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In the past decades, statistics-based hidden Markov models (HMMs) have become the predominant approach to speech recognition. Under this framework, the speech signal is modeled as a piecewise stationary signal (typically over an interval of 10 milliseconds). Speech features are assumed to be temporally uncorrelated. While these simplifications have enabled tremendous advances in speech processing systems, for the past several years progress on the core statistical models has stagnated. Since machine performance still significantly lags human performance, especially in noisy environments, researchers have been looking beyond the traditional HMM approach.
Recent theoretical and experimental studies suggest that exploiting frame-to-frame correlations in a speech signal further improves the performance of ASR systems. This is typically accomplished by developing an acoustic model which includes higher order statistics or trajectories. Linear Dynamic Models (LDMs) have generated significant interest in recent years due to their ability to model higher order statistics. LDMs use a state space-like formulation that explicitly models the evolution of hidden states using an autoregressive process. This smoothed trajectory model allows the system to better track the speech dynamics in noisy environments. 
Though initial evaluations of linear dynamic models for phoneme classification proved promising, developing an LDM-based LVCSR system from scratch has been proved to be extremely difficult. LDM is inherently a static classifier which is not designed to find the optimal phonetic boundaries for a continuous speech utterance. Therefore, LDMs were restricted to limited recognition tasks with relatively small vocabularies such as the TIMIT Corpus.
In this dissertation, we develop a hybrid HMM/LDM speech recognizer that effectively integrates these two powerful technologies. This hybrid system is capable of handling large recognition tasks, is robust to noise-corrupted speech data and mitigates the effort of mismatched training and evaluation conditions. This two-pass system leverages the temporal modeling and N-best list generation capabilities of the traditional HMM architecture in a first pass analysis. In the second pass, candidate sentence hypotheses are re-ranked using a phone-based LDM model. The Wall Street Journal (WSJ0) derived Aurora-4 large vocabulary corpus was chosen as the training and evaluation dataset. This corpus is a well-established LVCSR benchmark with six different noisy conditions. The implementation and evaluation of the proposed hybrid HMM/LDM speech recognizer is the major contribution of this dissertation.

