobile wireless users.  Multipath results when the signal 

sent from a transmitter travels over several different spatial paths to a receiver as 

illustrated in Figure 2-1.  Each path may impose a different attenuation, phase shift and 

time delay on the signal.  At the receiver, the signals arriving via the different paths 

interfere with each other degrading the reception of the intended signal.  In addition, the 

effect of each transmission path on the signal can vary with time. 

Figure 2-1 Multipath 
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Spatial diversity attempts to mitigate some of the multipath effect by utilizing two or 

more transmit or receive antennas.  If two receive antennas can be placed far enough 

apart to ensure that the arriving signals are uncorrelated, each will see the signal affected 

differently by the multipath.  Antenna diversity then attempts to utilize the best signal 

received, by switching between antennas or by combining the signals from two or more 

antennas [27].  However, unlike MIMO, antenna diversity does not utilize the multipath 

itself for a performance advantage. 

The next step in the evolution of MIMO systems came from reversing the previous 

concept.  If a signal is transmitted from several antennas, spaced far enough apart to 

ensure different signal paths, then the advantages of spatial diversity should be 

achievable while allowing the receiver to have only one antenna.  This arrangement is 

somewhat more practical to implement since it is often easier to accommodate more 

antennas at a stationary transmission site than on a mobile receiver. 

Such a system was presented by Wittneben [28] for applications, such as police radio, 

where a region is blanketed by identical signals transmitted from several sites at the same 

time.  As illustrated in Figure 2-2, the transmit sites are chosen so that the signals cover 

different areas, but overlap at the boundaries.  Wittneben proposed that reception could 

be improved in the overlapping regions by the use of optimally weighted combining.  He 

proposed that optimal weighting be applied to the transmitted signals to improve 

combining at the receiver.  Although Wittneben showed some improved performance 

with this method, this was still not a MIMO system since the weighting was applied only 
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to improve the combining of the signals at the receiver and not to utilize the additional 

capacity of the multiple spatial signal paths. 

Figure 2-2 Simulcast Signal Coverage 

Winters [29] took the next step in the evolution of MIMO systems and showed that the 

capacity of a wireless system could be increased if the signals from multiple receive 

antennas could be combined using an optimally weighted linear combination.  He 

analyzed the case were several mobile users, each having one antenna, communicate to a 

base station having eight antennas.  Winters showed that, with optimized combining of 

the received signals and assuming Rayleigh fading channels, interference to any one user 

due to the others could be canceled out.  That is, he showed that as long as the number of 

base station antennas is greater than the number of mobile users, each user’s bit error rate 

is the same as it would be if there where no other users.  Thus, the capacity of the 
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wireless system to support multiple mobile users could be improved by increasing the 

number of base station antennas. 

Seshadri and Winters [30] proposed two schemes that take advantage of the spatial 

diversity afforded by transmitting from multiple antennas.  Each scheme involved 

encoding blocks of information bits into symbols.  In the first scheme, a set of sequential 

symbols is transmitted simultaneously, with each symbol sent from a different antenna.  

In the second scheme, each antenna transmits the same symbol sequence, but introduces a 

delay of one symbol, such that the first symbol is transmitted from the first antenna 

during the first symbol time, from the second antenna during the second symbol time and 

so forth.  They also considered Rayleigh fading and multipath effects on the ability to 

correctly decode the data, and showed that these two simple schemes provided better 

BER verses SNR performance than an uncoded transmission between single antennas. 

Telatar [4] derived the information capacity C of a single user MIMO transmission over 

Rayleigh fading channels.  If the channel introduces AWGN of zero mean and noise 

power of PN = 1, then the total transmitter power PT is synonymous with the signal-to-

noise ratio SNR.  Consider the channel capacity of a system employing m transmit 

antennas and n receive antennas.  The total transmitter power PT is distributed among the 

m transmit antennas.  At the receiver, the signal from each of the n receive antennas is 

combined.  All antennas are assumed to be far enough apart so that the signals are 

essentially uncorrelated.  Telatar found three interesting results.   

1. Receive Diversity: For m = 1, C → C = log (1 + n SNR) as n → ∞.   
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2. Transmit Diversity: For n = 1, C → C = log (1 + SNR) as m → ∞.  

3. Combined Diversity: For n = m, C increase approximately linearly with n or m.   

At about the same time, Foschini and Gans [8] derived the same expressions for the 

channel capacity of MIMO channels.  This work lead immediately to work by 

Foschini [7] in which he proposed the use of the MIMO channel capacity by multiple 

users.  He described a method by which a primitive data stream is broken into a number 

of sub-streams to be transmitted simultaneously using a MIMO coding.  At the receiver, 

each data stream is recovered using a recursive method that later became known as the 

Diagonal Bell Laboratories Layered Space-Time (D-BLAST) method.  Afterward, the 

more computationally efficient Vertical BLAST (V-BLAST) method was proposed [31] 

and has become one of the main areas of MIMO research. 

In the BLAST method, the data streams are transmitted simultaneously from a set of 

antennas.  The matrix H of channel characteristics for the signal paths is assumed to be 

known and is usually determined using a training sequence.  At the receiver, the data 

streams are detected one-at-a-time.  Given N data streams, the first is detected in the 

presence of N − 1 interferers.  This is accomplished by computing a weighting vector w 

based on H that nulls the contributions from the interferers.  Once the first data stream is 

obtained, it can be subtracted from the received signals effectively canceling its 

interference with the remaining data streams.  The same process is then repeated for the 

second data stream, which only need be detected among the remaining N – 2 interferers. 
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Although Foschini provided a MIMO architecture with BLAST, he did not propose a 

method of coding.  His work, however, was followed by a number of papers that 

presented criteria for the design and optimum performance of space-time codes [11] [12] 

[13].  This work concluded that trellis codes provided better space-time codes than block 

codes in terms of diversity gain, code rate and computational complexity. 

Alamouti [9] proposed one of the first space-time block codes (STBC) that used two 

transmit antennas, two receive antennas and maximum-ratio receiver combining 

(MRRC).  He showed marked improvement in terms of BER verses SNR over a 

1-dimensional transmission.  Alamouti’s method, although suboptimal compared to trellis 

codes, lowered decoding complexity over trellis decoding by requiring only linear 

processing at the receiver.  He showed that STBC is a viable alternative to trellis codes 

for MIMO.    

Following the introduction of Alamouti’s method, Tarokh, Jararhani and Calderbank  [1] 

[10] showed how optimal STBCs could be designed.  They described how STBCs could 

yield the performance achieved by Alamouti.  They presented criteria for the design of 

optimal STBCs and determined the performance of such codes. Using these criteria, they 

derived several new STBCs utilizing three and four antennas.  One of these codes is the 

basis for the models implemented by this dissertation research. 
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CHAPTER 3  
THEORY OF OPERATION 

This research constructs a MIMO system model employing a three antenna rate ½ 

orthogonal space-time block code (STBC) as presented by Tarokh et al. [1].  As 

described in Chapter 1 and illustrated in Figure 1-2, the system consists of a transmitter, a 

multipath channel, a receiver and a BER evaluation module. This chapter provides the 

theory behind the model’s design and operation. 

Data Stream 

The input data consists of a continuous stream of arbitrary 8-bits data words that are 

provided by a uniform pseudo-random number generator (PRNG).  The data stream is 

assumed to have no error correction coding, although an error correction code could be 

added to the model.  The data word is demultiplexed into 4 two-bit codewords from the 

codeword space C = { c0 , c1 , c2 , c3 } where each codeword maps to a unique two-bit 

sequence defined in Table 3-1. 

Table 3-1 Definition of Codewords  

Codeword Bit Pattern 

c0 00 

c1 01 

c2 10 

c3 11 

 



 20 

Base Modulation 

The base modulation for the data transmission here is quadrature phase shift keying 

(QPSK), which provides four equal energy complex symbols from the symbol space 

S = { s0 , s1 , s2 , s3 }.  Each symbol from S can be decomposed into the sum of a real or 

in-phase (I) component and an imaginary or quadrature (Q) component as expressed by 

(1) [32].  Here siI and siQ are the coefficients of the in-phase and quadrature components 

respectively.  The functions φI(t) and φQ(t) are known as basis functions and are given by 

(2) and (3) respectively, where TS is the symbol period and fc is the carrier frequency 

[32]. 

)1( )()( tstss QiQIiIi ϕϕ += 

)2( )2cos(2)( tf
T

t c
S

I πϕ = 

)3( )2sin(2)( tf
T

t c
S

Q πϕ = 

Each symbol si is distinguished by its in-phase and quadrature coefficients.  The 

coefficients for each symbol are given in Table 3-2, where Es is the symbol energy and is 

the same for all symbols.  
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Table 3-2 Base Modulation Symbol Coefficients 

Symbol siI siQ 

s0 2sE+  2sE+  

s1 2sE−  2sE+  

s2 2sE+  2sE−  

s3 2sE−  2sE−  

 

A modulator or symbol mapper maps each codeword to a specific symbol according to 

Table 3-3, such that a given 8-bit data word maps to a vector of codewords that in turn 

map to a vector of symbols.  For example, the data word 001011102 corresponds to the 

codeword vector [ c0, c2, c3, c2 ], which in turn leads to the symbol vector [ s0, s2, s3, s2 ]. 

Table 3-3 Codeword to Symbol Mapping 

Codeword Symbol 

c0 s0 

c1 s1 

c2 s2 

c3 s3 

 

Space-Time Block Code 

The model uses a three antenna rate ½ orthogonal space-time block code proposed by 

Tarok et al. [1].  As given in (4), the matrix G describes the STBC, which encodes the 
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transmission of a symbol vector X = [ x0, x1, x2, x3 ] over eight transmission periods.  

Here, the elements of X are taken from the symbol space S such that the vector X 

corresponds to a data word as described in the previous section.  The encoding defines 

how the elements of X are transmitted during each of eight symbol periods or timeslots. 

Since, the transmission of the entire code block requires eight symbol periods and the 

block carries only four codewords, the code is rate ½.   
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In addition to assigning symbols to antennas, the encoding also applies the operations of 

negation and complex conjugation (indicated by *).  These operations are applied to the 

basic symbols during specific timeslots.  It can be observed that, for the chosen base 

modulation (QPSK), applying negation and/or complex conjugation to any symbol 

conveniently transforms that symbol into another symbol in S.  Thus, all of these 

operations can be accomplished by sign inversion of the real, imaginary or both the real 

and imaginary parts of the complex symbol. 
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Each row of the code matrix G specifies the symbols to be transmitted during one 

timeslot.  Here the columns of the matrix correspond to each of the transmission antennas 

{ t0, t1, t2 }.  Thus, the elements of a row determine the symbol transmitted from each 

antenna and the operation applied to the symbol during the timeslot.  For example, during 

the first transmission period, the symbol x0 is transmitted from antenna t0, x1 from t1 and 

x2 from t2.  During the second transmission period, -x1 is transmitted from t0, x0 from t1 

and –x3 from t2.  The process is repeated until all the rows of G have been sent, 

completing the transmission of the block. 

Transmitter 

A transmitter with output power PT excites the three transmitting antennas.  The 

transmitter power is distributed among the antennas such that the total transmitted power 

remains equal to PT.  Holding transmit power constant makes the resulting performance 

measurements directly comparable to a 1-dimensional transmission utilizing the same 

output power.  In MIMO digital communications systems where the channel state 

information (CSI) is known at the transmitter, it is possible to distribute the power 

optimally over the antennas [5].  As considered here, the transmitter is assumed to have 

no knowledge of the CSI, in which case it is optimal to distribute the power evenly to 

each of the antennas. 

The transmit antennas are assumed to be spaced far enough apart to ensure that the 

transmitted signals are uncorrelated, in other words, the transmit antennas do not 

constitute a beam forming array that delivers one signal, but instead provide multiple 
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independent signals [33].  The independent signals provide the spatial diversity from 

which the advantages of MIMO are derived. 

Channel 

Each transmitted signal traverses an independent fading path with channel characteristic 

given by (5).  Here αik is the attenuation, θik is the phase delay and hik is the channel 

characteristic for the path from the ith transmit antenna to the kth receive antenna.  The 

multipath channel introduces Rayleigh fading so that αik is a Rayleigh distributed random 

variable and θik is a uniformly distributed random variable [7]. 

)5( )exp( ikikik jh θα= 

The channel characteristics, hik , are independent identically distributed (iid) time varying 

complex random variables that form the matrix H according to (6).  The matrix H is 

assumed to be quasi-static, that is H is assumed to be constant for the time required to 

transmit a code block.   
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This dissertation research extends the definition of hik as in (7).  Two new variables have 

been introduced, Aik and Φik, which are chosen to establish the conditions of the 

simulation and remain constant throughout the evaluation of a BER curve.  The first 

variable, Aik provides a specific attenuation factor for a transmission path.  The second 

variable, Φik provides a bias to the phase delay.  
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)7( [ ])exp( ikikikikik jh Φ+Α= θα 

In addition to the transfer characteristics of each signal path, complex additive Gaussian 

white noise (AWGN) nk is introduced at each receive antenna.  In the model, nk is 

generated with a mean µ=0 and a variance σ2=1.  The variance is then scaled to obtain 

the required SNR. 

Receiver 

The receiver utilizes linear combining of the signals obtained from the three receive 

antennas.  Here rk is the signal observed at the kth receive antenna during a single 

transmission period.  The observed signal at each antenna is then the sum of the signals 

arriving from each of the transmitting antennas plus noise, as in (8).    
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Decoding of the STBC requires that the observed signals at each receive antenna be 

collected for all of the periods comprising the transmission of a code block.  Here rk
(τ) is 

the signal observed at the kth
 antenna during the τth transmission period.  In addition, 

assume that the receiver has perfect knowledge of the channel transfer characteristics H 

during the block transmission time.  The receiver applies linear combining to obtain 

estimates of the transmitted symbols, followed by maximum likelihood detection as 

described in the following sections. 
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Decoding 

The STBC utilized by the simulation model of this dissertation research given by (4) 

transfers the symbol vector X.  The decoder utilizes knowledge of the STBC and the 

channel transfer characteristics H to arrive at an estimate of the elements of X.  This 

method was developed by Tarok et al. [10], where (9) through (12) give the estimates. 
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Detection and Multiplexing 

The receiver uses maximum likelihood (ML) detection to recover the elements of X 

based on the estimates computed by the decoder [1] [10].  This is accomplished by 

computing the Euclidian distance between each estimate x̃n and each of the symbols in S 

as expressed in (13).  The symbols corresponding to the minimum distances are used to 

form the detected symbol vector Y = [ y0, y1, y2, y3 ], where yn = si such that si has the 
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smallest distance to xñ.  The elements of Y are then mapped back to codewords and these 

codewords are multiplexed to recover the data word. 
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BER Evaluation 

The bit error rate of the recovered data stream is determined by direct comparison to the 

original data stream.  In the simulation model, the BER evaluation maintains running 

totals of the number of bit errors and the total number of bits processed.  The quantitative 

value for BER is then computed by taking the ratio the total errors to the total bits 

processed.  
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CHAPTER 4  
GENERAL IMPLEMENATION 

This chapter describes the architecture and operation of the simulation models and 

provides details of the functional blocks.  The model is implemented both as a C# 

program on a Microsoft® Windows based desktop computer and as hardware-in-the-loop 

on a Xilinx Vertex-4 FPGA.  Both implementations have architecture as illustrated in 

Figure 4-1.  A Host environment provides the configuration and control for the 

simulation model.  Prior to each simulation, the Host sets the parameters such as SNR, 

path attenuations, and the number of bits to process.  The Host environment controls the 

starting and stopping of the simulation and monitors its progress.  At the completion of 

the simulation, the total bits and error counts are read and used to compute BER.  The 

Host environment can also automatically process a series of simulations with 

incrementally changing conditions so that BER verses SNR curves may be evaluated. 

Figure 4-1 Overview of Simulation Model 
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Inputs and Outputs 

The model is designed to compute BER verses SNR curve for the STBC system under 

specific conditions.  These conditions are provided to the model at the start of a 

simulation and remain constant throughout.  The conditions include the mean µm and 

variance µm of the multipath, attenuation and phase delays for the individual signal paths, 

the SNR and the total number of bits to process.  Data is generated within the simulation 

model and accumulators track the total number of bits processed as well as the total bit 

errors detected.  The simulation is complete when the total number of bits processed 

equals or exceeds the quantity specified for the simulation 

Multipath 

The multipath characteristics are defined by the mean µm and variance µm of the fading.  

These are real valued constants that are supplied once prior to the start of the simulation.  

These parameters are utilized in the generation of random variables αik and θik utilized in 

(7).  A single value of mean and variance define the fading conditions for all channel 

paths. 

Path Attenuation and Delay 

The path attenuation Aik and phase delay Φik characteristics define the attenuation and 

bias phase delay for each communications channel signal path.  Nine attenuation and 

delay pairs define the conditions for the nine signal paths of the communications channel.  

