

Evaluation of Space-Time Block Codes Under Controlled Fading Conditions Using Hardware Simulation

A Dissertation Proposal Submitted to the Temple University Graduate Board

In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Engineering

By Leonard Colavito

Introduction

Multiple-Input Multiple-Output (MIMO)

- MIMO digital wireless communication systems achieve significant BER performance increase over other systems by utilizing multipath as an advantage.
- Multipath results when signals take two or more paths from a transmitter to a receiver introducing signal fading
- MIMO systems take advantage of multipath by using two or more antennas at the transmitter or receiver or both

College of Engineering

Space-Time Block Codes (STBC)

- Class of MIMO codes that encode data symbols in blocks (Calderbank, et. al., 1997)
- Code block defines a sequence of symbol sets
- Symbol set is transmitted simultaneously during one symbol time
- STBC allows for linear decoding (Alamouti, 1998)

College of Engineering

Modeling MIMO Systems

- MIMO systems modeled to test performance
- Models used

T College of Engineering

- Software simulations (Alamouti, 1998, Tarokh, et al 1999) use random data and channel characteristics to compute BER performance
- Real-world experiments (Goud, et al, 2003)
 measurements made in office environment, data post-processed
- Hardware simulations (Murphy, et al, 2007) use DSPs and PGAs to support rapid-prototyping of MIMO system designs
- Models evaluate bit error rate (BER) verses signal to noise (SNR) performance

Controlled Channel Conditions

- Extend the definition of channel path characteristic to include a path specific fixed attenuation A_{ik} and additional phase delay Φ_{ik} .
- Allows for configuration of specific conditions
 - Extra loss in one or more paths
 - Additional delay of a path

T College of Engineering

 Progressive variation allows for evaluation of performance over changing channel conditions

$$h_{ik} = A_{ik} \alpha_{ik} \exp(j[\theta_{ik} + \Phi_{ik}])$$

Hardware Acceleration

- Reduces time required to obtain MIMO system performance results.
- Allows for greater BER precision through processing of more bits.
- Allows for greater BER versus SNR curve resolution through processing of more SNR points.
- Allows evaluation of BER versus SNR curves under more conditions.

Research Objectives

- Create a software STBC base MIMO system model employing controlled channel conditions
- Create a hardware accelerated version of the model.
- Demonstrate the use of the models in evaluation of a STBC under degrading signal path conditions.
- Compare the performance of the software model to the hardware accelerated model.

Model Design

MIMO System

- Space-Time Code
- Transmitter and Receiver
- Multipath Channel
- MIMO Decoder

Transmitter

- Data stream divided into codewords
- Codewords are mapped to base modulation (QPSK) symbols
- Symbols encoded and transmitted according to the STBC

Space-Time Block Code

 3-Antenna Rate ¹/₂ (Tarokh et. al., 1999)

$$\mathbf{G} = \begin{pmatrix} x_0 & x_1 & x_2 \\ -x_1 & x_0 & -x_3 \\ -x_2 & x_3 & x_0 \\ -x_3 & -x_2 & x_1 \\ x_0^* & x_1^* & x_2^* \\ -x_1^* & x_0^* & -x_3^* \\ -x_2^* & x_3^* & x_0^* \\ -x_3^* & -x_2^* & x_1^* \end{pmatrix}$$

L Colavito

Channel

- Fading path between each transmit and receive antenna
- Additive white Gaussian noise (AWGN)
- Assumed quasi-static, channel characteristics do not change over block time

Process View

Channel Characteristic

 Channel matrix H describes the fading characteristics of the signal paths

$$\mathbf{H} = \begin{bmatrix} h_{00} & h_{01} & h_{02} \\ h_{10} & h_{11} & h_{12} \\ h_{20} & h_{21} & h_{22} \end{bmatrix}$$