[bookmark: _Ref202688471]
THE STATISTICAL APPROACH FOR SPEECH RECOGNITION


Human spoken communication generally produces observable outputs which can be represented as one-dimensional signals – amplitude as a function of time. A major goal of modern speech processing systems is the characterization of these real-world speech signals in terms of signal models which can be roughly divided by two groups: deterministic signal models and stochastic signal models. Deterministic models exploit known properties of speech signals and provide good insight into the underlying acoustic properties of the speech production system. This resulted in significant advances in automatic speech recognition (ASR) technology in the 1960s [1].
Statistical signal models, instead of estimating values of the signal model such as amplitude and frequency, characterize a speech signal as a parametric random process and attempt to determine the parameters of the underlying stochastic process  [1]  [2] [3]. In the past decades, statistically-based hidden Markov models (HMMs) have become the dominant approach to speech recognition. Under this framework, the speech signal is modeled as a piecewise stationary signal (typically over an interval of 10 milliseconds). Speech features are assumed to be temporally uncorrelated.
While these simplifications have enabled tremendous advances in speech processing systems, for the past several years progress on the core statistical models has stagnated. Since machine performance still significantly lags human performance [3], especially in noisy environments, researchers are looking beyond the traditional HMM approach. This dissertation focuses on one such stochastic model: the linear dynamic model [4].
In this chapter, we introduce the startistical approach to the speech recognition problem. Three different acoustic modeling approaches are discussed: frame-based hidden Markov models [1], segment-based acoustic models [23], and hybrid connectionist systems [6] [7]. In the frame-based acoustic model, which is the dominant approach, hidden Markov models with Gaussian mixture model (GMM) emission distributions are used to learn the long-range and local phenomena associated with speech patterns. While tremendously successful, one major criticism [23] of frame-based systems is that they are based on the false assumption that speech features are temporally uncorrelated.
Motivated by the belief that incorporating frame to frame correlations in the speech signal will further improve recognition performance, researchers introduced segment-based acoustic models and have demonstrated marginal improvements for speech recognition tasks involving small and medium–sized vocabularies [4] [5]. Also, hybrid connectionist systems are described which combine the temporal modeling power of frame-based models and take advantage of higher order statistics in speech signals [6] [7] [8] [9]. The architecture for these hybrid systems will serve as inspiration for the techniques developed in this dissertation.
1.1 The Speech Recognition Problem
Spoken language communication is a vocalized form of human communication which involves a sophisticated process of information encoding for the speaker and information decoding for the listener. The speech generation process begins with the construction of a message in a speaker’s mind. Next, this message will be converted to a series of symbols consisting of a sequence of phonemes, along with prosody markers for durations, loudness, stress, etc. Then the neuromuscular control unit will take over and produce air pressure from the lungs, vibrate the vocal cords, and generate specific sounds through the movement of the articulators (e.g., lips, jaw, and tongue). All related articulatory motion is controlled simultaneously by the neuromuscular system in order to generate smooth continuous acoustic air-pressure waves as the final output [1] [10]. The control flow of speech production process can be seen in the top section of Figure 1.
In order to interpret and understand the speech sounds received, the listener processes the speech signals through the peripheral auditory organs (ears) and the auditory nervous system (brain). At first, the ear transforms the acoustic sound waves into a series of mechanical vibrations which can be regarded as spectrum analysis by the basilar membrane. Then the neural transduction process will transducer these patterns into a series of pulses and output these pulses to auditory nerve, corresponding to a feature extraction process. Finally, speech sounds are processed to extract acoustic cues and phonetic information which leads to the reconstruction of the final message [1] [11]. A schematic diagram of speech perception is shown in the bottom section of Figure 1. In normal communication, the process of human speech recognition also uses a combination of sensory sources including facial gestures, body language, and auditory input to achieve better understanding of the speaker’s message. However, for our goal of computer-based speech recognition, we will consider only the problem of converting an acoustic signal into a stream of words.
[image: ]
Figure 1. Schematic diagram of speech-production/speech-perception process [1].
The speech recognition problem, as stated above, is essentially a pattern recognition problem and can be solved using a statistical approach. In such an approach, the speech recognition problem can be described as choosing the most probable word sequence W= w1, w2, w3, …, wm from all word sequences that could have possibly been generated, given a set of acoustic observations O = o1, o2, o3, …, oT , a set of acoustic models and linguistic patterns. If we reformulate the problem of choosing a word string that maximizes the probability given the acoustic observation, the following probabilistic equation can be defined:

		(1)
This is a posterior formulation since it represents the probability of occurrence of a sequence of words after observing the acoustic signal. There are two problems to directly compute the maximization in above equation. The first problem is that, for such a posteriori formulation, we have no way to incorporate information about the prior probability of a word string. Prior information, which can be attained through linguistic patterns, is an important knowledge source to improve the pattern recognition accuracy.
Also, there will be almost an infinite number of such word sequences for a given language if we directly compute the maximization in this equation. Therefore, Bayesian approach has to be applied which can be significantly simplify this maximization problem:

		(2)
where P(W) is the a priori probability of the word string W being spoken (which can be determined using a language model), P(O|W) is the probability that the data O was observed when a particular word sequence W was spoken (which is typically provided by an acoustic model), and P(O) is the a priori probability of the acoustic observation sequence occurring which can be safely eliminated from above equation because the observation sequence O is constant during the maximization [12]. Therefore the above equation can be simplified to:

		(3)
The two probability components P(O|W) and P(W) are modeled separately. P(W) can be calculated through language model (LM). Formal language models [13] use context free grammars (CFG) to specify all permissible structures for the language which is suitable for domain-specific applications such as command and control. Statistical language models such as an N-Gram model [14] assigns an estimated probability to any word that can follow a given word history without parsing the structure of the history. This is powerful for domain-independent applications and widely used for large vocabulary continuous speech recognition (LVCSR) systems [11]. The probability components, P(O|W), are derived from an acoustic model (AM). There are many types of acoustic models: frame-based [3] [15] [16], segment-based [4] [5] and hybrid connectionist systems [6] [7] [8] [9]. The acoustic modeling component of the recognition system is the major focus in this dissertation and will be thoroughly discussed in the following chapters.
Under such a framework, the probabilities of word sequences (referred to as hypotheses) are generated as a product of the acoustic and language model probabilities. The speech recognition process involves combining these two probability scores and sorting through all plausible hypotheses to select the most probable [12]. The basic structure of such a statistical approach to speech recognition is illustrated in Figure 2.
[image: ]
Figure 2. Structure of statistical approach to speech recognition [8].
1.2 Hidden Markov Models
In most current speech recognition systems, the acoustic modeling components of the recognizer are based on hidden Markov models (HMMs), in which a system being modeled is assumed to be a Markov process with unobserved states. In an HMM, each state has a probability distribution (usually modeled by Gaussian mixture models [17]) related to the output observation at the current time frame. Under this architecture, speech signals are regarded as piecewise stationary or short-time stationary in the range of 10 milliseconds. Thus, the frame sequence of speech signals are produced by the hidden state sequence, which is generated by HMM as a finite state machine. Since the HMM states are not directly visible, this procedure is a doubly stochastic process involving two levels of uncertainty. HMMs (Figure 3 shows a typical left-to-right topology HMM) became the most popular approach to automatic speech recognition because they provide an elegant and efficient statistical framework to model the temporal evolution of speech signals and the variability which occurs in speech across speakers and context.
[image: ]
Figure 3. A simple HMM featuring a five state topology with skip transitions [8].
An HMM can be characterized by a triplet {π, A, B} where (adapted from [1]):
· N – the number of states in the model, usually N is chosen as 3 or 5 for a HMM phoneme model and larger for a word model.
· π – the initial state probability distribution, π= {πi}, where

		
· 
aij – the state-transition probability distribution, A= {aij},where		
· bj(Ot) – the observation probability distribution (in state j), B={bj(Ot)}, where

	.	
In particular, for the most commonly used emission distribution Gaussian mixture model (GMM), the observation probability distribution is:

		

		
In the above two equations, n is the dimension of the acoustic observation vector; Ci are the mixture weights.  The mixture weights define the contribution of each distribution to the total emission score.
When one builds the acoustic models using HMMs for speech recognition, a decision must be made about which acoustic unit to use. For example, for isolated digit word recognition tasks with a small vocabulary, one can model each word in the dictionary as an HMM word model. For most state-of-the-art large vocabulary continuous recognition systems, cross-word context-dependent phonemes are the fundamental acoustic units. In these systems, each context-dependent phone (also called as a triphone) is represented by an HMM and phonetic constraints are applied to combine triphones into words according to the pronunciation lexicon.
At higher levels in the system, these words will be connected as a sentence constrained by the lexical and syntactic rules provided by the language model.  For a hierarchical HMM speech recognition system described above, the estimation of the acoustic model parameters plays a critical role for achieving good recognition accuracy. Among the criterions to fit a statistical model to data, the maximum likelihood (ML) approach is the most popular method. ML attempts to find a word sequences that maximizes the cost (likelihood) function.
For this parameter estimation problem, there is no optimal way to analytically solve for the optimal model parameters. Instead, Baum and colleagues [18] addressed this estimation problem by finding a soft-decision training paradigm which is a special case of the expectation-maximization (EM) algorithm [19]. In this iterative procedure, one attempt to adapt model parameters, {π, A, B}, is to maximize the probability of the observation sequence given the model. This formulation has a desirable property of guaranteed convergence to a local maximum.
Baum's auxiliary function is defined as:

		(4)
where λ is the current system parameters, λ’ is the new estimation of the system parameters, O is the observation sequence from the training dataset, and q is the state sequence corresponding to the observation sequence O. Baum and his colleagues proved that maximizing Q(λ, λ’) with respect to λ leads to increased likelihood:

		(5)
which implies that

	 .	(6)
Therefore, if one keeps maximizing the above auxiliary function, eventually the likelihood function will converge to a critical point. It is noted that this type of maximum likelihood estimation of an HMM is only guaranteed to reach a local maximum. For most problems of interest, the true optimization surface could be very complex and might have many local maxima [1] [18].
In practice, the Baum-Welch training algorithm is implemented using a forward-backward procedure. In this framework, we define the forward probability, αt(i), as the  probability of partial observation sequence o1,o2,…,ot and state Si at time t given the model parameters λ:

	 .	(7)
Thus, the inductive definition of αt+1(j) in state Sj at time t+1 will be:

	 .	(8)
In a similar manner, the backward probability, βt(i), is defined as the probability of the partial observation sequence from t+1 to the end, given state Si at time t and the model parameters λ:

	.	(9)
Thus, the inductive definition of βt-1(i) in state Si at time t-1 will be:

	.	(10)
The product of αt(i) and βt(i) gives the probability of any alignment containing state Si at time t. Therefore, the total probability of observing the speech feature sequence can be computed as a summation across all states at any time. Finally, we can define the probability of any possible transition from state Si to state Sj when observing Ot-1 in state Si and Ot in state Sj as the following:

	.	(11)
With the above probability equations and deductions, we can complete the expectation step of the EM algorithm. For each EM iteration, we can substitute the probability equations into Baum’s auxiliary function and maximize it with respect to each model parameter. This procedure describes the maximization step of the EM training for HMM. These are fully derived in [1] [11] [18].
1.3 Segment-based Models
While the combination of HMMs and Gaussian mixture models (HMM/GMM) has been extremely successful for speech recognition, there are some important modeling limitations. First, conventional HMM systems assume that speech waveform is produced by a piecewise stationary process with instantaneous transitions between stationary states. Even when using a short analysis window (e.g., 25 ms), this piecewise stationarity assumption is clearly false. By nature, a speech signal is produced by a continuous-moving physical system – the vocal tract. One can observe the nonstationary nature in speech in many forms, such as glides, liquids, diphthongs, and transition regions between phones [2] [11]. In the cases that an HMM state is intended to represent a short segment of sonorant or fricative speech sounds, the stationarity assumption appears to be reasonable. However, for longer segments of speech sounds, such assumptions are inadequate. In addition, when using digital filtering of the cepstral parameters, the filters will cross state boundaries which would break the stationary assumption of speech with instantaneous transitions between states [20]. It is desirable to release the stationarity assumption in order to more accurately represent speech sound patterns [21] [22].
Additionally, to use HMMs for speech recognition, we have to assume that current speech observations and all probabilities in the system are conditioned only on the current state. This conditional independence assumption implies that all observations are only dependent on the state that generated them, not on neighboring observations. Since the speech waveform is generated by a continuous-moving vocal tract, the probability of an acoustic observation given a particular state is highly correlated with both past and future observations. Ideally, one would desire to condition the distribution itself on the acoustic context, but this is impractical under a frame-based HMM framework. While most HMM systems include derivative features and second-order derivative features to reduce the impact of the conditional independence assumption, derivative features just incorporate parameters which are less sensitive to the independence assumption and do not affect the static features [20].
In the last two decades, many alternative models have been proposed to address these critical shortcomings of a frame-based hidden Markov model. Among them, many can be broadly classified as segment-based models (SM) in which the most fundamental modeling unit is a variable-length sequence of the speech waveform (referred as a “segment”), instead of a fixed duration speech frame. These higher-order segment models tend to require more computation than frame-based HMMs. However, by incorporating speech dynamic and correlation information within a segment, segment-based models overcome erroneous HMM assumptions and have produced encouraging performance for small vocabulary or isolated word recognition tasks.