Each attenuation and delay pair is expressed as a single complex value zik in rectangular 

form as given by (14).   
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Signal-to-Noise Ratio 

The model generates channel noise from Gaussian pseudorandom number sources having 

zero mean and unit variance.  A required noise variance is computed from the specified 

SNR that is then used to scale the output of the Gaussian sources.   

Data 

Eight-bit data words are generated by a pseudorandom number generator (PRNG) within 

the simulation model.  Data words are uniformly distributed over the range [0, 255].  

Each data word is processed through the model and the output is compared to the input to 

determine bit errors.   

Bit-Error Counters 

The total number of bits and the total number of bit errors are accumulated within the 

model for each simulation.  The accumulators are sampled periodically during the 

simulation in order to monitor progress.  At the completion of the simulation, the content 

of the accumulators are used by the Host environment to compute the BER value. 

Architecture 

Figure 4-2 illustrates the architecture of the simulation model.  Each block represents a 

functional element.  Data input to the demultplexer block (Demux) is split into two-bit 

segments and used to form the codeword vector to be transmitted.  The codeword vector 

is mapped to a symbol vector X by the Symbol Mapper as described in Chapter 3.  The 

symbol vector is input to the transmitter block (Tx) that utilizes the STBC to encode the 
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symbols and pass them through the channel.  The noise vector n and the channel path 

characteristics matrix H are generated using pseudorandom number generators.  The 

channel (Chn) applies the signal path characteristics and noise to the symbols.   

The channel output is the receive vector R, which is utilized by the Decoder (Decode) to 

compute symbol estimates.  The detector (Detect) chooses the most likely transmitted 

codewords by selecting the symbols having the minimum Euclidian distance from the 

estimates.  Finally, the multiplexer block (Mux) reconstructs the output data word.  The 

output data words are then supplied to the BER block for evaluation.  A first-in first-out 

(FIFO) buffer compensates the reference data path for delay introduced by the channel 

processing. 

Figure 4-2 Simulation Model System Architecture 

Demultiplexer 

The Demux block converts the eight-bit input data word D into the codeword vector c = 
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to the values of γi according to Table 4-1, such that each γi takes on the one of the values 

from the codeword space C.  

Table 4-1 Input Data Bit to Codeword Mapping 

Bit Position Codeword 

0,1 γ0 

2,3 γ1 

4,5 γ2 

6,7 γ3 

 

Symbol Mapper 

The symbol mapper converts the codeword vector c to the symbol vector X.  Each 

symbol is represented as a complex value with energy Es = 1.  The energy of each symbol 

is then divided by the number of transmitting antennas used for the simulation so that the 

total transmitted power is PT = 1 and is evenly distributed to the antennas. 

Transmitter 

The transmitter encodes the symbols of X according to the STBC and sends them through 

the channel.  The STBC defines how the four symbols of X are transferred over eight 

time slots as explained in Chapter 3.  The STBC requires the operations negation and 

complex conjugation that are easily accomplished by sign inversion of the real, imaginary 

or both the real and imaginary parts of the complex symbol value as given by (15) 

through (18). 
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Channel 

The channel applies the path characteristics and noise to the transmitted symbols and 

computes the signal arriving at each receive antenna for each symbol time.  Path 

characteristics are provided by the H-Generator (HGen) and remain constant for a block 

time.  A noise vector n is supplied by the Noise generator (Noise Gen) every symbol 

time.  The channel block computes (8) for each receive antenna to produce the receive 

vector R.  A new receive vector is provided to the decoder by the channel block during 

each time slot. 

Noise Generator 

The noise generator (Noise Gen) is a set of three Gaussian pseudorandom number 

generators (GPNG) that supply three complex white noise values to the channel block 

during each symbol time.  One noise value is added at each of the three receive antennas.  

The noise generator is of zero mean and unit variance.  The basic PRNG produces 

uniformly distributed random values that are transformed using the inversion method to 

produce a Gaussian distribution [50].   
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The noise generator variance is scaled to produce the required SNR for the simulation.  

The required noise variance is computed assuming that a single symbol carries all of the 

transmitted energy, Es=1, to allow for comparison of the MIMO simulation results with 

that of a single channel QPSK transmission [10]. 

Path Characteristic H-Generator 

The H-generator (HGen) creates the nine element path characteristic matrix H.  Each 

element hik is computed based on (7), which can be divided into two parts, the random 

multipath characteristic Ψik and the path attenuation zik as given by (19).  The attenuation 

and phase delay zik are provided by the Host prior to execution of the simulation and 

remain constant throughout.  The multipath characteristic Ψik is generated for each coded 

block of symbols.   

)19( [ ] [ ])exp()exp())(( ikikikikikikik jjAzh θαφψ == 

Although the magnitude of Ψik is Rayleigh distributed and the phase of Ψik is uniformly 

distributed, in rectangular form the real and imaginary parts of Ψik are both Gaussian 

distributed [32].  Thus Ψik is created by generating a complex pair of Gaussian random 

variables using the same technique used to generate the channel noise.  However in this 

case, both the mean and the variance of the GPNG are adjusted to provide the multipath 

mean µm and variance σm
2 specified for the simulation.  The value for hik is then 

computed by multiplying Ψik by zik for each signal path. 
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Decoder 

The Decoder (Decode) estimates the elements of transmitted symbol vector X using (9) 

through (12).  The Decoder utilizes knowledge of the channel path characteristics H and 

receive vector R from the channel. The Decoder requires eight consecutive receive 

vectors to produce the symbol vector estimate.  One receive vector is obtained from the 

channel during each time slot.  Each receive vector is utilized immediately by the 

Decoder to compute all terms of (9), (10), (11) and (12) in which it is involved.  The 

terms are then accumulated for each of the estimated symbols.  After eight symbol times 

the estimates are then ready for the detector. 

Detector 

The Detector (Detect) selects the maximum likelihood symbol vector Y using the 

minimum distance computation of (13).  The detector converts Y into the corresponding 

codeword vector c̃. 

Multiplexer 

The Multiplexer (Mux) reconstructs the transmitted data word from the recovered 

codeword vector c̃.  The two-bit codewords are mapped back to an eight-bit data word 

according to Table 4-1.  The output data word is then available for BER evaluation and 

can be read by the Host system. 

Bit Errors 

The BER block counts the total number of bits processed through the system model and 

the number of resulting bit errors.  Bit errors are detected by direct comparison of the 
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input data word and the corresponding output data word.  A first-in first-out (FIFO) 

buffer holds input data words to compensate for the system’s processing delay. 
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CHAPTER 5 SOFTWARE MODEL 

This chapter describes the software based implementation of the MIMO system model 

used in this dissertation research.  The MIMO system model described in the pervious 

chapters was implemented here using an object oriented sequential programming 

approach.  The software is written as a Microsoft Windows® application that is intended 

to execute on a desktop or laptop computer.   

The software based model has several purposes.  First, the software implementation 

serves as a test bed for the MIMO system model design.  The software development tools 

allow for detailed debugging and quick turnaround of design changes.  The software 

based model relies on standard libraries to avoid problems that may be introduced when 

implementing fundamental algorithms as programmable gate array (PGA) hardware.  The 

software based model also uses floating-point number representation to avoid the 

limitations on the range and precision of values inherent to the PGA implementation. 

Second, the software based model is used to confirm results obtained by the PGA 

hardware based model.  The use of standard libraries and floating point numbers in the 

software implementation provides independently derived results that are free of certain 

limitations inherent to the hardware.  In addition, beyond the validation cases, 

comparison of results from the two implementations allows the results of both to be 

confirmed. 

Finally, the software implementation provides a performance reference to which the 

hardware implementation is compared.  Performance, in this dissertation research, is 
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defined by the time required to produce a BER verse SNR analysis for a given set of 

conditions and a number of points.  The execution time required by the software 

implementation is compared to the execution time required by the PGA hardware 

implementation. 

The remainder of this chapter describes the software implementation of the MIMO 

system model, its general operation and relevant details.  This implementation generally 

follows the design of Chapter 3 and Chapter 4.  The implementation of standard 

functional blocks is straight forward and details are not provided.  Details are given 

where the implementation is not evident or can have significant impact on results. 

Development Tools 

The software based model is written in the C# programming language using the 

Microsoft Visual Studio 2008 integrated development environment (IDE).  No special 

effort is made to optimize the software execution other than that general compiler 

optimization is enabled.  No special libraries are utilized other than those provided by 

Microsoft .NET 3.5 Framework and HydeSoft Computing DPlot.  The DPlot libraries 

only support the post-plotting of analysis curves and are not utilized during simulation.  

The .NET 3.5 Framework provides a Math class that is utilized by this model.  The Math 

class provides square root, trigonometric and exponential functions based on IEEE 754 

standard 64-bit floating-point number representation [44]. 



 39 

Interface 

The software model provides a graphical user interface (GUI) that allows setting the 

simulation conditions, controlling the simulation process, monitoring the simulation 

progress, and viewing the simulation results.  The GUI is split into two panes as shown in 

Figure 5-1.  The left pane is fixed and shows the overall simulation conditions.  The right 

pane has two tabbed pages.  The first tabbed page, shown in Figure 5-1, allows the 

antenna configuration to be defined and allows the attenuation and delay of each path to 

be specified.  The second tabbed page, shown in Figure 5-2, allows control of simulation, 

monitors the simulation progress and displays the results.  The individual simulation 

controls are described in the following sections. 

 

Figure 5-1 Software Based MIMO Model Configuration Page 
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Experiment Identifier 

The experiment identifier (Experiment Id) allows for a unique name to be given to each 

simulation.  The name is used to identify the specific results on the display and in the 

results file. 

Data Bits to Process 

The Total Bits define the minimum number of bits to process during the simulation.  

Each data point is evaluated by simulating no less than defined number of bits. 

Multipath Parameters 

Multipath can be enabled or disabled for each simulation.  Disabling multipath allows the 

QPSK validation case to be evaluated.  When multipath is enabled, the mean and 

variance of the random component of the channel characteristic may be set. 

Signal to Noise Ratio 

SNR values for the simulation are defined by a starting value, an ending value and a step 

value or count.  SNR values are expressed in dB and are always evenly distributed over 

the defined range and include the start and end values. 

Path Characteristics 

Path Characteristics are defined by the antenna configuration and the attenuation and 

delay for each transmission path.  Transmit and receive antennas used in the simulation 

are selected using the check boxes.  Any combination of transmit and receive antennas is 

possible.  Total transmit power is automatically distributed among the selected 
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transmission antennas.  Unselected receive antennas provide no input to the decoder, but 

the decoder operation is not changed. 

Selection of the antennas also defines the channel signal paths for the simulation.  Path 

attenuation in dB and phase delay in degrees may be specified for each available signal 

path.  When multipath is enabled, each signal path will also have a random component so 

that the resulting path characteristic hik will be as define by (19). 

 

Figure 5-2 Software Based MIMO Model Results Page 

Simulation Control 

The simulation is controlled with buttons located at the bottom of the results page as 

shown in Figure 5-2.  The Run button starts the simulation, while the Stop button allows 
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termination at any time.  The relative completion status is displayed graphically with the 

progress bar.  Intermediate results are displayed just above the progress bar and are 

updated periodically throughout the simulation. 

Results 

The simulation results are displayed in the text box just above the progress bar area 

shown in Figure 5-2.  The results start with a header indicating the conditions of the 

simulation and include the experiment identifier, time and date of the simulation, the 

number of data bits to process at each SNR, the antenna configuration and the path 

characteristics.  The header is followed by a table of results obtained at each SNR.  The 

table lists the SNR, actual number of bits processed, the number of bit errors detected and 

the computed BER.  The results table is followed by a time value indicating the time 

required to compute the simulation. 

The simulation results may be saved to a comma separated variable (csv) formatted file 

that can be imported to a spreadsheet or into MATLAB for analysis.  The results may 

also be plotted as shown in Figure 5-3.  The plot allows for two or more BER verses SNR 

analysis curves to be shown together for comparison. 
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Figure 5-3 Software Based MIMO Model Results Plot 

Operation 

The Run button initiates the simulation using the conditions defined through the 

interface.  For each SNR value, the simulation model is executed until the required 

number of data bits has been processed.  A BER value is then computed based on the 

number of errors detected and the actual number of bits processed.  The SNR, BER, bits 

processed and bit errors are recorded and the entire process is repeated using the next 

value of SNR.  The simulation ends when all of SNR points have been evaluated.  The 

simulation time is the real elapsed time from the start to completion. 
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For each SNR point, a core execution sequence implements the MIMO system model as 

described in Chapters 3 and Chapter 4.  This portion of the software consists of two 

nested loops.  The outer loop is executed once for each data byte (8-bits) processed.  An 

inner loop is executed once for each of the 8 time slots defined by the STBC.   

The outer loop has the following steps that map directly to the model of Figure 4-2. 

1. (Data Gen) Generate a new random data word D. 

2. (Demux) Covert the data word into codeword vector c. 

3. (Symbol Mapper) Map the codeword vector to a base transmission symbol 

vector X. 

4. (H Gen) Generate an instance of the channel characteristic matrix H. 

5. Process the inner loop to produce symbol estimates. 

6. (Detect) Select the maximum likelihood symbol vector Y and map it to the 

recovered codeword vector c ̃. 

7. (Mux) Reconstruct the data word from recovered codeword vector. 

8. (BER) Evaluate bit errors and accumulate totals 

The inner loop has the following steps that map directly to the model of Figure 4-2. 

1. (Tx) Encode symbols for transmission during each time slot according G 
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2. (Noise Gen) Generate an instance of the channel noise vector n. 

3. (Chn) Compute the receive vector R for the time slot. 

4. (Decode) Incrementally perform decoding of the received symbols. 

Software Model Implementation 

The following sections provide additional details on the implementation of significant 

sections of the software based MIMO model. 

Gaussian Random Number Sources 

The generation of the channel noise and the channel path characteristics all require 

independent Gaussian random numbers.  All random numbers in this model are generated 

using the .NET Random class [45].  The Random class produces uniformly distributed 

random numbers in the range of 0.0 to 1.0.  The required Gaussian distributed random 

numbers are derived from the values generated by the Random class using the inverse 

transform method [43].   

The inverse transform method produces a random variable X with a desired cumulative 

probability distribution function (cdf), in this case Gaussian, from a uniformly distributed 

random variable Y by applying the a transformation function according to (20).   

)20( )(1 YFX −= 

Here the transformation function F-1(Y) is the inverse of the Gaussian cdf.  The Gaussian 

cdf is given by (21) for zero mean and unit variance.   
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Although (21) is difficult to invert analytically, the goal may be achieved by utilizing an 

identity that makes use of the inverse of complimentary error function erfc-1(·) [46] 

according to (22). 

)22( ( )yerfcyF 22)( 11 −− •−= 

Furthermore, by applying the identities )1()( 11 yerfyerfc −= −− and 

)()( 11 yerfyerf −− −=−  where erf--1(y) is the inverse error function, F-1(y) may be 

expressed as in (23). 
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The inverse error function can be approximated by series expansion.  In this dissertation 

research, the approximation function of (24) proposed by Winitzki [41][42] is utilized 

since it is easily implemented.  This method relies only on the mathematical functions 

available in the .NET Math class [47] and produced good results during for the validation 

test cases. 
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MIMO Decoding 

The MIMO decoding is performed using an incremental approach as described in [48].  

Following this approach (9) through (12) are first manipulated into (25) through (28), 

where each estimate is a series of summation terms that depend only on the symbols 

received during a single time slot. 
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The following definitions are now introduced. 
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Using the definitions of (29) and (30), (25) through (28) can be written as (31) through 

(34). 
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During each iteration of the inner loop sequence values are computed for pi
(t) and qi

(t) 

from the received data according to (29) and (30).  Values for the symbol estimates {x̃0, 

x̃1, x̃2, x̃3} are accumulated over eight successive iterations of the inner loop 

corresponding to the eight time slots of the STB transmission.  The resulting estimated 

symbol vector is passed to the detector and becomes the received codeword vector. 
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Path Characteristic Matrix Generation 

The channel path characteristic matrix H is generated once for each STB transmission.  

The path characteristics remain constant during the 8 transmission time slots and during 

the decode processing.  The path characteristics are generated based on the defined 

multipath characteristics, the antenna configuration and the attenuation and delay factors 

defined for each path.   

Each path characteristic value starts with a pair of random values generated by a 

Gaussian random number generator as described above.  The Gaussian random values are 

generated with zero mean and unit variance; after which, the values are scaled and offset 

to achieve the defined multipath mean and variance.  The random pair is then used to 

form a complex value to which the attenuation and delay for the path is applied according 

to (7). 

The antenna configuration and multipath selection determine how H matrix is populated.  

When multipath is enabled and the ith transmit antenna and the kth receive antenna are 

selected, the value of hik is populated as described.  When either a transmitter or a 

receiver antenna is not selected, the paths associated with that antenna are all assigned a 

value of zero.  This action effectively removes the unused paths from the MIMO model 

without requiring conditional changes in the operation of the remaining model 

components. 
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CHAPTER 6 HARDWARE MODEL 

This chapter describes the hardware based MIMO system model used in this dissertation 

research.  The hardware based model is implemented on a Xilinix Vertex-4 FPGA device 

and utilizes the MATLAB/Simulink environment for interface and control of the 

simulation.  The hardware based model is the main focus of the simulation work of this 

dissertation research because of its high processing performance. 