Path characteristic

College of Engineering

- Rayleigh distributed random attenuation α_{ik}
- Linearly distributed random phase θ_{ik}
- Constant attenuation A_{ik}
- Constant additional phase shift Φ_{ik}

$$h_{ik} = A_{ik} \alpha_{ik} \exp(j \left[\theta_{ik} + \Phi_{ik} \right])$$

Received Signals

- Receive signal r_k is the sum of signals and noise
 - $-s_i$: Signal from transmit antenna
 - h_{ik} : Path characteristic
 - n_k : AWGN at receive antenna

$$r_k = \sum_{i=1}^m h_{ik} s_i + n_k$$

Receiver

- Decoder estimates the transmitted symbols by linear computation
- Detector maps symbols to codewords by maximum likelihood
- Codewords multiplexed into output data stream

Decoder

- Assumes complete channel state information (CSI)
- Computes estimates of transmitted symbols by linear combination of received signals

$$\begin{aligned} \widetilde{x}_{0} &= \sum_{k=0}^{2} \left[r_{k}^{(0)} h_{0k}^{*} + r_{k}^{(1)} h_{1k}^{*} + r_{k}^{(2)} h_{2k}^{*} + \left(r_{k}^{(4)} \right)^{*} h_{0k} + \left(r_{k}^{(5)} \right)^{*} h_{1k} + \left(r_{k}^{(6)} \right)^{*} h_{2k} \right] \\ \widetilde{x}_{1} &= \sum_{k=0}^{2} \left[r_{k}^{(0)} h_{1k}^{*} - r_{k}^{(1)} h_{0k}^{*} + r_{k}^{(3)} h_{2k}^{*} + \left(r_{k}^{(4)} \right)^{*} h_{1k} - \left(r_{k}^{(5)} \right)^{*} h_{0k} + \left(r_{k}^{(7)} \right)^{*} h_{2k} \right] \\ \widetilde{x}_{2} &= \sum_{k=0}^{2} \left[r_{k}^{(0)} h_{2k}^{*} - r_{k}^{(2)} h_{0k}^{*} - r_{k}^{(3)} h_{1k}^{*} + \left(r_{k}^{(4)} \right)^{*} h_{2k} - \left(r_{k}^{(6)} \right)^{*} h_{0k} - \left(r_{k}^{(7)} \right)^{*} h_{1k} \right] \\ \widetilde{x}_{4} &= \sum_{k=0}^{2} \left[- r_{k}^{(1)} h_{2k}^{*} + r_{k}^{(2)} h_{1k}^{*} - r_{k}^{(3)} h_{0k}^{*} - \left(r_{k}^{(5)} \right)^{*} h_{2k} + \left(r_{k}^{(6)} \right)^{*} h_{1k} - \left(r_{k}^{(7)} \right)^{*} h_{0k} \right] \end{aligned}$$

L Colavito

Detector

- Uses maximum likelihood criteria to select transmitted symbol based on decoder estimate
- *Minimum distance* selection criteria

$$d(\widetilde{x}_n) = \min_{i=0,1,2,3} \left(\left| \widetilde{x}_n - s_i \right|^2 \right)$$

BER Evaluation

- Bit-error-rate used to quantify system performance
- Bit errors detected by comparison of output with input
- Counters for total bit errors and total bits transferred

$$BER = \frac{(Total \ Bit \ Errors)}{(Total \ Bits \ Transferred)}$$

Software Model

Purpose of Software Model

• Proof of design

College of Engineering

- Easier to debug, fast design changes
- Uses standard libraries
- Uses floating point numbers
- Confirm hardware model results
- Performance reference for hardware model

Development

- Tools
 - Microsoft Visual Studio 2008
 - Microsoft .NET 3.5 Framework
 - Hydesoft Computing Dplot (only post plotting)
- Characteristics
 - Visual C#
 - IEEE 754 64-bit floating point number representation
 - Only basic optimization
 - Uses inverse transform for Gaussian random variables
 - Uses incremental decoding