Ostendorf and colleagues proposed a unified framework [23] [24] to generalize many common aspects between different segmental modeling approaches and draw analogies between segment models and HMMs. In this unified framework, the definition of the acoustic statistical model is independent of the modeling unit choice, no matter what modeling unit is chosen (e.g., either a 10 ms speech frame or a variable-length speech segment). The speech signal is represented by a sequence of feature vectors denoted by Z. It is assumed that the sequence of feature vectors can be partitioned as N components: Z={Zi, i=1, 2, …, N}. For each component,  is treated as a variable length random vector. In addition, a discrete state component to the model is introduced to account for time variability since speech is a heterogeneous information source. Speech recognition can be regarded as defining a mapping from the signal space Z to the set of all messages, M,  chosen so that a certain criterion can be satisfied. Under this framework, the generalized acoustic model which generates the sequence of observation Z is described as a quadruple (Ω, B, Π, δ), where
Ω is the finite and discrete set of modes of the acoustic model. The term “mode” is chosen, instead of traditional “state”, to distinguish from the state of processes with continuous variables
· 
is a collection of probability measures,
· Π is a deterministic or stochastic grammar that describes the mode dynamics,
· 
δ is the decoding function which defines a mapping from the set of possible mode sequences to the message set, .
Therefore, the joint likelihood of a sequence observed and a corresponding mode sequence Q can be written as:

		(12)
With A to represent a spoken message such as a phoneme, the recognition mapping can be described as

		(13)
Additionally, MAP rule [25] can be applied to minimize the probability of error and specify this recognition mapping. These are fully derived in [23] [24].

For a segment in an utterance of N frames where τa represents the start time and τb represent the end time, the segment-based models can be defined as the class of acoustic models for which:
· 
Given A is the set of language units and L is allowable segment durations, the mode is an ordered tuple .
· 
The output distribution is a joint distribution of the observations and the corresponding segment:.
· 

The grammar for a segment model consists constraint: with 
· The stochastic components are:

		(14)
· 
The decoding function is defined as: 