With some overhead for setup and data transfer, the hardware based model is able to 

process bits at a much greater rate than the software base model.  This processing rate 

advantage allows the total number of bits processed at each SNR point to be several 

orders of magnitude larger than what could be processed by the software based model in 

the same amount of time.  This allows for greater accuracy in the determination of BER 

especially as SNR increased. 

MIMO communications systems are of interest primarily because they can achieve better 

BER verse SNR performance than simpler schemes.  This means that the number of bit 

errors decreases more rapidly as SNR increases than for other systems.  Conversely, this 

characteristic requires that many more bits be processed to accurately determine the BER 

at any SNR.   

For example, consider the MIMO system model validation cases, described in Chapter 7, 

used in this dissertation research.  In order to achieve a BER precision of 0.1% for first 

seven SNR points, the first validation case requires 8x105 bits to be processed, the second 

validation case requires 3.4x106 processed bits and the third validation case requires that 
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3x107 bits be processed.  As a practical mater, the ability to process and evaluate bits at a 

high rate is important to the study of MIMO communications systems performance. 

Another reason for implementing the MIMO system model in PGA hardware in this 

dissertation research is to evaluate its practicality.  Mathematics and computer simulation 

can prove the performance characteristics that are possible using MIMO systems, but in 

order for the technique to be truly useful, it must be possible to achieve that performance 

using currently available computational technology.  The MIMO system model 

implementation on the Xilinx Vertex-4 FPGA, a commercially available hardware 

device, shows that the practical use of MIMO is achievable if the predicted BER verse 

SNR performance can be achieved under the resource and precision constraints imposed 

by the hardware. 

The remainder of this chapter describes the hardware implementation of the MIMO 

system model, its operation and relevant details.  Like the software based model, this 

implementation follows the design of Chapter 3 and Chapter 4.  Details are given where 

implementation is not straight forward or can significantly affect the results. 

Development Tools 

The hardware implementation of the MIMO system model used in this dissertation 

research is accomplished using two primary development tools, MATLAB/Simulink by 

The MathWorks and the Xilinx System Generator.  MATLAB provides the main 

development environment supporting general computation, data analysis, and scripting.  

MATLAB is also the environment from which Simulink is invoked.  Simulink provides a 
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graphical system modeling environment that supports the construction of the MIMO 

system model as interconnected functional blocks corresponding to that of Figure 4-2.  

The Xilinx System Generator provides block libraries for Simulink that translate directly 

to PGA hardware.  System Generator also extends the functionality of the Simulink to 

support hardware synthesis, configuration and data transfer to and from the PGA 

hardware. 

Number Representation 

Numeric values are handled using fixed-point format throughout the hardware 

implementation.  A fixed-point value is represented by a number of bits b of which the r 

lowest order bits represent the fractional portion and the b-r highest order bits represent 

the integer portion according to (35), where N is the value being represented and ai is the 

value of the bit in the ith position. 
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Fixed-point number representation limits the range and precision of the values.  The 

range of values that can be represented by unsigned fixed-point numbers is limited to 

]22,0[ rrb −− −  while the range of values that can be represented by signed fixed-point 

numbers is limited to ]22,2[ 11 rrbrb −−−−− −−  [72].  The precision with which fixed-

point numbers can be represented is 2-r regardless of the whether the representation is 

signed or unsigned. 
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Throughout the simulation model, the number of bits allocated to any particular value is 

chosen to make efficient use of the available PGA hardware resources.  In each case, the 

number of bits b allocated to a value is chosen such that its range is sufficient to 

accommodate the worst case value excursion and that its precision is sufficient to support 

the required accuracy. 

Nested Construction 

The PGA hardware based MIMO system model is constructed in a nested configuration 

of scripts and models as illustrated by Figure 6-1.  MATLAB supplies the outer layer and 

the encompassing environment in which the simulation model executes.  The MATLAB 

environment holds the parameters that define the conditions for a simulation, such as 

SNR, antenna configuration, and path attenuation and delay.  The MATLAB environment 

also collects and retains the results produced by a simulation: BER, bits processed and 

error count.  MATLAB also supports scripting that allows a sequence of simulations to 

be configured and executed automatically so that the data points for an entire BER verses 

SNR curve can be computed.  Finally, MATLAB is used to analyze the data generated by 

the simulations. 
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MATLAB (software)

Simulink (software)

MIMO Simulation Support (hardware)

Core MIMO System
(hardware)

 

Figure 6-1 Nested Construction of the Hardware MIMO Model 

Simulink is launched from within the MATLAB environment and provides the primary 

means for constructing and executing the MIMO system model.  Blocks from the 

standard Simulink libraries support the interchange of data between the simulation model 

and the MATLAB environment.  Blocks from the Xilinx libraries provide the interface 

between Simulink and those portions of the model implemented on the PGA hardware.  

In addition, by utilizing the Xilinx libraries, Simulink now supports hardware simulation, 

synthesis and debugging. 

Beyond the interface components, the MIMO system model is constructed entirely of 

blocks from the Xilinx System Generator libraries.  These blocks translate to a hardware 

implementation and execute in PGA hardware during simulation.  System Generator 

provides a means to automatically download the PGA configuration and exchange data 
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with the PGA hardware during simulation.  The “hardware-in-the-loop” feature of 

System Generator allows the hardware based portions of the model to work seamlessly 

with the Simulink components.  In this dissertation research a network based Ethernet 

connection provided the link between Simulink and the hardware implementation 

executing on a Xilinx ML402 Vertex-4 FPGA evaluation board. 

Within the hardware portion of the model, a MIMO Simulation Support layer provides 

the interface for exchange of condition parameters and results between the hardware and 

the software environment.  This layer encapsulates the Core MIMO System model.  All 

of the components shown in Figure 4-2 are contained within the Core MIMO System 

except for the Data Generator, FIFO and BER blocks which reside within the MIMO 

Simulation Support layer.  Data generation and performance monitoring are handled by 

the Simulation Support layer. 

The Core MIMO System layer implements the processing chain of Figure 4-2.  This 

portion of the simulation model takes the conditions and data as input, processes the data 

through the MIMO system model and returns output data to the MIMO Simulation 

Support layer for evaluation.  Noise and path characteristic are generated within the Core 

MIMO System. 

Overview 

This section provides an orientation to the inner layers of the MIMO system simulation 

model.  Figure 6-2, Figure 6-3 and Figure 6-4 show these layers as they appear in the 

Simulink environment.  Figure 6-2 is the outermost Simulink model layer and provides 
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the interface to the MATLAB environment.  Figure 6-3 and Figure 6-4 respectively are 

the MIMO Simulation Support and the Core MIMO System described above.   

With the exception of the MIMO_Simulation block, all of the blocks in Figure 6-2 are 

executed in the Simulink software environment during simulation.  The input blocks 

SNR, TxAnt, RxAnt, MpMean, MpVar, UseMp, Atn(1) through Atn(9) and Dly(1) 

through Dly(9) are seen in the left half of Figure 6-2.  The input blocks access simulation 

configuration values from the MATLAB workspace and import them into the MIMO 

simulation.  Signals from these input blocks lead to the intermediate subsystems that 

transform the input values into a format that is usable by the PGA hardware.  These 

transformed input values are then loaded to transfer registers from which they are sent to 

the PGA hardware.   

The output blocks Errors, BER and TotalBits are seen in the right half of Figure 6-2.  

Output blocks take signals from intermediate subsystems that retrieve information from 

transfer registers.  The BER is computed from TotalBits and Errors in the Simulink 

environment.  Finally, Simulink output blocks make the results data available to the 

MATLAB workspace. 
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Figure 6-2 MIMO System Model Simulink Layer 
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During simulation the contents of the transfer registers are passed to and from the 

hardware by the System Generator hardware-in-the-loop functionality.  The MIMO 

Simulation Support layer shown in Figure 6-3 interfaces the transfer registers to the PGA 

hardware portion of the model.  The design of the interface ensures synchronous load and 

initiation of the PGA hardware.  In order to avoid false error detection, a hold-off counter 

prevents the accumulation of bits and errors until the MIMO simulation pipeline has been 

filled.  During the simulation, the bit and error counters are periodically sampled and 

returned to the outer layers of the model so that the execution progress may be monitored. 

In Figure 6-3 the Data Generator, FIFO and BER blocks correspond directly to those of 

Figure 4-2.  The remainder of the system is contained within the Core MIMO System 

block as shown in Figure 6-3.  In Figure 6-3 these blocks have a “drop shadow” to assist 

with indentifying them.  Figure 6-4 shows the Core MIMO System layer.  Here again the 

blocks that directly correspond to Figure 4-2 are identified with a drop shadow.  The 

remaining blocks in Figure 6-4 provide timing delays and simulation rate change but do 

not otherwise affect the processing. 
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Figure 6-3 MIMO Simulation Support Hardware Layer 
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Figure 6-4 Core MIMO System  
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Interface 

For the purposes of this dissertation research, the primary interface for the PGA hardware 

based MIMO system model is the MATLAB environment.  Simulation conditions are set 

by assigning variables in the MALAB workspace before initiating a simulation.  The 

simulation is then started from MATLAB.  Following the completion of a simulation, the 

results are available in MATLAB, which allows the data to be analyzed and plotted. 

The ability to utilize MATLAB scripts was also convenient in this dissertation research.  

MATLAB scripts simplify the configuration, execution and the collection of results 

especially where simulations must be repeated or executed unattended.  Scripts support 

the sequencing of incremental SNR evaluations in the production of a BER verses SNR 

curve.  Scripting capability is especially important during the validation, which requires 

repeating an evaluation of 15 BER verses SNR curves each consisting of 9 SNR data 

points. 

Results Output 

The results of a PGA hardware simulation are written to a comma separated variable text 

file.  An example of a results file is shown in.  The file includes the same information as 

that produced by the software base MIMO model of Chapter 5.  The file contents include 

a header that provides an experiment identifier, time and date of the simulation, the 

minimum number of bits to process for each SNR data point and the multipath mean µm 

and variance σm
2.  The header is followed by a table of channel path conditions, 

providing attenuation in dB and phase delay in degrees for each path.  The channel path 

conditions table is then followed with the results for each SNR data point.  Results 
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include the SNR in dB, total bits processed, error count and the BER.  The file concludes 

with the elapsed simulation time in seconds, the total bits processed for all SNR values 

and the mean processing rate expressed in nanoseconds per bit.  The file format allows 

the results data to be easily imported into a spreadsheet or into MATLAB for further 

analysis. 

 

Figure 6-5 Example of Hardware Simulation Result File 

Operation 

Execution of the MIMO system model produces results for a single SNR data point.  A 

simulation is initiated from MATLAB.  Before starting a simulation, the conditions are 

Simulation Run: HW-Case1-Tx0-Rx0 
Started 9/7/2009 14:56:43 
Minimum bits: 3.000000e+007 
 
Multipath Channel: none 
Channel Path Conditions (attenuation/phase) 
-------------------------------------------- 
,      Rx0    ,,     Rx1    ,,    Rx2 
Tx0:,  3.01,  0.00, -----,----- , -----,----- , 
Tx1:, -----,----- , -----,----- , -----,----- , 
Tx2:, -----,----- , -----,----- , -----,----- , 
SNR(dB),        Bits,  Errors,     BER 
0.0,  3.001e+007, 2350879,7.835e-002 
1.0,  3.001e+007, 1681490,5.604e-002 
2.0,  3.001e+007, 1120005,3.733e-002 
3.0,  3.001e+007,  682912,2.276e-002 
4.0,  3.001e+007,  371572,1.238e-002 
5.0,  3.001e+007,  176501,5.882e-003 
6.0,  3.001e+007,   70853,2.361e-003 
7.0,  3.001e+007,   22563,7.520e-004 
8.0,  3.001e+007,    5632,1.877e-004 
9.0,  3.001e+007,    1011,3.369e-005 
Run time(sec),  173.277 
Run bits     , 3.001e+008 
Ave (nsec/bit) ,  577.481 
 
Experiment complete ... 
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set, which include the minimum bits to process, the SNR, the use of multipath, the 

multipath mean µm and variance σm
2, the antenna configuration and the attenuation and 

delay for each path.   

The simulation conditions are prepared by the Simulink layer for use by the PGA 

hardware.  For each transmission path, the attenuation, Aik , expressed in dB, and the 

delay, φik , expressed in degrees, are converted to a single complex attenuation value, zik, 

according to (19).  The square root of the multipath variance σm
2 is multipath standard 

deviation σm that is used within the simulation model for generation of the multipath 

characteristic matrix H.  The SNR, expressed in dB, is converted to a value of noise 

standard deviation according to (36), where σNoise is the noise standard deviation and the 

SNR based on the symbol energy Es=1. 

)36( 
SNRNoise
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The prepared condition parameters are stored to transfer registers from which they are 

passed to the PGA hardware.  Once the simulation conditions are transferred to the PGA 

hardware, they are stored in working registers where they are accessible during 

simulation.   

The process of loading the simulation conditions to the PGA hardware requires a finite 

period of time before which the simulation output is not valid.  To prevent the 

accumulation of false errors, counters are initialized to zero and are held in this state until 

the loading of the simulation conditions is complete and the PGA processing pipeline has 
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properly filled.  A Start flag is transferred with the simulation conditions.  The Start flag 

is the final register transferred during the loading of the simulation conditions.  It signals 

that the condition parameters are ready and enables the simulation processing.  Since 

several clock cycles are required before the PGA hardware pipeline is filled and valid 

data begins to emerge from the simulation, the hold off counter prevents accumulation of 

the bit and error measurements until a predetermined number of clock cycles have 

elapsed.   

Referring to Figure 6-3, the 8-bit input data words are generated in the hardware model 

using a 31-bit maximal length linear feedback shift register (LFSR) [52].  The input data 

words are supplied to the Core MIMO System as well as to the FIFO.  The FIFO delays a 

data word for the precise number of hardware clock cycles required for the same data 

word to be processed through the Core MIMO System.   

Data words emerging from the Core MIMO System and the FIFO are supplied to the 

BER block which then directly compares the two data words; counting the errors and the 

total bits.  A sampler periodically stores the counter values to transfer buffers to be sent 

back to the Simulink environment.   

Sampling the counter values in this way minimizes data transfer and prevents the PGA 

hardware from stalling should the buffers become full, while at the same time providing 

sufficient information to allow monitoring the progress of the simulation.  However, 

since the termination condition is evaluated in the Simulink layer of the model, the 

sampling technique slightly affects the resolution with which the bit limit can be 
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specified.  The simulation always processes at least the minimum number of bits 

specified, but may process several thousand additional bits due to this sampling 

resolution. 

Simulation results for a SNR data point include the actual bits processed, the errors 

detected and the BER.  The total bits and error counts are stored as 32-bit integer values.  

The 32-bit integers allow for counts in excess of 4x109.  This limit could be increased in 

future work by increasing the bit width of the counters and FIFOs.  The BER value is 

computed in floating point format at the Simulink layer from the total bit and error 

counts.   

Platform 

In this dissertation research the Xilinx ML402 Vertex-4 FPGA evaluation board is 

utilized for the hardware execution platform.  The ML402 is designed around the Xilinx 

XC4VSX35 FPGA, a member of the Vertex-4 FPGA family [22].  The hardware portion 

of the MIMO communications system model runs on the ML402 board.  The hardware 

model is loaded to the Vertex-4 FPGA via Ethernet connection by System Generator at 

the start of a simulation.  Once loaded to the Vertex-4 FPGA, the model is started and 

allowed to run asynchronously to the MATLAB/Simulink software portion of the model.  

This achieves the greatest processing rate but requires that synchronizing elements 

discussed earlier be included to allow coordination of the MATLAB/Simulink software 

and PGA hardware portions of the model. 
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Processing Rate 

The ML402 circuitry supplies a 100 MHz clock signal to the Vertex-4 FPGA allowing a 

minimum clock cycle time of 10 nsec.  However, for this dissertation research the 

minimum clock cycle was set to 15 nsec to relieve certain timing constraint issues that 

prevented successful hardware synthesis of the model.  In addition, internal PGA 

resource limitations of the Vertex-4 FPGA prevented a complete parallel implementation 

of the channel.  Therefore, only the transmitter, channel, decoder, noise generator and H 

matrix generator are processed at the maximum clocking rate.  The remainder of the 

model is processed at 1/8 the maximum rate so that one data word transits through the 

model every 120 nsec for a maximum processing rate of 66.7x106 bits/second.  However, 

the effective rate is slightly reduced by the data transfer time and the necessity to 

synchronize operation of the hardware and software portions of the model.  As given in 

Chapter 8, processing rates of up to 123 nsec per byte or 65.0x106 bits/second are 

achieved using the hardware-based model. 