Model Architecture

3x3 MIMO Simulation				
Experiment Id	Path Settings Output			
Exp_7		Path Atten	uation and Phase	e Delav
Data			Receive Antenna	
Total Bits: 1e6		💌 Rx 0	💌 Bx 1	💌 Bx 2
		(0,0)	(0,1)	(0,2)
Use Multipath 🔽		Attn 3.01	Attn 0	Attn 0
Multipath	✓ T×0	Delay 0	Delay 0	Delay 0
Path Var 0.5	Transmit			
Path Mean 0	Antenna	(1,0)	(1.1)	(1,2)
SNR		Attn 0	Attn 0	Attn 0
Start (dB) 0.00 Number of Points	✓ Tx1	Delay 0	Delay 0	Delay 0
Step (dB) 1.00 5				
End (dB) 4.00		(2,0)	(2,1)	(2,2)
		Attn 0	Attn 0	Attn 0
	✓ Tx 2	Delay 0	Delay 0	Delay 0
		1) Attenuation expressed in d	В	
About Close	Reset Paths	2) Phase delay expressed in o	degrees	Next >

College of Engineering

3x3 MIMO Simulation					
Experiment Id	Path Settings Output				
Exp_7	Simulation Run: Exp_7				
Data	Data: (1.000E+006 bits)				
Total Bits: 1e6	Multipath Channel: Var: 0.5 Mean: 0				
	Channel Path Conditions (attenuation/phase)				
Use Multipath 🔽					
Path Var 0.5	Tx1:, 0.00,0.00 , 0.00,0.00 , 0.00,0.00 , Tx2:, 0.00,0.00 , 0.00,0.00 , 0.00,0.00 ,				
Path Mean 0	SNR(dB), Bits, Errors, BER				
SNR	0.0, 1E+06, 1735, 1.735E-003				
Start (dB) 0.00 Number of Points	2.0, 1E+06, 251, 2.510E-004				
Step (dB) 1.00 5	3.0, 1E+06, 76, 7.600E-005				
Epd (dB) 4.00	4.0, 1E+06, 34, 3.400E-005				
4.00	Running time 00:00:46.8281250				
	Experiment complete				
	Experiment Complete				
About Close	Clear Plot Save Stop Run				

College of Engineering

Hardware Model

Purpose of Hardware Model

- Performance (Processing Rate)
 - Better BER precision
 - Greater BER versus SNR curve resolution
 - Evaluation under multiple conditions
- Proof of practicality

College of Engineering

 Methods are practical if the predicted MIMO system performance can be achieved using available technology in real-time

Development

- MATLAB/Simulink
 - Development environment
 - Provides user interface and scripting
- Xilinx System Generator for DSP
 - Generates PGA programming from model
 - Provides means to load PGA programming
 - Provides means to set simulation parameters
 - Provides means to retrieve simulation results
- Xilinx ML402 (Vertex-4 FGPA)

Hardware Platform

- Target PGA device is Xilinx Vertex 4 SX
- Vertex 4 features
 - 18x18 bit multiply accumulate blocks
 - Block RAM
 - Configurable logic blocks (CLB)
- Xilinx ML402 evaluation platform
 - Vertex 4 XC4VSX35
 - Ethernet interfaces

Model Characteristics

- Fixed point number representation
- Skip-ahead LFSR for uniform random values
- Composite lookup table inverse transform for Gaussian random values
- Incremental linear decoding

Nested Architecture

Simulink Layer

L Colavito

Simulation Support Hardware

College of Engineering

L Colavito

Core MIMO System

Simulation Results

Simulation Run: HW-Case1-Tx0-Rx0 Started 9/7/2009 14:56:43 Minimum bits: 3.000000e+007					
Multipath Channel: none Channel Path Conditions (attenuation/phase)					
, Rx0 ,, Rx1 ,, Rx2					
Tx0:, 3.01, 0.00,,,,					
Tx1:,, , , ,					
Tx2:,,,,, ,, ,					
SNR(dB), Bits, Errors, BER					
0.0, 3.001e+007, 2350879,7.835e-002					
1.0, 3.001e+007, 1681490,5.604e-002					
2.0, 3.001e+007, 1120005, 3.733e-002					
3.0, 3.001e+007, 682912,2.276e-002					
4.0, 3.001e+007, 371572,1.238e-002					
5.0, 3.001e+007, 176501,5.882e-003					
6.0, 3.001e+007, 70853,2.361e-003					
7.0, 3.001e+007, 22563, 7.520e-004					
8.0, 3.0010+007, 5032, 1.8770-004					
p_{10} , p_{1					
Run bits $3.001e+008$					
Ave $(nsec/bit) = 577.481$					
Experiment complete					