Given the corresponding model sequence  and the sequence of segment durations, each and is treated as a random variable. We can compute the probability of the composite model sequence as follows. It is assumed that the segment durations are conditionally independent. Also, each segment duration, , depends only on the corresponding label. The joint probability of a segmentation S and a model sequence A can also be calculated [4] [23] [24]. If we make the Markovian assumption and assume that  is conditionally independent of the future and past phonemes, the segmentation probability is only determined by phone-dependent duration probabilities.
From the above unified view of the segment model, the segment models can be regarded as a higher dimensional version of HMMs. For a frame-based HMM, a Markov state generates a single random vector observation. For a segment-based model, instead, a segment state generates random sequences of the whole speech segment. This difference can be illustrated by Figure 4. The basic segment model includes an explicit segment-level duration distribution and a family of length dependent joint distributions. Since segment models can be regarded as a generalization of HMM’s, the training and recognition algorithms can be extended from standard HMM algorithms but with a higher computational cost due to the expanded state space [23].
[image: ]
Figure 4. Generative processes of HMM and SM through a unified view, adapted from [23].
1.4 Hybrid Connectionist Systems
Artificial neural networks (ANN) have been studied for several decades based on the ambitious goal to build a learning machine which achieves a near-human level of intelligence. Motivated by the biological neural network which is composed of groups of chemically connected or functionally associated neurons, an artificial neural network involves a network of simple processing elements (artificial neurons) which are capable of carrying complex patterns by the connections between the neurons and their parameters [26]. After the introduction of the back-propagation training algorithm in 1986 [26] [27], artificial neural networks have found widespread use and have proven to be good nonlinear statistical data modeling or decision-making tools.
For a traditional HMM/GMM speech recognition system, a common criticism is that the maximum likelihood approach does not improve the discriminative abilities of the model. In general, during the model training procedure, the maximum likelihood approach tends to maximize the probability of the correct model while implicitly ignoring the probability of the incorrect model. To improve the discriminative abilities, the model training procedure is required to force the model toward in-class training examples while simultaneously driving the model away from out-of-class training examples. The weaknesses of HMM/GMM systems have led researchers to new methods to improve discrimination. Among those efforts, hybrid connectionist systems have received a large amount of attention from the research community due to their ability to merge the power of artificial neural networks and HMMs.
One major advantage of artificial neural networks is that the models are trained discriminatively to learn not only how to accept the correct class assignments but also how to reject incorrect class assignments. In addition, the neural networks classifiers are capable of learning complex probability functions in high-dimensional feature spaces [28]. For a Gaussian mixture model, the feature vectors are usually restricted to 30-50 dimensions due to amount of training data that would be necessary to estimate the distribution parameters. However, in hybrid HMM/ANN recognition systems, such restrictions could be mitigated by concatenating the acoustic observations of adjacent frames to produce a longer feature vector, as seen in [6] [7]. This method also alleviates the erroneous HMM frame independence assumption and incorporates informative speech dynamics.
While some artificial neural network systems use neural networks to model both acoustic properties and temporal evolution of speech [29] [30], most of the systems have used neural networks as a replacement for the Gaussian mixture probability distribution and rely on an underlying HMM architecture to model the temporal evolution. One of the first successful neural networks speech recognition systems was the Connectionist Viterbi Training (CVT) speech recognizer. In this system, HMM recognition was processed as the first recognition pass to generate frame-to-phone alignment information. After that, the CVT recognition pass was processed to re-estimate the HMM state output probabilities, which were estimated by Gaussian mixture models in the first recognition pass. The network architecture used in this system has a recurrent feedback loop where history of the internal hidden states was fed as input to the network along with the current frame of speech data. Such feedback architecture design provides a way to add context information to the neural network without having to feed multiple frames of data to the classifiers. At the same time, the feedback loop saves resources in terms of the size of the networks.
Recurrent neural networks (RNN) are one category of neural networks with feedback. They are widely used for hybrid connectionist speech recognition systems for the reason that RNNs have advantage of learning contextual effects in a data-driven fashion and have the ability to learn long-term contextual effects. In the traditional HMM/GMM systems, contextual information have been modeled by using explicit context-dependent models or by increasing the dimensionality of the feature vectors to include gradients of the features. Figure 5 shows the structure of a simple RNN. In this network, the inputs to the network are composed of the current input and current state. These two inputs are fed forward through the network and will generate an output vector and the next state vector. The next state vector is fed back as input to the network again through the time delay unit. For an RNN classifier, the parameters can be estimated through the back-propagation through time (BPTT) algorithm [29] in which the model can be unfolded in time to represent a multi-layer perceptron (MLP) where the number of hidden layers is equal to the number of frames in the input sequence. Thus, training the RNN classifier can be processed in a similar way as the standard MLP using back propagation with the restriction that the weights at each layer be tied. These are fully described in [7].
[image: ]
Figure 5. The structure of a simple RNN [8].
Hybrid HMM/ANN systems have shown promise in terms of performance but have not yet found widespread use in commercial speech recognition products due to some limitations. In the training procedure, the ANN classifiers are prone to overfit the training data if there are no restrictions to stop overfitting. To avoid the overfitting problem, a cross-validation procedure must be applied which is wasteful of data and resources. In general, ANN training converges much more slowly than HMMs. Most importantly, the hybrid HMM/ANN recognition systems have not shown substantial improvements in terms of accuracy.
1.5 Summary
In this chapter, statistical approaches to the speech recognition problem have been described. We discussed human spoken language communication and the challenges of automatic speech recognition. We reviewed the Bayesian approach to speech modeling, frame-based hidden Markov models, segment-based acoustic models, and hybrid connectionist systems. The frame-based HMM approach (with GMM emission probability distributions) is the most common acoustic modeling framework for speech recognition systems. It involves a series of common techniques which are not restricted to HMMs. For example, the forward-backward training algorithms [15] and dynamic programming [31] can be adapted and applied to segment-based acoustic models as well. Then, segment-based acoustic models were introduced through a unified framework which incorporates many common aspects among different segmental modeling approaches and draws analogies between segment models and HMMs.
The topic of this research work, the linear dynamic model (LDM), can be derived from this unified framework and has advantages in its ability to incorporate higher-order speech dynamics. Hybrid connectionist systems, such as the HMM/ANN approach, provide an integrative architecture to leverage the strengths of both approaches – the ANN’s ability to estimate posterior probabilities and the HMM’s ability to model the temporal evolution of speech. The hybrid systems approach will serve as the basis for the research described in this dissertation.
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LINEAR DYNAMIC MODELS