Hardware Model Implementations 

The following sections provide details on specific areas of the PGA hardware model 

whose implementation is unique or significant to the results obtained. 

Pseudorandom Number Generator 

Pseudo-random number generators (PNG) are used throughout the PGA hardware MIMO 

system model for data, channel noise and channel characteristic generation.  The 

generation of channel noise ni and channel characteristics hik are of great importance to 

obtaining accurate simulation results.  These generators are configured using instances of 
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the same Gaussian PNG.  The MIMO system hardware model utilizes 10 instances of this 

generator.  This section provides an overview of the Gaussian PNG design and details are 

described in the sections to follow. 

Like the software based MIMO system model, the PGA hardware based MIMO 

simulation generates Gaussian distributed random values using the inverse transform 

method.  The hardware implementation first generates uniformly distributed random 

values using a linear feedback shift register (LFSR) employing a skip-ahead technique to 

whiten the generated values [49].  A composite look up table is then used to transform the 

linearly distributed values into Gaussian distributed values [50].  In addition, both the 

LFSR and the composite look up table designs minimize the required hardware resources 

while producing values at a rate of one per hardware clock cycle.  This innovative 

architecture for the PNG design is a salient component of this dissertation research. 

Linear Feedback Shift Register 

The linear feedback shift register (LFSR) is a method of implementing a multiplicative 

congruential generator (MCG) that is readily accomplished in hardware.  The MCG is a 

basic mathematical algorithm for the generation of uniformly distributed random 

numbers [53].  The LFSR uses a set of n single bit storage registers and a feedback logic 

network that implements a generating polynomial.  The generating polynomial may be 

expressed in an algebraic form as in (37) where qi
(t) represents the content of the ith bit of 

an n-bit register at time t, wi is the binary weighting factor applied to the ith bit and the 

symbol ⊕ is the binary XOR function.  
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The generating polynomial is responsible for the characteristics of the pseudorandom 

number sequence produced by the LFSR and many polynomials have been extensively 

studied [51].  It is generally desirable to have a generating polynomial that produces a 

number sequence that repeats only after 2n-1 values, known as a maximal length 

sequence.  The generating polynomial utilized by the MIMO system PGA hardware 

model of this dissertation research, was obtained from Xilinx application note DS257 

[52] and is expressed in (38).  This generating polynomial produces a maximal length 

sequence with a 55-bit register providing a sequence of more than 3.6x1016 values. 
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ttt qqq ⊕=+ 

This length of the pseudorandom number sequence allows the same polynomial to be 

utilized for all generators while maintaining a unique number sequence for each.  This is 

accomplished by seeding each generator with a different starting value.  The seeds are 

obtained by sampling a single instance of the generator every 232 cycles.  Thus the 

generators are ensured to produce non-overlapping sequences for the first 4.3x109 

hardware cycles. 

All MCG have a deficiency in that a small correlation exists between successive values in 

the generated sequence [53][54].  This deficiency is insignificant in some applications, 

such as for the data generator used in this model, but can be detrimental to the noise and 

channel characteristic generation.  The correlation in the pseudorandom sequence 
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produced by a LFSR using the generating polynomial of (38) can be observed in a plot of 

the autocovariance as shown in Figure 6-6.  Patterns can also be observed when complex 

numbers, formed by taking successive values from the LSFR, are plotted on the complex 

plane as shown in Figure 6-7.  This correlation also imparts a low-pass characteristic to 

the power spectral density as seen in Figure 6-8 [54].  In terms of the LFSR this 

correlation can be intuitively understood by noting that for any single step in the 

sequence, the generating polynomial alters only a few of the bits in the storage registers, 

while the remainder of the bits are simply shifted by one position [55]. 
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Figure 6-6 Autocovariance of Basic LFSR 

 Sample of 105 sequential values show correlation around 0 lag 
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Figure 6-7 Complex pairs generated by the basic LFSR 

Patterns are seen when values are plotted as complex pairs 
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Figure 6-8 Power spectral density of basic LFSR 

Sample of 105 sequential values shows a lowpass characteristic. 
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Many techniques have been proposed to mitigate this correlation [54][55].  However, 

most techniques either are not conducive to PGA hardware implementation or require too 

great a demand on such hardware resources to be of use in this dissertation research.  

Therefore, the multiple-bit skip-ahead technique was utilized.   

The fundamental concept of the skip-ahead technique is to obtain a value from the LFSR 

and then advance the LFSR by k cycles before taking another value [55].  It may be 

observed from (37) that only a single new bit is generated during each cycle of the LFSR.  

The remaining bits are simply shifted by one position.  The skip-ahead technique ensures 

that k new bits have been generated between successive samplings of the LFSR. 

A disadvantage of the skip-ahead technique is that k cycles are required to produce each 

new random value.  If this basic form of skip-ahead where utilized here, the MIMO 

system model throughput would be slowed by a factor of 1/k.  The multi-bit skip-ahead 

technique advances the LFSR k states in a single cycle maintaining the system throughput 

while achieving the decorrelating property of the basic skip-ahead technique.   

The generating polynomial of (37) expresses how qn-1 at time t+1 is computed from the 

states of the qi at time t.  The remaining bits, qn-2 through q0, are simply shifted by one bit 

from time t to time t+1 so that the operation of the LFSR over one clock cycle is 

expressed by the (39). 



 72 

)39( 





























=

=

=

++++=

+

+

−
+
−

−−−−
+
−

)(
1

)1(
0

)(
2

)1(
1

)(
1

)1(
2

)(
00

)(
11

)(
12

)(
11

)1(
1

tt

tt

t
n

t
n

ttt
nn

t
nn

t
n

qq

qq

qq

qwqwqwqwq

Μ

Λ

 

Using matrix notation (39) can be expressed as (40) [49].   
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Here q is the register state vector and A is the transition matrix for one execution cycle, 

from t to t+1.  The first row of the transition matrix A is the coefficients of the generating 

polynomial and the remaining rows represent a single bit shift operation.  

It is now possible to compute the register state vector q at time t+k for any arbitrary k 

using (41).  Furthermore, it may be seen from (41) that matrix Ak allows the computation 

of q(t+k) directly from q(t).  The matrix Ak is computed by raising the matrix A to the 

power of k, which is easily accomplished numerically using MATLAB.  Therefore, by 

implementing Ak with the LFSR feedback network multi-bit skip-ahead is achieved. 
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A consequence of the multi-bit skip-ahead technique is an increase in the PGA hardware 

resources required to implement the feedback network.  This increase is dependent on the 

generating polynomial and the value of k.  One contribution of this dissertation research 

is to develop a set of rules that express conditions under which the resulting feedback 

network requires a minimum increase in PGA hardware resources [49]. 

Consider a 4-bit LFSR with the generating polynomial given in (42) having coefficients 

{ w3, w2, w1 ,w0 } = { 1, 0, 0, 1 }.   
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The transition matrix A1001
3 for this LFSR at k = 3 as given by (43). 
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Here the matrix A1001
3 represents the set of binary equations (44) that involve up to four 

terms each. 
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Now consider another 4-bit LFSR with generating polynomial (45) having coefficients 

{ w3, w2, w1, w0 } = { 0, 0, 1, 1 }. 
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The transition matrix A0011
3 for this LFSR at k = 3 as given by (46) produces a simpler set 

of binary equations (47) each involving no more than two terms. 
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The significant difference between (43) and (46) is the w3 coefficient of the generating 

polynomial.  From (39) it can be seen that, for k = 1, qn-1
(t+1) is the only bit that is 

dependent on more than a single previous bit value.  If wn-1 = 1, as in (42), then qn-1
(t+1) is 

dependent on its own previous value that, in turn, is computed from more than one prior 

bit value.  Thus, as k increases the feedback equation for qn-1
(t+1) is compounded. 

Using the generating polynomial of (42), (48) expresses the compounding at k = 2.  Note 

how a 2 cycle skip turns the two term equation into a three term equation. 
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However, when w3 = 0 as in (45), the generating polynomial does not contain a qn-1 term 

and does not compound with increasing k.  Using the generating polynomial of (45), (49) 

shows that after a 2 cycle skip the expression still contains only two terms. 
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Without compounding, as k increases the first row of the transition matrix Ak is only 

shifted left and therefore does not have more non-zero elements than terms in the 

generating polynomial.  Eventually, however, a non-zero element will transition into the 

wn-1 position and compounding will occur.   Notice from (46) that compounding will 

occur in the second example when k = 4.  Generalizing, if wj is the highest order non-zero 

coefficient of the generating polynomial, then compounding will not occur so long as 

)( jnk −≤ . 

One further observation is that for each incremental increase in k the rows of Ak are 

propagated downward.  Since all but the first row of A represents a 1-bit shift operation, 

all of the rows of Ak beyond the kth row retain this characteristic with the generalization 

that they are a k-bit shift operation.   This can be illustrated by considering the transition 

matrix A00111
2 for the 5-bit LFSR with the generating polynomial coefficients 

{w4,w3,w2,w1,w0} = {0,0,1,1,1} at k = 2 given in (50). 
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These results can be summarized by the following rules: 

I. The number of non-zero elements in each row of Ak is no greater than the number 

of terms of the generating polynomial as long as )( jnk −≤ , where wj is the 

highest order non-zero coefficient of the generating polynomial. 

II. Given the conditions of Rule I, only the first k rows of Ak will have more than one 

non-zero element. 

III. All of the rows of Ak beyond the kth row represent k-bit right-shifts operations. 

The generating polynomial (38) for the 55-bit LFSR used in this dissertation research is 

selected because it is a two term equation that produces a maximal length sequence.  

Since 16-bit values are taken from the LFSR, a skip of k = 16 is utilized.  From Rule I 

none of the rows of Ak will have more than two non-zero elements.  In this case, Rule I is 

satisfied since k = 16, n = 55, j = 24 and 16 ≤ ( 55 – 24 ) = 31. 

From Rule II, only the first 16 rows of Ak have more than one non-zero element and, 

from Rule III, the remaining 39 rows each represent a 16-bit logical right-shift operation. 
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Figure 6-9, Figure 6-10 and Figure 6-11 show the analysis of the pseudorandom number 

sequence generated by the LFSR employing skip-ahead.  It can be seen in Figure 6-9 that 

the autocovariance for the sequence is a delta function at 0 lag indicating there is no 

detectable correlation between adjacent values.  Plotting value pairs on the complex 

plane, Figure 6-10, reveals no discernable patterns.  The power spectral density shown in 

Figure 6-11 now demonstrates a white noise spectrum and no longer has the significant 

lowpass rolloff.  It should be noted that the generating polynomial is the same as that 

used by the LSFR of Figure 6-6, Figure 6-7 and Figure 6-8. 
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Figure 6-9 Autocovariance of LFSR with skip-ahead 

 Sample of 105 sequential values shows no correlation between values 
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Figure 6-10 Complex pairs generated by LFSR with skip-ahead 

 No patterns seen in values when plotted as complex pairs 
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Figure 6-11 Power spectral density of LFSR with skip-ahead 

Sample of 105 sequential values shows white noise spectrum 
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Composite Look-up Table Transform 

Like the software based model, the PGA hardware based model utilizes the inverse 

transform method to produce Gaussian distributed pseudorandom values from the 

uniformly distributed values supplied by the LFSR described in the previous section.  

However, in order to reduce the complexity and required PGA hardware resources, the 

inverse Gaussian cumulative distribution function (IGCDF) is implemented with a lookup 

table (LUT).  The memory resources required for the LUT depends upon the both the 

resolution and precession of the IGCDF representation.  Consequently, the number of 

Gaussian sources required and the available memory resources limit the fidelity of the 

IGCDF and in turn limit the accuracy of the results that could be obtained from the 

MIMO system model.  To overcome these resource limitations a composite LUT 

technique is developed as part of this dissertation research that reduces the resource 

requirements while allowing for improved IGCDF resolution and precision [50]. 

The PGA hardware based MIMO simulation model utilizes 10 Gaussian pseudorandom 

number generators (PNG).  In addition, the throughput rate of the simulation is of great 

concern.  Consequently, the following characteristics are important to the PNG 

implementation. 

1. Minimum hardware resource requirements. 

2. Consistent output rate. 

3. Sufficient accuracy and range. 
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The composite LUT technique requires a tradeoff be made between the reduction in the 

size of the LUT and loss of fidelity to a Gaussian distribution.  However as will be 

discussed, this loss of fidelity is confined to that part of the distribution curve that least 

affects the simulation results.  The contribution of this inaccuracy is demonstrated to be 

minimal. 

The basic PGA hardware architecture for a Gaussian PNG employing the inverse CDF 

method is illustrated in Figure 6-12.  In the PGA hardware simulation model of this 

dissertation research the uniform PNG is a 55-bit maximal length LFSR from which 16-

bits words are taken to obtain a uniformly distributed random number sequence.  From 

each 16-bit word, 15 bits form an unsigned random integer x and the remaining bit s is 

used for the sign.  A LUT provides a positive value y of the inverse Gaussian CDF 

(IGCDF) from x.  The value y is then multiplied by either +1 or -1 as determined by s to 

yield the output value n that consists of positive and negative Gaussian distributed values.  

 

Figure 6-12 Basic architecture for a Gaussian PGN 
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The symmetry of the IGCDF curve is exploited by storing only the positive half of the 

transform in the LUT [61][63].  Thus, the unsigned integer x is transformed to a positive 

fixed point value y by the LUT and s provides the sign value independent of the LUT.  

Since s is uniformly distributed, the output value n is evenly distributed between positive 

and negative values. 

This implementation has the advantage of requiring only minimal logic and is able to 

produce one new pseudorandom value for every clock cycle.  The LUT contains fixed 

point values that can be made arbitrarily precise by allocating an appropriate number of 

bits to the LUT output width.  The disadvantage of this implementation is that the LUT 

must hold 215 values, one for each value of x. 

Consider now the positive half of the IGCDF for a normal distribution of zero mean and 

unit variance, N(0,1) as shown in Figure 6-13.  This curve represents the function to be 

implemented by the LUT.  Note that the curve is approximately linear below a 

cumulative probability of 0.9, asymptotic near 1.0 but highly nonlinear in between.   

Next, consider that since the IGCDF curve is monotonic, there is a unique relationship 

between the LUT input x and output y.  If all possible values for x, or Nx, are mapped 

such that they are evenly spaced over [0.5, 1.0) then the IGCDF curve can be considered 

to be effectively sampled by x at intervals of ∆x = 0.5 / Nx. 
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Figure 6-13 Positive half of IGCDF with zero mean and unit variance. 

One manner in which the LUT size could be readily reduced is by increasing the size of 

the sampling interval or equivalently by decimating the LUT.  However, to produce a 

value of y for each value of x, more than one x must be mapped to each value of y. 

If w is the input to a LUT that is now intentionally decimated by a factor of m, then ∆w = 

m∆x and Nw = Nx / m. Now all the values of x that fall within a single interval ∆w yield the 

same value of y, as given in (51) where )(1 xF −  is the IGCDF.  The result of such a 

decimation procedure is that the LUT now represents a stair-step approximation of the 

IGCDF curve.  

)51( ( ) ( )xFwxwwFy wx
1

211
1 | −− ≡≤≤= 

Reducing the size of the LUT in this manner introduces two factors for a loss in the 

fidelity of output Gaussian distribution.  The first loss factor εx results from the stair-step 

approximation of the IGCDF.  This error is expressed by (52) for any value of x. 



 83 

)52( ( ) ( )xFxF xwx
11 −− −=ε  

This loss factor will introduce the least error in the flattest portion of the IGCDF curve, 

the region below a cumulative probability of 0.9, and the most error in the steepest part of 

the curve, near 1.0. 

The second loss factor introduced by the decimation of the LUT is due to truncation of 

the IGCDF range.  Since the smallest value of x is mapped to a cumulative probability of 

0.5, the largest value of x maps to a point that is essentially one sampling interval short of 

1.0 as given in (53), where the symbol → is to be interpreted as “maps to”. 

)53( ( ) xwww mNx ∆−=∆−=−∆+→ 1115.0max 

The result is to limit the extent of the “tails” of the Gaussian distribution.  This effect is 

exasperated by the decimation factor m, as seen in (53).  In addition, the high rate of 

change in the asymptotic portion of the IGCDF occurring near a cumulative probability 

of 1.0 implies that the amount of the Gaussian tail range that is unavailable is sensitive to 

the size of ∆w and can thus be significant. 

It can now be stated that there are two extremes to the LUT design of Figure 6-12.  A 

high-resolution (small m) LUT provides high fidelity but has greater memory 

requirements, while a low-resolution (large m) LUT requires less memory but has lower 

fidelity.  The innovative composite LUT design utilized in this dissertation research 

provides a compromise solution that utilizes the advantages of both while allowing 

control for the associated disadvantages [50]. 
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The composite architecture of Figure 6-14 combines a low-resolution LUT with a high-

resolution LUT in a single PNG.  The design follows the essential principles of Figure 

6-12 but utilizes two LUTs.  A multiplexer selects between yLo, the output of the low-

resolution LUT, and yHi, the output of the high-resolution LUT.  A decoder controls the 

multiplexer selection so that every value of x is mapped either to the value of yLo or yHi.  