Significant Implementation

Requirements

- Minimize hardware resource utilization
- Maintain processing rate
- Maintain sufficient accuracy to pass validation tests

Skip-Ahead LFSR

- All LFSR have correlation between successive values that affect simulation results when white randomness is assumed
- Skip-ahead technique advances LFSR k states in one step to avoid correlation and whiten random values
- Skip-ahead increases feedback network complexity
- Rules developed for minimizing feedback network complexity

Without Skip-Ahead

- Non-delta autocovariance
- Patterns when adjacent pairs are ploted
- Lowpass frequency characteristic

L Colavito

With Skip-Ahead

- Autocovariance is delta function
- No patterns in plots of adjacent pairs
- White frequency characteristic

Composite Lookup Table

- Inverse transform method produces Gaussian random values from uniform random values
- Requires only basic mathematical functions
- Maintains processing rate of model

College of Engineering

- Requires minimum hardware resource
- Can be designed to limited maximum error
- Rules developed for design of composite LUT

- LFSR produces 16-bit uniform values
- 1-bit used for sign, s
- 15-bits used to address LUT

College of Engineering

 LUT holds Gaussian cumulative probability function

Composite Lookup Table

 LUT split into high and low resolution

College of Engineering

- Decoder selects between tables
- Decoder is a single AND gate
- High and low tables addressed by partition of input bits
- Total table size is less than single LUT

Incremental Decoding

- Reduces hardware resource requirements for STBC decoder over a direct implementation
- Performs decoding incrementally over the eight timeslots of the code block transmission
- Maintains the processing rate of the model

Direct Decoder Implementation

- Receive signals r_k must be stored for all 8 timeslots
- All \tilde{x}_i must be computed in one step

College of Engineering

$$\begin{aligned} \widetilde{x}_{0} &= \sum_{k=0}^{2} \left[r_{k}^{(0)} h_{0k}^{*} + r_{k}^{(1)} h_{1k}^{*} + r_{k}^{(2)} h_{2k}^{*} + \left(r_{k}^{(4)} \right)^{*} h_{0k} + \left(r_{k}^{(5)} \right)^{*} h_{1k} + \left(r_{k}^{(6)} \right)^{*} h_{2k} \right] \\ \widetilde{x}_{1} &= \sum_{k=0}^{2} \left[r_{k}^{(0)} h_{1k}^{*} - r_{k}^{(1)} h_{0k}^{*} + r_{k}^{(3)} h_{2k}^{*} + \left(r_{k}^{(4)} \right)^{*} h_{1k} - \left(r_{k}^{(5)} \right)^{*} h_{0k} + \left(r_{k}^{(7)} \right)^{*} h_{2k} \right] \\ \widetilde{x}_{2} &= \sum_{k=0}^{2} \left[r_{k}^{(0)} h_{2k}^{*} - r_{k}^{(2)} h_{0k}^{*} - r_{k}^{(3)} h_{1k}^{*} + \left(r_{k}^{(4)} \right)^{*} h_{2k} - \left(r_{k}^{(6)} \right)^{*} h_{0k} - \left(r_{k}^{(7)} \right)^{*} h_{1k} \right] \\ \widetilde{x}_{4} &= \sum_{k=0}^{2} \left[- r_{k}^{(1)} h_{2k}^{*} + r_{k}^{(2)} h_{1k}^{*} - r_{k}^{(3)} h_{0k}^{*} - \left(r_{k}^{(5)} \right)^{*} h_{2k} + \left(r_{k}^{(6)} \right)^{*} h_{1k} - \left(r_{k}^{(7)} \right)^{*} h_{0k} \right] \end{aligned}$$