Moreover, the decoder decision is such that the range of x is effectively split into two 

ranges at a point that shall be designated xsplit.   

 

Figure 6-14 Composite LUT hardware architecture for Gaussian PGN 

The low range x values (x < xsplit) are mapped to yLo, and the high range x values (x ≥ 

xsplit) to yHi.  This design maps the most non-linear portions of the IGCDF curve to the 

high-resolution LUT, while the more linear region of the curve is represented with the 

low resolution LUT.  It is desirable to represent the non-linear portions of the IGCDF 

curve with high-resolution since this region has the highest rate of change and is 

responsible for the critical tail region of the output Gaussian distribution. 
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The flatter portion of the IGCDF curve with a cumulative probability of less than 0.9 

introduces less of the first loss factor εx when the resolution is lowered.  This portion of 

the IGCDF curve is responsible for the less critical central region of the output Gaussian 

distribution.  A reduction in resolution for this portion of the IGCDF curve will result in 

the least loss of fidelity and in the least critical region of the resulting output distribution. 

Since one of the objectives of this dissertation research is to minimize complexity as well 

as hardware resource requirements, an efficient decoder scheme is desired.  Consider that 

x is a b-bit binary word as expressed by (54) where x(i) represents the value of the bit of x 

in the 2i place. 

)54( )0()1(1)1( 2...2 xxxx bb +++= −− 

Now consider that a high-resolution LUT holds one value y for every value of x and 

would therefore require an input word of b-bits.  Next, further consider that a low-

resolution LUT is a decimated version of a high-resolution LUT.  The size of a low-

resolution LUT is equal to the size of a high-resolution LUT divided by m.  If m is 

constrained to a power of 2, then the number of bits p required for the input word to a 

low-resolution LUT is given by (55).   

)55( )(log2 mbp −= 

Moreover, the input to a low-resolution LUT would consist of exactly the p highest order 

bits of x as in (56). 
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In the composite LUT design of Figure 6-14, the value xsplit defines a value on the range 

of x below which all values are taken from the low-resolution LUT and above which the 

high-resolution LUT is utilized.  Therefore, the low-resolution LUT in the composite 

design need only hold the values of yLo for x < xsplit while the high-resolution LUT need 

only hold values of yHi for x ≥ xsplit. 

In order to facilitate a seamless transition between the two tables, xsplit is constrained to a 

value of xLo.  Furthermore, xsplit can also be constrained so as to require that its binary 

value consists of all 1’s for the r highest order bits and 0’s for all other bits.  The decoder 

is then simply designed to select yHi whenever the r highest order bits of x are all ones.  

Thus the decoder is implemented as a simple r-input AND-gate.   

A fortuitous consequence of this decoding scheme is that all of the values in the high-

resolution LUT correspond to values of x for which the r highest order bits are 1’s.  Thus, 

the width of the input word to the high-resolution LUT xHi need be only rbq −= bits and 

the value xHi is given by the q lowest order bits of x as in (57). 

)57( )0()1(1)1( 2...2 xxxx qq
Hi +++= −−  

One further consequence of this design is that the effective composite LUT output F-1(x) 

retains the range of the high-resolution LUT.  Note that F-1(x) follows yLo with interval ∆w 
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up to xsplit.  Beyond xsplit each value of yLo is replaced by m values of yHi with interval ∆x 

such that xx ∆−→1max . 

The characteristics of the composite-LUT architecture inferred from the discussion and 

Figure 6-14 are summarized as follows: 

1. The decoder consists of an r-bit AND-gate whose inputs are the r highest order 

bits of x. 

2. The low-resolution LUT is a subset of a decimated high-resolution LUT with 

reduction factor m, which is a power of 2. 

3. The low-resolution LUT holds only those values of y corresponding to x < xsplit 

and has no more than Nw = Nx / m elements. 

4. The input to low-resolution LUT, xLo , consists of the p highest order bits of x 

where p is determined by (55). 

5. The value of xsplit always corresponds to a value of xLo such that its r highest order 

bits are all 1’s and all other bits are 0’s. 

6. The high-resolution LUT holds only those values corresponding to splitxx ≥  and 

its size is 2q. 

7. The composite LUT produces values of yLo for values of splitxx < according to 

(51), and values of yHi for every value of splitxx ≥  
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8. The range of the composite LUT is equal to the range of a high-resolution LUT. 

Values for m and r must be chosen such that the required hardware resources are 

minimized while the loss of fidelity to the output Gaussian distribution is not severely 

impacted.  Note that the hardware resource requirements for the composite LUT 

architecture are primarily due to the memory needed.  If M is the total memory required 

for both the high and the low-resolution LUT, then M may be used as a cost factor of the 

composite implementation. 

If the interval size ∆x of the high-resolution LUT is chosen so that the architecture of 

Figure 6-12 provides the necessary fidelity for the intended application, then the yHi can 

be used as a reference for this loss of fidelity.  Deviation from the reference by the yLo 

values can then also be quantified as εx and correspond to the loss in fidelity due to the 

LUT size reduction.  More specifically, the worst case error εmax occurring anywhere over 

the range x is of the most interest.  Therefore, the squared worst case error ε2
max is taken 

as a second cost factor for the composite LUT implementation. 

Since there is a limited number of combinations of m and r for any given word size of x, a 

complete search can be performed for values of M and ε2
max.  Figure 6-15 illustrates how 

the two cost factors vary with the possible selections of m and r.  The points have been 

sorted in order of increasing ε2
max in Figure 6-15.  The combinations are numbered 

sequentially so that a cross reference is required to determine the values of m and r for 

each case.   
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Figure 6-15 Cost factor plot for composite LUT:  

Memory requirement, M, and error, ε2
max, for combinations of m and r when b = 15.  

Points are sorted in order of increasing ε2
max. 

It can be seen from Figure 6-15 that the memory cost M varies widely across the range.  

Therefore, the approach here is to first choose an acceptable value for ε2
max and then find 

a combination of m and r that yields the minimum M while not exceeding this desired 

ε2
max. 



 90 

Table 6-1 Cost factor of composite LUT with �2
MAX near 2-12 

m r ε2
max M 

8 7 8.22 x 10-5 4320 

128 2 8.77 x 10-5 8384 

16 6 1.10 x 10-4 2528 

32 5 1.42 x 10-4 2016 

256 1 1.49 x 10-4 16448 

4 9 1.80 x 10-4 8240 

64 4 1.82 x 10-4 2528 

2 11 2.37 x 10-4 16392 

128 3 2.42 x 10-4 4320 

8 8 2.78 x 10-4 4208 

 

In the hardware based MIMO system model of this dissertation research, a fixed point 

binary precision of 2-6 or 412262
max 1044.22)2( −−− === xε  is required for the IGCDF 

tables in order to achieve the results reported in Chapter 7 and Chapter 8.  Table 6-1 lists 

combinations of m and r that yield ε2
max in the vicinity of the desired value.  From Table 

6-1 the combination m = 128 and r = 3 satisfies the error requirement while using only 

4320 storage elements, where one storage element is the hardware resources required to 

hold one value of y.  However, searching further through Table 6-1 shows that the m = 32 

and r = 5 also satisfies the error requirement but uses only 2016 storage elements.  

Therefore, these parameters are utilized by the MIMO system model.   

In the MIMO simulation model, the initial implementation of the Gaussian PNG used the 

architecture of Figure 6-12 and required M = 32768 storage locations for the single LUT.  
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The final implementation for the Gaussian PNG uses the improved composite LUT 

architecture of Figure 6-14 with m = 32 and r = 5 with a total required memory M = 2016 

storage elements of the same width and precision as the original single LUT design.  

Although there is a 94% reduction in the required memory, there is no measurable 

increase in supporting digital logic and no loss of execution rate.  The simulation 

performance utilizing the composite LUT for the Gaussian PNG remained equivalent to 

that obtained with the original single LUT design. 

Path Characteristic Generation 

The transmission of each data byte through the MIMO system model requires the 

generation of nine channel path characteristics values {h00, h01, h02, h10, h11, h12, h20, h21, 

h22}.  Each hik is a complex number created from two Gaussian pseudorandom values.  In 

addition, conditional processing may constrain the value of each hik based on antenna 

configuration and whether multipath is applied.   

Initially, a fully parallel implementation of the path characteristic generator was 

attempted.  This implementation sought to produce all nine hik values in one hardware 

clock cycle.  This implementation required nine instances of the basic generator, 

including a total of 18 Gaussian PNGs.  This approach proved to be impractical due to 

the hardware resource limitations of the Xilinx Vertex-4 FPGA.  Therefore, a semi-

parallel approach is adopted. 

The MIMO system model assumes that the channel characteristics H are qausi-static, that 

is, H is constant over any single block transmission.  In the MIMO system model of this 
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dissertation research, one block transmission transfers one byte (8-bits) of data and 

requires 8 time periods or time slots.  In the PGA hardware based MIMO simulation, 

each time slot is processed in one hardware clock cycle and blocks are processed in 8 

clock cycles each.  Therefore, only 8 clock cycles are available for the generation of the 9 

hik values. 

In order to produce the required 9 hik values in 8 clock cycles, the hik are organized into 

two groups with a path characteristic generator utilized by each group.  The direct path 

group consists of 3 path characteristics {h00, h11, h22}, representing the transmission paths 

between corresponding transmit and receive antennas.  The cross path group consists of 6 

path characteristics {h01, h02, h10, h12, h20, h21}, representing the transmission paths 

between non-corresponding transmit and receive antennas.   

The generators for the direct and cross path characteristics are essentially identical.  Each 

generator produces one path characteristic value per clock cycle.  A time slot count is 

used to select the specific path characteristics produced.  The path characteristic values 

are stored to double buffered latches for use during the simulated block transmission. 
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Figure 6-16 Channel Path Characteristic Generator 

The cross path characteristic generator is shown in Figure 6-16.  Path characteristic 

generation utilizes two Gaussian pseudorandom values that are adjusted to provide the 

multipath mean µm and variance σm
2 specified by the simulation conditions.  Given the 

antenna configuration and an indication of whether multipath is assumed, a value for ψik 

is created based on the following rules. 

I. If the path is not selected, i.e. either the associated transmit or receive antenna is 

not utilized, then ψik = 0. 

II. If the path is selected but multipath is not assumed, then ψik = 1. 
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III. Otherwise, the two Gaussian pseudorandom values are utilized for the real and 

imaginary parts of the complex value ψik. 

The value for hik is computed by multiplying ψik by the complex path attenuation factor 

zik according to (19). 

Decoder 

The decoder utilized by the PGA hardware based MIMO model follows the method 

described in Chapter 5 for the software based model.  The main concern for the hardware 

based model is to minimize the resources required by the implementation.  This section 

compares the incremental implementation utilized in the PGA hardware model of this 

dissertation research to a direct implementation of (9), (10), (11) and (12). 

In evaluating the implementations, a storage element is defined as the hardware memory 

resources required to hold one real signed valued.  Complex values are represented in 

rectangular form and require two storage elements each.  Only persistent storage is 

counted, that is storage for values that must be held longer than the time required to 

evaluate a single function.  Storage for intermediate computational values is not counted. 

Processing resources are counted in terms of additions and multiplications.  For the 

purposes of comparison, it is understood that the PGA hardware possesses both 

multiplication and addition elements.  The existence of multiply-accumulate elements of 

the PGA is ignored.   
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A simple multiplication is defined as the multiplication of two real signed values.  

Likewise, simple addition is defined as the addition of two real signed values.   Complex 

multiplication and addition are implemented using combinations of simple operations. 

Consider the direct implementation of (9), (10), (11) and (12).  First, recognize that an 

STBC is, by definition, block oriented and an entire block of received symbols must be 

collected before decoding can be completed.  In a direct implementation, all of the rk
(t ) 

for one block are stored before processing can begin.  The block period is 8 time slots 

with 3 symbols received during each time slot.  Further, each received symbol is complex 

and requires 2 storage elements.  Therefore, 48 storage elements are required to hold the 

received symbols before decoding can begin. 

Next consider the processing resource demands of the decoding.  We note that (9), (10), 

(11) and (12) are each a summation of 18 complex multiplications and 17 complex 

additions, or 72 complex multiplications and 68 complex additions for all of the 

processing.   

Utilizing the tenants of complex mathematics [43], it can be seen from (58), (59) and (60) 

that complex addition requires 2 simple additions, while from (61) it can be seen that 

complex multiplication requires 4 simple multiplication and 2 simple additions.  Thus, 

the decoding process by the direct implementation requires a total of 288 simple 

multiplications and 280 simple additions. 

)58( for a1 and b1 real 111 ibaz +=    
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)59( for a2 and b2 real 222 ibaz +=   

)60( ( ) )( 212121 bbiaazz ±+±=± 

)61( ( ) ( )1221212121 babaibbaazz ++−= 

Now consider the incremental implementation as described in Chapter 5.  Table 6-2 

shows the usage of the pi
(t) and qi

(t) terms in (31), (32), (33) and (34).  Note that in any 

one time slot only three pi
(t) or qi

(t) terms need be computed and only three of the four 

symbol estimates are affected.  Further note, as mentioned in Chapter 5, that the symbol 

estimates {x ̃0, x̃1, x ̃2, x̃3} are produced by accumulating pi
(t) and qi

(t) terms from the 

appropriate time slots. 

Table 6-2 Use of p and q Terms in Symbol Estimation 

t (0) (1) (2) (3) (4) (5) (6) (7) 

0
~x  +p0

 +p1 +p2 – +q0 +q1 +q2 – 

1
~x  +p1 -p0 – +p2 +q1 -q0 – +q2 

2
~x  +p2 – -p0 -p1 +q2 – -q0 -q1 

3
~x  – -p2 +p1 -p0 – -q2 +q1 -q0 

 

The incremental implementation is time slot oriented, such that one stage is computed 

during each time slot and the estimation results are accumulated over the block period.  

The process begins by initializing the accumulators to zero at time slot, t = 0.  Using one 
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complex accumulator for each symbol estimate, x ̃0, x̃1, x ̃2, and x ̃3 the process proceeds as 

follows during each time slot: 

1. Get the received symbols for time slot 

2. Compute pi
(t) during t=0,1,2,3 or compute qi

(t) during t = 4, 5, 6, 7 

3. Accumulate the pi
(t) or qi

(t) terms as indicated in Table 6-2. 

After time slot t = 7, the symbol estimates for the incremental architecture are equivalent 

to those produced by a direct implementation.  Thus, storage for the incremental 

implementation consists of only the four complex accumulators or a total of 8 storage 

elements. 

During any one time slot either the three pi
(t)  or qi

(t)  must be computed.  Each requires 3 

complex multiplications and 2 complex additions with another complex addition required 

to accumulate the estimate.  Therefore, during any one time slot a total of 9 complex 

multiplications and 9 complex additions or 36 simple multiplications and 36 simple 

additions are required.   

Table 6-3 presents a summary of the storage and resource requirements for both the direct 

implementation and the incremental architecture.  Of the two methods described here, the 

incremental method has a lower demand for storage requiring only 8 storage elements 

compared to 48 storage elements for the direct method.  More dramatic though is the 

difference in the demands for processing resources, where the direct method requires 288 
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multipliers and 280 adders, the incremental method requires only 36 multiplier and 36 

adders. 

Table 6-3 Comparison of Required Resources and Storage 

 Direct Method Incremental Method 

Storage Elements 48 8 

Simple Multiplications 288 36 

Simple Additions 280 36 

 

Furthermore, routing and interconnection in the PGA hardware synthesis, overhead and 

other resource demands that may grow in proportion to the number of multiply and 

addition operations has not been explicitly considered here.  For instance, consider that 

every multiply and addition operation may require the operands to be conveyed to the 

multiplier or adder via a routing or other hardware resource.  The number of routing 

channels per operand depends on the bit-width required.  The number of such routes are 

proportional to number of multiplies and additions. 

Detector 

The PGA hardware based MIMO model utilizes a maximum likelihood (ML) detector to 

convert the symbol estimates produced by the decoder into codewords. Maximum 

likelihood detection is equivalent to choosing the symbol from the base QPSK 

modulation symbol {s0, s1, s2, s3} that has the minimum Euclidian distance in signal 

space to the estimated symbol x ̃ [32].  This decision processing requires that the 
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Euclidian distance be computed between x ̃ and each of the four symbols sk.  Since these 

computations require considerable PGA hardware resources, an alternative computation 

is developed.  The alternative computation is based on Haykin [32] and is equivalent to 

(62), where x ̃r and x ̃i are the real and imaginary components of x̃ and skr and ski are the 

real and imaginary components of the reference symbol sk.   

)62( ( ) ( )22 ~~~
kiikrrk sxsxsx −+−=− 

A direct implementation of (62) requires 3 additions, 2 multiplications and a square root 

operation.  Furthermore, (62) must be computed four times for each estimated symbol.  

There are four estimated symbols for each MIMO code block transmission so that, in 

total 48 additions, 32 multiplications and 16 square root operations are required.   

Consider that minimizing (62) is equivalent to minimizing (63) and so the square root 

operation can be eliminated. 

)63( ( ) ( )222 ~~~
kiikrrk sxsxsx −+−=− 

Now, expanding (63) and collecting terms leads to (64). 

)64( ( ) ( ) ( )22222 2~~~
kikrkiikrrirk sssxsxxxsx +++−+=− 

The first term of (64) is the energy of the estimated symbol.  This term is independent of 

the reference symbol sk and therefore may be ignored.  The last term of (64) is the 

reference symbol energy Es which is constant for all the sk utilized in this MIMO system 
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model and may also be ignored.  Finally, disregarding the constant scalar on the center 

term leads to the result that minimizing (64) is equivalent to maximizing (65) where Dk is 

the distance metric between x̃ and sk. 

)65( kiikrrk sxsxD ~~ += 

Now consider that the reference symbols {s0, s1, s2, s3} defined as in Table 3-2 all have 

the same magnitude.  Furthermore, the symmetry of the symbol constellation leads to the 

fact that magnitude of the inphase (real) skr and quadrature (imaginary) ski components of 

each symbol are also the same as expressed by (66). 

)66( for k = 1, 2, 3, and 4 ϕ== kikr ss  

Using (66) the symbols may be expressed as in (67), (68), (69) and (70). 

)67( ϕϕ js +=0 

)68( ϕϕ js +−=1 

)69( ϕϕ js −=2 

)70( ϕϕ js −−=3 

Now mr and mi are defined to be the real and imaginary distance metrics terms given by 

(71) and (72). 

)71( rr xm ~ϕ≡ 
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)72( ii xm ~ϕ≡ 

Using (71) and (72), (65) can be expressed as the distance metrics D0, D1, D2 and D3 in 

terms of mr and mi as in (73), (74), (75) and (76). 

)73( ir mmD +=0 

)74( ir mmD +−=1 

)75( ir mmD −=2 

)76( ir mmD −−=3 

Utilizing this method developed as part of this dissertation research, it is only necessary 

to compute one value of mr and mi for each x ̃, evaluate the distance metrics according to 

(73), (74), (75) and (76) and then choose sk based on the largest value of Dk.  The method 

requires only 2 multiplications and 4 additions for each of the four symbol estimates in a 

MIMO code block.  Therefore, the hardware resource requirement for the detector is 

reduced to a total of 8 multiplications and 16 additions, while the complicated square root 

operation is completely eliminated. 

Evolution of the Hardware Architecture 

The initial approach of the PGA hardware based MIMO system model described in this 

chapter was a fully parallel implementation.  This approach facilitates the greatest data 

throughput rate by processing 8-bits of data for every hardware clock cycle.  However, 
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the PGA hardware resources are exhausted in the attempt to instantiate the processing for 

the requisite 8 timeslots of the MIMO code block. 

The architecture is then modified to implement the processing of the 8 timeslots 

sequentially.  The effect of this change is to reduce the data throughput rate to 1-bit per 

clock cycle.  Changing to sequential timeslot processing is not sufficient to fit the 

hardware model to the available PGA resources.  Therefore, the channel characteristic 

generators are also reduced from a fully parallel implementation requiring 18 Gaussian 

PNGs to the design that requires only 4 Gaussian PNGs. 

With the initial completion of the full PGA hardware base MIMO model, it was found 

that the validation tests results where not satisfactory.  Where software based MIMO 

model could match the expected validation data to within 1% for most BER versus SNR 

data points, the PGA hardware based model produced errors of 50% or greater in some 

cases.  It was observed that the hardware based model’s error increased with increasing 

SNR.  It became apparent that the observations are consistent with increasing error as 

BER decreases. 

Failure of the hardware model to pass the validation tests prompted a thorough 

investigation of the PGA hardware model.  The hardware model was checked for errors 

in implementation, inaccuracy due to numeric representation limits and improperly 

synchronized signal timing.  Although some such errors were observed and corrected, the 

results of the validation tests remained essentially unchanged.   
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Next, a series of progressive PGA hardware models were created and validated against 

predicted results.  Each successive model is built using the components and techniques 

proven in the previous models.  Each new PGA hardware model increased in overall 

complexity.  The purpose of this progressive technique is to identify any stage where 

errors are introduced into the PGA hardware model. 

These models progressed from an amplitude shift keying (ASK) model having two real 

signal points, to a binary phase shift keying (BPSK) model having two complex signal 

points, to a QPSK model with same four complex signal points as the base modulation of 

the MIMO model.  All of these PGA hardware models produced the predicted results for 

BER versus SNR. 

The next step was to construct what can be considered as the MIMO shell model.  This 

PGA hardware model consists of all of the parts of the MIMO system model described 

earlier except for the transmitter, channel and decoder.  The symbol mapper is connected 

directly to the detector to provide a complete signal path through the model.  The purpose 

of the MIMO shell model is to confirm that no errors were introduced during the 

interchange of simulation conditions or results between the hardware and software layers.  

Another purpose of this model is to confirm the proper operation of the system without 

MIMO processing or communications channel.  A simple additive white Gaussian noise 

(AWGN) channel is next inserted into the MIMO shell model.  Then the MIMO 

transmitter and decoder is introduced but without a multipath channel.  These PGA 

hardware models all produced satisfactory validation test results. 
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However, when the multipath channel characteristic generator is introduced, the results of 

the validation tests again became unsatisfactory.  This led to concern about the random 

number generators and the fidelity of the Gaussian distribution they produced.  Detailed 

analysis of the PNG sequences revealed unexpected correlations.  A literature search 

confirmed correlation in LFSR sequences to be a known issue and lead to the skip-ahead 

technique as one possible solution [53][54][56].  The skip-ahead technique is then 

adapted to the MIMO system PGA hardware model and is a significant contribution of 

this dissertation research. 

With the introduction of the skip-ahead technique into the path characteristic and channel 

noise generators, the result of the validation tests become comparable to the those 

produced by the software based MIMO system model.  Although the validation results 

could be considered satisfactory at this point, a question remained as to whether the 

results could be further improved with increased fidelity of the PNG Gaussian 

distribution especially into the tail regions, that is, the region of the Gaussian CDF 

approaching a cumulative probability of 1.0.  However, the hardware memory resources 

required to expand the look up tables here are nearly exhausted.  This condition led to the 

development of the composite look up table design described earlier [50].  The 

introduction of composite look up table in the 10 Gaussian PNG reallocated 66% of the 

hardware memory resources.  This resulted in the PGA hardware MIMO system model 

described in this chapter and is another significant contribution of this dissertation 

research. 
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CHAPTER 7  
VALIDATION 

The MIMO simulation models describe in the previous chapters are validated by 

comparing their results to published work.  Three test cases are used.  In each case, the 

simulation models are used to produce an observed BER verses SNR curve and the 

results compared to theoretical curves or data published in the reference work.  The first 

test case reproduces the observed BER curve for the uncoded QPSK base modulation as 

given by Haykin [32].  The second and third test cases reproduce the observed BER 

curves for the STBC system using three transmit antennas with one and two receive 

antennas as given by Tarokh et al. [10].  The test conditions were created using the 

available controls of the models without modification by appropriately configuring the 

signal path attenuations, antenna configurations and multipath conditions.   

Case 1: Uncoded QPSK 

The first validation case reproduces the BER curve for an uncoded QPSK transmission.  

The BER versus SNR curve for this case as described by Haykin [32] is shown in Figure 

7-1.  This case is based on an uncoded QPSK transmission between one transmit antenna 

and one receive antenna over an additive white Gaussian noise (AWGN) channel without 

multipath interference.   
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Figure 7-1 BER Curve for Uncoded QPSK 

Reference Data 

Probability of bit error Pb or BER for Case 1, as derived by Haykin, is given by (77) 

where Eb is signal energy per bit and N0 is channel noise.   
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Note here that in (77) the term Eb/N0 is the SNR of the system.  Since QPSK modulation 

carries two bits per symbol the bit energy is half the symbol energy as in (78) and the 

channel noise is determined by (79) where σ2
Noise is the variance of the channel noise. 

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

0 1 2 3 4 5 6 7 8 9 10 11 12

SNR(dB)

BE
R

QPSK



 107 

)78( 
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E = 

)79( 2
0 2 NoiseN σ= 

Recalling that Es = 1 in the models of this dissertation research; it can be seen that SNR 

as expressed in (80) leads directly to (36) where ρ is SNR. 

)80( 20 4 Noise

sb E
N
E

σ
ρ == 

Model Configuration 

The conditions for this validation case are created in the models by disabling multipath 

and all but a single transmission path.   In addition, the attenuation of the single 

transmission path is set to 3.01 dB.  To understand why this attenuation is required, let 

the signal path characteristics be given as in (81). 

)81( 


 ==

=
otherwise

kiforh
hik 0

0
 

Now assuming that only the signal path between the first transmit antenna and the first 

receive antenna exists.  The signal observed by the Decoder over the block transmission 

is equal to h times the first column of G plus the AWGN random noise n as given in (82). 
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Applying this to (9) gives (83), where h is assumed complex and all noise terms are 

collected into the final n.   

)83( ( ) ( ) nxhhnhxhnhxhrhrx +=+++=+= 0
2**

0
*

0
*)4(*)0(

0 2)(~ 

If the magnitude of h is chosen as 21 , (83) becomes nxx += 00
~  which is precisely the 

case for a QPSK symbol transmitted over an AWGN channel.  The same reasoning can 

be applied to (10) through (12) so that nxx ii +=~ for i = 0, 1, 2, 3.  Thus the path 

attenuation must be set to approximately 3 dB to achieve these conditions as expressed in 

(84). 

)84( dBnAttenuatio 01.3)2(log10
2

1log20 1010 ==







−= 

Case 2 and Case 3: MIMO 

The second and third validation cases reproduce BER verses SNR curves published by 

Tarokh et al. [10].  These curves are produced for the same STBC implemented by the 

simulation models of this dissertation research.  The second test case assumes a MIMO 
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coded signal transmitted from three transit antennas to a single receive antenna over a 

multipath AWGN channel.  The third test case assumes the same signal and conditions 

but with two receive antennas.  Both cases assume a multipath mean µm = 0 and variance 

σm
2 = 0.5.  The path attenuations are set to 0 dB for all transmission paths used.  A plot of 

the BER versus SNR curves for these two cases is given in Figure 7-2. 

Figure 7-2  BER Curve of Validation Case 2 and Case 3 

Reference Data 

The reference data points for validation Case 2 and Case 3 are taken from the curves 

published by Tarokh et al. [10].  Unfortunately, the data published are presented only as 

plots.  The data points are extracted from the published plots using the Engauge Digitizer 
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software [71].  This software allows data to be read from any plot, chart, drawing or map 

that is drawn to scale.  After calibrating the software to the axes of the plots, the software 

is able to obtain the data points from the published curves with reasonable precision. 

The data for validation Case 2 is taken from the 3 antenna curve of Figure 6 published in 

[10], while the data for validation Case 3 is taken from the 3 antenna curve of Figure 8 in 

[10].  The actual data utilized is given in Table 7-1.  Note that the available data points do 

not cover the same range of SNR for all validation cases. 

It should be noted that Tarokh defines SNR differently from the previous section of this 

dissertation research.  Tarokh defines SNR or ρ΄ according to (85) and relative to symbol 

energy Es whereas the simulation models define SNR in terms of bit energy Eb according 

to (80). 

)85( ρρ 22
00

===′
N
E

N
E bs 

A correction for this difference in SNR is easily accomplished by adding 3 dB to the SNR 

value for each reference data point.  The correction has already been applied in Table 7-1. 
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Table 7-1 Reference Data for Validation Cases 

SNR BER 
Case 1 

BER 
Case 2 

BER 
Case 3 

0 7.86 x 10-2 --- 7.65 x 10-3 

1 5.63 x 10-2 --- 4.04 x 10-3 

2 3.75 x 10-2 --- 1.96 x 10-3 

3 2.29 x 10-2 1.51 x 10-2 8.89 x 10-4 

4 1.25 x 10-2 9.71 x 10-3 3.80 x 10-4 

5 5.95 x 10-3 5.91 x 10-3 1.51 x 10-4 
6 2.39 x 10-3 3.58 x 10-3 5.48 x 10-5 

7 7.73 x 10-4 2.11 x 10-3 2.01 x 10-5 

8 1.91 x 10-4 1.20 x 10-3 --- 

9 3.36 x 10-5 6.88 x 10-4 --- 

10  3.81 x 10-4 --- 

11  2.05 x 10-4 --- 

12  1.07 x 10-4 --- 

13  5.57 x 10-5 --- 

14  2.91 x 10-5 --- 

 

Model Configuration 

The models are configured for validation Case 2 by enabling multipath, all three transmit 

antennas and one receive antenna.  This results in the complete attenuation of all of the 

columns of H except for the first as in (86). 
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Similarly, validation Case 3 is configured to utilize multipath, all three transmit antennas 

and two receive antennas.  This is accomplished by disabling one column of H as in (87). 
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Validation Results 

This section presents the data obtained from both the software and hardware MIMO 

communications system models for each validation case as part of this dissertation 

research.  Data obtained using the software model is presented in Table 7-2 through 

Table 7-6, while data obtained using the hardware model is presented in Table 7-7 

through Table 7-11.  For each validation case, the same conditions, SNR points and 

minimum number of bits are utilized for the software and hardware based models.   

For each model there are 15 validation scenarios.  Validation Case 1 utilizes one transmit 

antenna and one receive antenna and therefore result in 9 scenarios.  Table 7-2 and Table 

7-7 present the data obtained using the signal path between the first transmit antenna, Tx0, 

and each of the three receive antennas, Rx0, Rx1 and Rx2.  Similarly, Table 7-3 and Table 

7-8 present the data obtained when using the second transmit antenna, Tx1, while Table 

7-4 and Table 7-9 present the data obtained with the third transmit antenna, Tx2.   

Validation Case 2 and Case 3 each utilize three transmit antennas and result in three 

scenarios each.  Validation Case 2 utilizes a single receive antenna with the results 

presented in Table 7-5 and Table 7-10 for Rx0, Rx1 and Rx2.  Validation Case 3 utilizes 
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two of the three receive antennas and the results are presented in Table 7-6 and Table 

7-11 for each pair of receive antennas. 

The data presented in the Tables includes the SNR, BER and error for each point and the 

mean error for each scenario.  For each value of SNR, expressed in dB, the BER value 

obtained from the simulation is given.  Error is defined as the difference between the 

BER value obtained in the test, BERsim, and the reference data, BERref, given in Table 7-1 

and expressed as a percentage of the reference value according to (88).  The mean error 

then is the average of the error values over all SNR points. 

)88( %100×
−

=
ref

simref
BER

BERBER
Error 

For each validation case, the SNR values are chosen from the available published or 

computed data.  The lowest SNR value is selected as 0 dB or the lowest available SNR.  

As practical mater, the number of bits processed for each SNR point is chosen so as to 

limit the execution time required for any one software model simulation to less than 25 

minutes.  The highest SNR value was therefore selected so that an expected BER 

precision of 0.1% could be obtained while processing no more than 5 x 107 bits per SNR 

point.  Note that the minimum bits processed are the same for each SNR point of a 

validation case.  For validation Case 1 each SNR point is evaluated using 3 x 107 bits, 

validation Case 2 utilizes 3.5 x 107 bits and Case 3 uses 5 x 107 bits. 

In general, both models match the reference data sets demonstrably well.  The worst case 

software model validation test shows a mean error magnitude of only 3.62 % while 11 of 
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15 tests show 3.02 % or less.  The worst case hardware model validation test shows a 

mean error magnitude of only 3.09 % with 12 of 15 tests showing 2.11 % or less.   

Figure 7-3, Figure 7-4 and Figure 7-5 show plots of data generated by the software model 

for validation Case 1, Case 2 and Case 3 respectively.  Figure 7-6, Figure 7-7 and Figure 

7-8 show the plots for the data generated by the hardware model.  In these plots, the 

observed BER versus SNR curves generated by the respective model for each test of a 

validation case is plotted along with the reference data.  Although the individual curves 

cannot be distinguished in these Figures, it should be noted that there is little divergence 

of the curves across the entire SNR range.   

It is noted that the curves generally show the greatest divergence at the highest SNR and 

that this observation is supported by the data of Table 7-2 through Table 7-11.  This 

result may be attributed to a number of factors including those listed below.  Suggested 

future work could involve improving the convergence of this data. 

Some factors that may contribute to the observed divergence of the validation data from 

the reference include: 

1. Insufficient number of sample bits, especially at high SNR where BER is low and 

error bits are rare such that the weight of a single error bit can be significant to the 

accuracy of the data. 

2. Limitations of numeric precession within the models. 
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3. Inaccuracy of the estimated inverse Gaussian cumulative distribution functions 

utilized by the models especially in the tail region near a cumulative distribution 

of 1.0, which becomes increasingly significant as SNR increase. 