L Colavito

- Compute only three p_i or three q_i each timeslot
- Storage only one accumulator for each $\tilde{x_i}$
- Estimates accumulated according to table below
- Estimates complete after 8 timeslots

$$p_{i} = \sum_{k=0}^{2} r_{k}^{(t)} h_{ik}^{*}$$
$$q_{i} = \sum_{k=0}^{2} \left(r_{k}^{(t)} \right)^{*} h_{ik}$$

T College of Engineering

t	(0)	(1)	(2)	(3)	(4)	(5)	(6)	(7)
ν ₀	+p ₀	+p ₁	+p ₂	_	$+q_0$	$+q_1$	+q ₂	
x̃ ₁	+p ₁	-p ₀	_	+p ₂	$+q_1$	-q ₀	_	+q ₂
<i>x</i> ₂	+p ₂	_	-p ₀	-p ₁	$+q_2$	_	-q ₀	-q ₁
ν̃ ₃	-	-p ₂	+p ₁	-p ₀	_	-q ₂	+q ₁	-q ₀

Direct vs. Incremental Method

	Direct Method	Incremental Method
Storage Elements	48	8
Simple Multiplications	288	36
Simple Additions	280	36

Validation

Validation Cases

- Model validation accomplished by reproducing published BER verse SNR data
 - One transmit to one receive antenna (Proakis, 1995)
 - Three transmit to one receive antenna (Tarokh, et. al. 1999)
 - Three transmit to two receive antenna (Tarokh, et. al. 1999)

Software Model Validation

 Overlaying validation curves produced by the model with reference curves shows close match

College of Engineering

L Colavito

Hardware Model Validation

 Overlay of curves produced by hardware model also show close match to reference curves

College of Engineering

L Colavito

Performance

Processing Rate

		Hardware Model	Software Model
Case 1	Bit Rate (nsec)	126	2948
	Overhead (sec)	11.2	1.0
Case 2	Bit Rate (nsec)	125	3119
	Overhead (sec)	11.2	0.9
Case 3	Bit Rate (nsec)	123	3216
	Overhead (sec)	11.2	0.9

* Average processing time per bit to simulate 10 point BER versus SNR curve

Resource Utilization

Resource	Available	Initial		Skip-Ahead LFSR		Final	
DSP48	192	153	79%	149	77%	149	77%
RAM16B	192	170	89%	166	86%	58	30%
Total Slices	15360	12900	84%	12966	84%	12756	83%
SliceM	7680	2590	33%	2701	35%	2599	34%

- 1. Applies to hardware model only
- 2. Shows number of resource units and percent of units available

Usage

Extended Curves

- BER versus SNR performance beyond original published curves
- Additional unpublished 3
 receive antenna curve
- Hardware model performs simulations in minutes instead of hours

	1 Receive Antenna	2 Receive Antennas	3 Receive Antenna
Total Bits	1.2 x 10 ¹⁰	1.5 x 10 ¹⁰	1.1 x 10 ¹⁰
Hardware Simulation Time	27 min	36 min	26 min
Software Simulation Time (Estimated)	10.2 hours	13.8 hours	9.5 hours

Progressive Fading

- 3 Transmit and 2 Receive antennas
- One receive antenna sees obstructed signals
- Signal attenuation increases for each curve (left to right)
- Note that greatest performance lost with first attenuation step

Summary

- Developed both software and hardware MIMO system models
- Developed method to efficiently whiten LFSR in PGA
- Developed method to reduce Gaussian cdf LUT size
- Developed incremental linear STBC decoding method
- Demonstrated advantages of hardware accelerated model in MIMO simulation
- Demonstrated method of controlled fading conditions
- Demonstrated viability of linearly decoded STBC MIMO systems using currently available technology

Questions ?

Thank you