4. The reference data for validation Case 1 is theoretical assuming mathematically 

perfect continuous Gaussian noise distribution and an infinite number of test bits. 

5. The reference data for validation Case 2 and Case 3 was estimated from a graphic 

taken from a reproduction of the paper published by Tarokh et al. [10]. 

Overall, both the software and hardware based MIMO communications system 

simulation models of this dissertation research are considered to have passed the 

validation tests for all three cases. 
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Table 7-2 Software Model Validation Case 1 Results for Tx0 

 Rx0 Rx1 Rx2 

SNR(dB) BER Error BER Error BER Error 

0 7.84 x 10-2 -0.38% 7.83 x 10-2 -0.46% 7.83 x 10-2 -0.48%

1 5.60 x 10-2 -0.50% 5.60 x 10-2 -0.48% 5.61 x 10-2 -0.39%

2 3.73 x 10-2 -0.60% 3.73 x 10-2 -0.58% 3.73 x 10-2 -0.63%

3 2.26 x 10-2 -1.04% 2.27 x 10-2 -0.78% 2.28 x 10-2 -0.56%

4 1.24 x 10-2 -0.97% 1.23 x 10-2 -1.29% 1.24 x 10-2 -1.05%

5 5.83 x 10-3 -2.05% 5.86 x 10-3 -1.63% 5.86 x 10-3 -1.59%
6 2.33 x 10-3 -2.40% 2.33 x 10-3 -2.40% 2.32 x 10-3 -2.73%

7 7.48 x 10-4 -3.22% 7.38 x 10-4 -4.49% 7.41 x 10-4 -4.10%

8 1.81 x 10-4 -5.03% 1.77 x 10-4 -7.49% 1.76 x 10-4 -8.02%

9 2.93 x 10-5 -12.78% 2.80 x 10-5 -16.64% 2.88 x 10-5 -14.27%

Mean Error  -2.90%  -3.62%  -3.38%

Table 7-3 Software Model Validation Case 1 Results for Tx2 

 Rx0 Rx1 Rx2 

SNR(dB) BER Error BER Error BER Error 

0 7.82 x 10-2 -0.52% 7.84 x 10-2 -0.32% 7.83 x 10-2 -0.46% 

1 5.60 x 10-2 -0.50% 5.60 x 10-2 -0.50% 5.60 x 10-2 -0.43% 

2 3.73 x 10-2 -0.58% 3.72 x 10-2 -0.74% 3.74 x 10-2 -0.42% 

3 2.27 x 10-2 -0.87% 2.27 x 10-2 -0.65% 2.27 x 10-2 -0.69% 

4 1.24 x 10-2 -0.97% 1.24 x 10-2 -0.97% 1.23 x 10-2 -1.29% 

5 5.88 x 10-3 -1.31% 5.83 x 10-3 -2.06% 5.86 x 10-2 -1.63% 

6 2.35 x 10-3 -1.60% 2.31 x 10-3 -3.19% 2.33 x 10-3 -2.44% 

7 7.39 x 10-4 -4.36% 7.46 x 10-4 -3.52% 7.38 x 10-4 -4.46% 

8 1.79 x 10-4 -6.45% 1.75 x 10-4 -8.33% 1.82 x 10-4 -4.72% 

9 3.00 x 10-5 -10.79% 3.06 x 10-5 -9.00% 2.86 x 10-5 -14.86% 

Mean Error  -2.79%  -2.93%  -3.14% 
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Table 7-4 Software Model Validation Case 1 Results for Tx3 

 Rx0 Rx1 Rx2 

SNR(dB) BER Error BER Error BER Error 

0 7.83 x 10-2 -0.43% 7.83 x 10-2 -0.44% 7.84 x 10-2 -0.37% 

1 5.61 x 10-2 -0.36% 5.60 x 10-2 -0.47% 5.60 x 10-2 -0.45% 

2 3.73 x 10-2 -0.44% 3.73 x 10-2 -0.63% 3.72 x 10-2 -0.74% 

3 2.27 x 10-2 -0.74% 2.27 x 10-2 -0.82% 2.27 x 10-2 -0.60% 

4 1.24 x 10-2 -0.81% 1.24 x 10-2 -1.21% 1.24 x 10-2 -1.21% 

5 5.85 x 10-3 -1.69% 5.86 x 10-3 -1.66% 5.84 x 10-3 -1.90% 
6 2.34 x 10-3 -1.94% 2.33 x 10-3 -2.36% 2.34 x 10-3 -2.15% 

7 7.52 x 10-4 -2.70% 7.36 x 10-4 -4.81% 7.38 x 10-4 -4.53% 

8 1.80 x 10-4 -5.82% 1.83 x 10-4 -4.14% 1.78 x 10-4 -6.92% 

9 2.95 x 10-5 -12.18% 3.28 x 10-5 -2.46% 2.98 x 10-5 -11.38% 

Mean Error  -2.71%  -1.90%  -3.02% 
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Table 7-5 Software Model Validation Case 2 Results 

 Rx0 Rx1 Rx2 

SNR(dB) BER Error BER Error BER Error 

3 1.51 x 10-2 -0.45% 1.51 x 10-2 -0.31% 1.51 x 10-2 -0.45%

4 9.61 x 10-3 -1.02% 9.63 x 10-3 -0.82% 9.61 x 10-3 -1.00%

5 5.98 x 10-3 1.18% 5.97 x 10-3 0.98% 5.96 x 10-3 0.87%

6 3.60 x 10-3 0.64% 3.61 x 10-3 0.81% 3.60 x 10-3 0.64%

7 2.11 x 10-3 -0.11% 2.10 x 10-3 -0.44% 2.10 x 10-3 -0.49%

8 1.20 x 10-3 -0.71% 1.20 x 10-3 -0.21% 1.20 x 10-3 -0.04%
9 6.63 x 10-4 -3.60% 6.63 x 10-4 -3.60% 6.71 x 10-4 -2.36%

10 3.61 x 10-4 -5.25% 3.62 x 10-4 -5.15% 3.63 x 10-4 -4.83%

11 1.94 x 10-4 -5.28% 1.98 x 10-4 -3.23% 1.98 x 10-4 -3.23%

12 1.07 x 10-4 0.04% 1.04 x 10-4 -3.23% 1.04 x 10-4 -2.39%

13 5.49 x 10-5 -1.44% 5.21 x 10-5 -6.41% 5.34 x 10-5 -4.10%

14 2.93 x 10-5 0.63% 2.81 x 10-5 -3.32% 2.88 x 10-5 -0.95%

Mean Error  -1.39%  -2.38%  -1.69%

Table 7-6 Software Model Validation Case 3 Results 

 Rx0 & Rx1 Rx0 & Rx2 Rx1 & Rx2 

SNR(dB) BER Error BER Error BER Error 

0 7.59 x 10-3 -0.79% 7.58 x 10-3 -0.92% 7.59 x 10-3 -0.79%

1 3.99 x 10-3 -1.24% 3.98 x 10-3 -1.61% 4.00 x 10-3 -1.22%

2 1.95 x 10-3 -0.47% 1.94 x 10-3 -0.72% 1.94 x 10-3 -0.67%

3 8.79 x 10-4 -1.06% 8.80 x 10-4 -1.01% 8.80 x 10-4 -0.92%

4 3.69 x 10-4 -2.92% 3.72 x 10-4 -2.16% 3.74 x 10-4 -1.60%

5 1.44 x 10-4 -4.51% 1.44 x 10-4 -4.58% 1.45 x 10-4 -3.91%

6 5.51 x 10-5 0.45% 5.28 x 10-5 -3.67% 5.31 x 10-5 -3.16%

7 1.90 x 10-5 -5.26% 1.79 x 10-5 -10.64% 2.01 x 10-5 0.33%

Mean Error  -1.97%  -3.16%  -1.49%
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Table 7-7 Hardware Model Validation Case 1 Results for Tx0 

 Rx0 Rx1 Rx2 

SNR(dB) BER Error BER Error BER Error 

0 7.84 x 10-2 -0.38% 7.83 x 10-2 -0.43% 7.84 x 10-2 -0.38%

1 5.60 x 10-2 -0.43% 5.60 x 10-2 -0.43% 5.60 x 10-2 -0.48%

2 3.73 x 10-2 -0.47% 3.73 x 10-2 -0.63% 3.73 x 10-2 -0.47%

3 2.28 x 10-2 -0.52% 2.27 x 10-2 -0.78% 2.27 x 10-2 -0.78%

4 1.24 x 10-2 -0.97% 1.24 x 10-2 -0.89% 1.24 x 10-2 -0.65%

5 5.88 x 10-3 -1.21% 5.90 x 10-3 -0.99% 5.91 x 10-3 -0.79%
6 2.36 x 10-3 -1.14% 2.35 x 10-3 -1.69% 2.36 x 10-3 -1.14%

7 7.52 x 10-4 -2.68% 7.54 x 10-4 -2.39% 7.61 x 10-4 -1.47%

8 1.88 x 10-4 -1.68% 1.80 x 10-4 -5.56% 1.86 x 10-4 -2.36%

9 3.37 x 10-5 0.19% 3.12 x 10-5 -7.25% 3.17 x 10-5 -5.85%

Mean Error  -0.93%  -2.10%  -1.44%

Table 7-8 Hardware Model Validation Case 1 Results for Tx2 

 Rx0 Rx1 Rx2 

SNR(dB) BER Error BER Error BER Error 

0 7.82 x 10-2 -0.55% 7.84 x 10-2 -0.32% 7.84 x 10-2 -0.33%

1 5.61 x 10-2 -0.41% 5.61 x 10-2 -0.39% 5.61 x 10-2 -0.38%

2 3.73 x 10-2 -0.55% 3.73 x 10-2 -0.60% 3.73 x 10-2 -0.55%

3 2.27 x 10-2 -0.60% 2.27 x 10-2 -0.87% 2.28 x 10-2 -0.56%

4 1.24 x 10-2 -0.89% 1.24 x 10-2 -0.65% 1.24 x 10-2 -0.65%

5 5.89 x 10-3 -1.04% 5.90 x 10-3 -0.87% 5.91 x 10-3 -0.77%

6 2.35 x 10-3 -1.73% 2.36 x 10-3 -1.23% 2.35 x 10-3 -1.65%

7 7.56 x 10-4 -2.16% 7.50 x 10-4 -2.88% 7.58 x 10-4 -1.96%

8 1.82 x 10-4 -4.82% 1.87 x 10-4 -2.31% 1.85 x 10-4 -3.36%

9 2.90 x 10-5 -13.79% 3.18 x 10-5 -5.34% 3.25 x 10-5 -3.47%

Mean Error  -2.65%  -1.55%  -1.37%



 120 

Table 7-9 Hardware Model Validation Case 1 Results for Tx3 

 Rx0 Rx1 Rx2 

SNR(dB) BER Error BER Error BER Error 

0 7.83 x 10-2 -0.50% 7.83 x 10-2 -0.42% 7.83 x 10-2 -0.41%

1 5.60 x 10-2 -0.48% 5.60 x 10-2 -0.45% 5.60 x 10-2 -0.54%

2 3.73 x 10-2 -0.55% 3.73 x 10-2 -0.63% 3.73 x 10-2 -0.47%

3 2.28 x 10-2 -0.56% 2.27 x 10-2 -0.65% 2.27 x 10-2 -0.78%

4 1.24 x 10-2 -0.89% 1.24 x 10-2 -0.73% 1.24 x 10-2 -0.73%

5 5.91 x 10-3 -0.82% 5.89 x 10-3 -1.01% 5.89 x 10-3 -1.11%
6 2.36 x 10-3 -1.39% 2.37 x 10-3 -0.60% 2.36 x 10-3 -1.02%

7 7.51 x 10-4 -2.86% 7.64 x 10-4 -1.19% 7.56 x 10-4 -2.13%

8 1.82 x 10-4 -4.72% 1.86 x 10-4 -2.68% 1.83 x 10-4 -4.30%

9 3.08 x 10-5 -8.32% 3.11 x 10-5 -7.43% 3.14 x 10-5 -6.74%

Mean Error  -2.11%  -1.58%  -1.82%
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Table 7-10 Hardware Model Validation Case 2 Results 

 Rx0 Rx1 Rx2 

SNR(dB) BER Error BER Error BER Error 

3 1.51 x 10-2 -0.11% 1.51 x 10-2 -0.38% 1.51 x 10-2 -0.18%

4 9.68 x 10-3 -0.32% 9.63 x 10-3 -0.80% 9.65 x 10-3 -0.67%

5 5.98 x 10-3 1.23% 5.97 x 10-3 1.13% 6.00 x 10-3 1.55%

6 3.60 x 10-3 0.56% 3.62 x 10-3 1.26% 3.58 x 10-3 0.08%

7 2.07 x 10-3 -1.68% 2.11 x 10-3 0.08% 2.11 x 10-3 0.17%

8 1.18 x 10-3 -1.95% 1.20 x 10-3 -0.62% 1.21 x 10-3 0.37%
9 6.68 x 10-4 -2.86% 6.74 x 10-4 -1.99% 6.66 x 10-4 -3.11%

10 3.62 x 10-4 -5.01% 3.65 x 10-4 -4.31% 3.65 x 10-4 -4.20%

11 1.93 x 10-4 -5.77% 1.92 x 10-4 -6.41% 1.95 x 10-4 -4.75%

12 1.01 x 10-4 -6.04% 1.02 x 10-4 -4.73% 1.03 x 10-4 -3.89%

13 5.26 x 10-5 -5.55% 5.38 x 10-5 -3.43% 5.24 x 10-5 -5.91%

14 2.80 x 10-5 -3.80% 3.01 x 10-5 3.45% 2.92 x 10-5 0.22%

Mean Error  -3.09%  -1.56%  -1.95%

Table 7-11 Hardware Model Validation Case 3 Results 

 Rx0 & Rx1 Rx0 & Rx2 Rx1 & Rx2 

SNR(dB) BER Error BER Error BER Error 

0 7.63 x 10-3 -0.34% 7.61 x 10-3 -0.53% 7.61 x 10-3 -0.56%

1 4.02 x 10-3 -0.62% 4.00 x 10-3 -1.07% 4.01 x 10-3 -0.82%

2 1.96 x 10-3 0.25% 1.96 x 10-3 -0.01% 1.95 x 10-3 -0.31%

3 8.90 x 10-4 0.13% 8.91 x 10-4 0.26% 8.84 x 10-4 -0.48%

4 3.80 x 10-4 -0.08% 3.82 x 10-4 0.50% 3.73 x 10-4 -1.92%

5 1.49 x 10-4 -1.26% 1.48 x 10-4 -2.19% 1.47 x 10-4 -2.92%

6 5.55 x 10-5 1.25% 5.29 x 10-5 -3.46% 5.21 x 10-5 -4.99%

7 1.92 x 10-5 -4.06% 1.82 x 10-5 -9.15% 1.85 x 10-5 -7.85%

Mean Error  -0.59%  -1.95%  -2.48%
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Figure 7-3 Overlay of Case 1 Data for Software Model 
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Figure 7-4 Overlay of Case 2 Data for Software Model 
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Figure 7-5 Overlay of Case 3 Data for Software Model 
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Figure 7-6 Overlay of Case 1 Data for Hardware Model 
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Figure 7-7 Overlay of Case 2 Data for Hardware Model 
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Figure 7-8 Overlay of Case 3 Data for Hardware Model 
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CHAPTER 8  
RESULTS AND FUTURE DIRECTION 

This chapter examines the resulting software and hardware models created for this 

dissertation research and illustrates their use in MIMO communication systems analysis.  

The models are examined in terms of their processing rate and the critical resources 

required for the hardware model.  Example simulations are presented to show, first how 

the processing rate of the hardware based model allows simulation of performance curves 

for advanced MIMO codes.  Second, examples are given to show the use of the models to 

examine the transition of MIMO system performance as individual channel paths fade 

out.  The chapter concludes with a discussion of what was shown by the creation of these 

simulation models and an outline of directions for future research. 

Processing Rate 

One reason for creating the hardware MIMO system model is to achieve a greater 

processing rate than could be achieved with the software based model.  Here the 

processing rate of each model is compared using actual time required to perform 

simulations.  Both models are used to perform the complete set of simulations and the 

performance is analyzed in terms of processing time per bit and overhead per simulation. 

The simulation test set is based on the three validation cases described in Chapter 7.  

Each simulation case is configured for 10 SNR points and is repeated 5 times; with every 

iteration the number of processed bits is increased.  The time required to perform each 

simulation as record in the simulation results file are presented in Table 8-1 and Table 

8-2. 
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Table 8-1 Software Model Performance Data 

Bits per SNR 
(106 bits) 

Case 1 - 10 SNR 
(seconds) 

Case 2 - 10 SNR 
(seconds) 

Case 3 - 10 SNR 
(seconds) 

1 35.2 34.8 36.9 

5 155.8 162.7 171.8 

10 305.8 322.7 337.5 

20 613.6 646.9 666.9 

30 884.9 934.2 982.0 

Table 8-2 Hardware Model Performance Data 

Bits per SNR 
(106 bits) 

Case 1 - 10 SNR 
(seconds) 

Case 2 - 10 SNR 
(seconds) 

Case 3 - 10 SNR 
(seconds) 

1 113.8 114.2 113.0 

5 116.9 117.6 117.7 

10 123.1 125.1 123.2 

50 178.1 174.4 176.0 

100 236.3 237.7 233.3 

 

In analyzing the performance data for the models, it is considered that the execution time 

of any simulation, Tsim, is composed of a mean processing time per bit, R, and a mean 

overhead per SNR point, O, so that execution time is given by (89) where BT is the 

number bits processed per SNR point and NSNR is the number of points.  In the hardware 

model, the overhead is primarily due to the time required to download and initialize the 

hardware simulation model before starting the simulation.  System Generator does this 

for each SNR point.  In the software model, the overhead is primarily due to the sharing 

of the CPU with other unrelated processes executing on the computer.  Therefore, the 
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overhead associated with the software model is more random in nature than is the 

overhead associated with hardware model.   

)89( ( )ORBNT TSNRsim += 

Fitting a first degree polynomial to the data of Table 8-1 and Table 8-2 and dividing the 

zero order coefficient by the number of SNR points yields the data of Table 8-3.  It is 

clear from this data that the mean processing rate for the hardware model approaches the 

expected 120 nanoseconds per bit and that this rate is more than 23 times faster than the 

mean processing rate for the software model.  The hardware model does however have an 

overhead of more than 11 seconds per SNR point compared to less than 1 second for the 

software model.  This hardware model overhead is primarily due to the model being 

downloaded to the PGA by System Generator prior to each SNR point evaluation as 

mentioned above.  This overhead could be eliminated in the future by redesign of the 

Simulink layer so that the hardware model remains resident in the PGA. 

Even considering this additional overhead, the total execution time for a simulation using 

the hardware model is still less than that required for the same simulation using the 

software model when the bits per SNR point is above 5 x 106 as is observed in the data of 

Table 8-1 and Table 8-2. 
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Table 8-3 Simulation Processing Rate Data 

  Hardware Model Software Model 

Case 1  Bit Rate (nsec) 126 2948 

 Overhead (sec) 11.2 1.0 

Case 2 Bit Rate (nsec) 125 3119 

 Overhead (sec) 11.2 0.9 

Case 3 Bit Rate (nsec) 123 3216 

 Overhead (sec) 11.2 0.9 

 

Resource Utilization 

The Xilinx Vertex-4 XC4VSX35 FGPA provides limited internal resources for the 

construction of the hardware MIMO system model.  Table 8-4 shows the resources 

required for the hardware model in relation to the resources available.   

Table 8-4 Hardware Resource Utilization 

Resource Available Initial Skip-Ahead LFSR Final 

DSP48 192 153 79% 149 77% 149 77% 

RAM16B 192 170 89% 166 86% 58 30% 

Total 
Slices 

15360 12900 84% 12966 84% 12756 83% 

SliceM 7680 2590 33% 2701 35% 2599 34% 

 

There are four classes of internal resources; DSP48, RAM16B, Slices and SliceM.  The 

DSP48 resources are computational blocks capable of performing 18-bit multiplications 

and additions.  The DSP48 resources are primarily utilized for multiplication operations 
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within the hardware MIMO system model.  The RAM16B resources are configurable 

memory blocks that are primarily utilized as look up tables.  Slices are the basic logic 

resources and are used to create control logic, shift registers, storage registers, adders, 

comparators and any necessary interconnecting logic.  Slices are organized in pairs 

consisting of a SliceL and a SliceM.  Therefore, one half of all Slices are of the SliceM 

type.  The SliceM resources have a special property in that they can implement a delay 

register.  Delay registers are utilized throughout the model to synchronize signal transfer 

between processing blocks and ease timing constraints. 

Table 8-4 shows the number of units in each resource class available on the XC4VSX35.  

Note that the Slices class includes both SliceL and SliceM types so that the number of 

units in the SliceM class is also counted in the Slices class.  The next two columns in 

Table 8-4 show the typical resources utilized by the initial complete working MIMO 

system model.  The initial hardware models did not include the skip-ahead LFSR or the 

composite lookup table described in Chapter 6.  The first column indicates the number of 

units utilized from each resource class while the second column expresses the same 

information as a percentage of the total available resources in the class.  The remainder of 

the data in Table 8-4 provides the resource utilization in number of units and percent of 

available units for the model after the introduction of the skip-ahead LFSR without 

composite lookup table and for the final model that includes both. 

The data of Table 8-4 shows that the utilization of DSP48, Slices and SliceM resources 

remained relatively constant as the hardware model design is advanced.  The utilization 
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of RAM16B resources dropped substantially from 166 to 58 units with the introduction 

of the composite lookup table.  It should also be noted that no loss of performance was 

observed with the introduction of the composite lookup table design.  The final 

implementation of the MIMO system model left a reasonable margin of 17% of available 

Slices, 23% of available DSP48 and 70% of available RAM16B resources remaining for 

the Xilinx Vertex-4 XC4VSX35 FPGA. 

Using the MIMO Model 

This section discuss how the of the MIMO system models created in this dissertation 

research can be utilized in the study of MIMO system performance.  The discussion 

focuses on two areas.  First, the use of the processing rate of the hardware model to 

evaluate the very low BER available from advanced MIMO codes is demonstrated.  

Second, the use of the models to study the transition of system performance under the 

condition of individual channel paths fade is examined.  Examples are used to illustrate 

both areas. 

Simulating with More Bits 

One advantage of MIMO communications systems is the low BER that can be obtained 

for a given value of SNR relative to other communications systems.  Consequently, it is 

necessary to simulate a larger numbers of bits to ascertain the BER versus SNR 

performance curves for MIMO systems compared to other communications systems.  

Simulating the number of bits required to get precise performance curves can be a 

deterrent to investigating performance at high values of SNR or to investigating many 

different scenarios due to the time required to process the simulation.  The processing 
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rate of the hardware MIMO system model developed as part of this dissertation research 

addresses this issue. 

Consider the performance curves presented in [10] that where used as the validation cases 

of this dissertation research.  Note that the published performance curves utilized where 

limited to BER values of 1 x 10-6.  Note also that performance curves for a case of 3 

receive antennas are not presented in [10].  Obtaining such data requires considerable 

computation time. 
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Figure 8-1 Extended Performance Curves 

Using the hardware MIMO system model of this dissertation research the performance 

curves of Figure 8-1 are produced.  The curves of Figure 8-1 show the BER versus SNR 

performance of the MIMO system for the case of 1, 2 and even for 3 receive antennas 
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under the same conditions as the curves presented in [10].  The 1 and 2 receive antenna 

cases are the validation test cases used in Chapter 7 but the SNR range here is extended 

to show BER values better than 1 x 10-8.  The case of 3 receive antennas shows the full 

performance capability of this STB code and the utility of the hardware simulation 

model. 

In producing Figure 8-1 the SNR range for each curve was divided into two or three 

ranges.  Each SNR range utilized the number bits per SNR point that provided reasonable 

precision while minimizing excess processing time.  The ranges and bits per SNR point 

used for each curve are given in Table 8-5.  The target precision for these curves was 1% 

so that approximately 100 errors per SNR are expected.  The maximum number of bits 

that can be processed for any SNR point is limited by the model design to approximately 

4.3 x 109; however this limitation can be easily increased in a future revision of the 

hardware model. 

Table 8-5 Processing Ranges for Extended Performance Curves 

 1 Receive Antenna 2 Receive Antennas 3 Receive Antennas 

 SNR (dB) Bits SNR (dB) Bits SNR (dB) Bits 

Range A 0 to 20 2.5 x 108 0 to 8 1.0 x 108 0 to 5 8.0 x 107 

Range B 22 to 26 3.0 x 108 9 to 11 6.0 x 108 6 to 7 8.0 x 108 

Range C   12 to 14 4.3 x 108 8 to 9 4.3 x 109 
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The total number of bits processed for each curve and the total processing time required 

are presented in Table 8-6.  Note that approximately the same number of bits was 

required in each case and that it was possible to compute each curve in under a 

remarkable 30 minutes.  In comparison, the last row of Table 8-6 presents the estimated 

time required for the simulation of the same curves using the software model.  The 

estimates are based on the data of Table 8-3.  The single receive antenna estimate 

assumes the processing rate for validation Case 2, while the estimates for the two and 

three receive antenna cases assume the processing rate for validation Case 3. 

Table 8-6 Total Bits and Time for Extended Performance Curves 

 1 Receive 
Antenna 

2 Receive 
Antennas 

3 Receive 
Antenna 

Total Bits  1.2 x 1010 1.5 x 1010 1.1 x 1010 

Total Hardware 
Simulation Time  

27 min 36 min 26 min 

Estimate Time for 
Software Simulation  

10.2 hours 13.8 hours 9.5 hours 

 

Path Fading 

Another use for the models created in this dissertation research is in the evaluation of the 

MIMO system performance when one or more signal channel paths fade.  As described in 

Chapter 2 and Chapter 3, the development of MIMO systems assumes signals are 

transmitted over multipath channels.  However, the published analyses typically assume 

probabilistic aggregate channel path characteristics.  The models of this dissertation 
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research allow for additional attenuation and phase shift to be applied to each channel 

path.  Actual receivers may enter zones of shading where the signal from one or more of 

the transmit antennas is blocked by a local obstruction.  An actual receiver may also have 

a “keyhole” view of a transmit antenna that precludes one or more signal paths between 

transmit and receive antennas.  In addition, mobile receivers may move into and out of 

such conditions.   

Using the path attenuation feature of the simulation models, the MIMO system 

performance curves can be evaluated at a series of attenuations showing how the 

performance will change as a receiver passes through a zone of shading.  Figure 8-2 

through Figure 8-5 uniquely provide examples of changing performance under some path 

fading conditions as part of this dissertation research.  In the examples the system is 

configured as for validation Case 2 with three transmit antennas and two receive 

antennas.  In each case, the curves show performance of the system over a series of 

attenuations applied to one or more channel signal paths. 

Figure 8-2, shows the performance change as one of the receive antennas is shaded.  That 

is, all three channel signal paths terminating at the same receive antenna are attenuated 

together.  Figure 8-3, shows the effect of obstructing a single channel signal path.  Figure 

8-4, shows the effect of obstructing two channel signal paths terminating at the same 

receive antenna.  Finally, Figure 8-5 presents the effect of blocking all of the signal paths 

from one of the transmit antennas. 
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Figure 8-2 Shaded Receive Antenna 
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Figure 8-3 Single Blocked Channel Path 
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Figure 8-4 Two Block Channel Paths 
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Figure 8-5 Obstructed Transmit Antenna 
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In Figure 8-2 through Figure 8-5 the 0 dB curve is the same and, in fact, is the Case 2 

validation test curve.  As may be expected, in all cases, as path attenuation increases the 

curves shift up and to the right indicating loss of performance; that is a greater BER at 

each SNR value.  Also, as may be expected, the worst loss of performance occurs in 

Figure 8-2 where three signal paths are attenuated and least loss of performance occurs in 

Figure 8-3 where only a single path is attenuated.  Figure 8-4 and Figure 8-5 show similar 

performance loss as each of these cases involve the attenuation of two signal paths. 

Note that in all cases, the greatest loss of performance is observed with the first 5 dB step 

in path attenuation and that the change in performance decreases as the attenuation 

increase.  This observation can be most readily seen in Figure 8-2.  Consider first a BER 

level of 3 x 10-2 and note that there is a 2.2 dB loss of performance between the 0 dB and 

5 dB attenuation curves or 0.44 dB loss of performance for each 1 dB of path attenuation.  

Now consider a BER level of 1 x 10-2 and note that there is 1 dB loss of performance 

between the 10 dB and the 25 dB attenuation curves or 0.07 dB loss of performance for 

each 1 dB of path attenuation.  These observations suggest that MIMO system 

performance may be vulnerable to obstructed signal path conditions.  Investigation of this 

phenomenon is a salient topic for suggested future study. 

Path Phase Delay 

The models allow for phase delay as well as attenuation to be applied to the channel 

signal paths.  However, path phase delay is in fact canceled by the decoder and so shows 

no effect on the performance curves produced by the software and hardware simulation 

models.  This can be seen by examining (83) and noting that, ignoring the noise term, the 
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transmitted symbol, x0, is affected only by the square magnitude of the channel 

characteristic h.  In the models presented here, the channel characteristic cancels out 

completely in the decoder because perfect knowledge of channel state information is 

assumed.  Suggested future work could advance the models to include a method for 

estimating the channel characteristic from a training sequence or other means.  At that 

time the error in phase estimation could affect the performance and thus the ability to 

apply phase delay becomes significant. 

Summary of Accomplishments 

This dissertation research has accomplished the following: 

1. Develop both software and hardware based models for the study of MIMO 

communications system performance under conditions of signal path fading. 

2. Demonstrate how hardware accelerated models can greatly shorten simulation 

time allowing for both the evaluation of lower BER levels and evaluation of more 

simulation scenarios than may otherwise be practical. 

3. Develop a method to whiten the spectral content of an LFSR random number 

generator that can be utilized effectively in PGA hardware without incurring 

significant additional resource requirements. 

4. Develop a method for generating Gaussian distributed random numbers in PGA 

hardware using reduced size lookup tables while allowing the trade off between 

table size and accuracy. 
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5. Develop an incremental linear MIMO decoder method that minimizes the 

requirements for storage and processing resources in PGA hardware, but is also 

useful in software based implementations. 

6. Demonstrate how MIMO communications systems can be further analyzed for 

performance under the conditions of signal path fading and antenna shading. 

7. Demonstrate the viability of a three antenna linearly decoded STBC MIMO 

communications system through its implementation and verification on a readily 

available PGA device. 

Future Directions 

There are seemingly two approaches that can be pursued in furthering the work presented 

here, the advancement of the MIMO system model and study of MIMO system 

performance under conditions of fading signal paths.  The first approach involves both 

improving the efficiency and accuracy of the model implementation and extending the 

model design to incorporate the additional features described and in support of alternative 

STB codes.  The second approach includes use of these or similar models to investigate 

MIMO system performance under the numerous combinations of conditions.  It is 

reasonable to expect that the development along either approach will influence 

development along the other. 
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Advancing the Model 

The models presented here can be advanced in two ways.  First, the existing design can 

be made more efficient and accurate, especially in the hardware implementation.  Some 

improvements of this type include: 

1. Increasing the accuracy of the Gaussian number sources.  The software model 

utilizes the Winitzki [41] approximation for inverse erf() function, which was 

selected in order to maintain comparability with the hardware model.  The 

transformation from uniform to Gaussian distribution can be replaced with other 

more accurate methods.  In the hardware model, the Gaussian distribution 

accuracy can be improved by using the composite LUT design process to create 

tables with a greater number of sample points. 

2. The hardware model can be extended by redesign to support simulations requiring 

more than 4 x 109 bits allowing evaluation of lower BER conditions and allowing 

improved precision of currently obtainable BER values. 

3. Elimination of overhead and development of a more convenient user interface for 

the hardware model.  The overhead of loading the hardware model for each SNR 

point can be eliminated by modifying the implementation to allow the PGA 

configuration to remain resident when changing simulation conditions.  The 

addition of graphical or other convenient user interface could also improve the 

usability of the model. 
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4. Port the hardware model to a more advanced PGA.  The hardware model could be 

ported to more advance PGA such as the Xilinx Vertex-5 or Vertex-6.  Porting the 

model can allow for even faster processing rates and open additional resources 

that can allow for expansion of the model. 

The model design can be expanded to include additional capabilities.  Some 

improvements of this kind include: 

1. Addition of a channel characteristic estimator.  An equalizer or another technique 

may be added to the model design to determine the channel path characteristics 

without the assumption of complete channel state information.  The inclusion of 

such a mechanism in the model would allow the simulations to more closely 

approximate actual receiver operation. 

2. Alternate decode and detector designs.  The decoder and detector as well as other 

components of the model can be readily replaced with alternate methods or 

implementations with the resulting models used to evaluate the change in system 

performance. 

3. Design of the models for additional STB codes.  Space time block codes 

involving 2, 3 and 4 transmit antennas have been proposed [10] and others can be 

developed.  Updating the models will allow other STB codes to be investigated 

using the principles presented here. 



 142 

Study of MIMO System Performance  

Employing the principles of attenuated signal paths presented here and using models such 

as those developed opens the possibility for the investigation of MIMO system 

performance under conditions of degraded signal paths.  Here four degradation scenarios 

where presented to illustrate the types of analyses that can be performed using these 

models.  However, many more such scenarios are possible including independent fading 

of two or more signal paths, as well as more detailed (greater number of attenuation 

values) simulations.  As demonstrated here, such studies would require a large number of 

simulations with a large number of bits especially when advanced codes yielding low 

BER values are involved.  Accelerated models such as the hardware based model 

developed here as part of this dissertation research can greatly assist such studies. 
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