Unlike traditional hidden Markov models in which system underlying states operate in a discrete space, the linear dynamic model is operating in a continuous mode. This chapter introduces the Linear Dynamic Model (LDM) and describes the process for estimating the hidden state states, the maximum-likelihood model parameter estimation procedure, and calculation of the likelihood that a given speech signal was generated from a specific model.
1.6 Linear Dynamic System
Most real world systems can be modeled as a dynamic system. Examples include the swinging of a clock pendulum, the flow of water in a pipe and the planet movement of the solar system. For example, if one knows the initial conditions (position, velocity, weight, length, etc) of a clock pendulum, the trajectory of this pendulum can be estimated precisely using Newtonian mechanics equations. Originated in seventeenth century, in the area of applied mathematics, differential equations were employed to describe the behavior of complex dynamical systems [32] [33]. Such mathematical modeling has evolved into a research area known as dynamical systems theory [32] [34]. For the clock pendulum example, the finite-dimensional representation of the problem (predicting the future position and velocity of the pendulum) are characterized by a set of differential equations and can be solved using a state-space approach [32]. The dependent system variables of position and velocity become state variables of the system. Small changes in the state of the system correspond to state variables changes. The evolution rule of this dynamical system is a deterministic rule which describes explicitly what the future states will be given the current state. The dynamic system of a swinging clock pendulum with differential equations is shown in Figure 6.
[image: ]
Figure 6. Schematic view of a pendulum with differential equations [36].
In a general sense, a dynamical system is defined by a tuple (T, M, Φ) where T is the set of time scale, and M is the state space endowed with a family of smooth evolution functions Φ. In this dissertation, we focus on discrete-time dynamical systems which can be analyzed and solved using modern digital computers. For a discrete dynamical system, T is restricted to the non-negative integers and the system dynamics are characterized by a set of difference equations. If we assume the dynamic system to be linear, the state space evolution and observation process can be characterized by a linear state transform matrix F and a linear observation transform matrix H respectively. Using {u1, u2, …, ur} to represent the r-dimensional input vectors of a linear dynamic system and {z1, z2, …, zl} to represent the l-dimensional output vectors, a linear dynamic system can be shown as the block diagram in Figure 7.


Figure 7. Block diagram of a discrete linear dynamic system.
1.7 Kalman Filter
A linear dynamic system provides a simple but efficient framework to simulate a real-world physical system [35]. It is not possible or realistic to always have accurate direct measurements for every variable one wants to control. In many cases, system variables are corrupted by a variety of noise or the measurements have missing information. Therefore, the success of such control systems relies heavily on the accurate estimation of the missing data from indirect and noisy measurements [35] [36]. If we assume a linear system is corrupted by additive white Gaussian noise and incomplete state information is also corrupted by additive white Gaussian noise, the fundamental control problem becomes a Linear Quadratic Gaussian (LQG) [37] optimization problem. 
Among all the methods used to analyze and control such systems, one of the most popular is the Kalman Filter [38] [39], which takes advantage of the minimum mean square error (MMSE) approach. The Kalman filter can produce a statistically optimal solution for any quadratic function of the estimation error, and hence is widely used control engineering and econometric applications.
A linear dynamic system can be described by the following state equation and output equation [35]:

		(15)
where,
xk: the internal system state variable at time k
zk: the measured system output at time k
uk: the known system input at time k
F: the state evolution matrix
B: the system input transform matrix
H: the system output transform matrix
wk: the state process noise at time k
vk: the observation measurement noise at time k
Every variable in the above equation is a vector or matrix. 
At each time frame, the system is fully characterized by the state variable xk that one cannot measure directly. Instead, the system output variable zk is observed. The state evolution process is a Markovian auto-regressive procedure. The state variables, xk+1, only depend on the previous state xk, along with the current system input and state process noise. During the observation process, the transformation from xk to zk is assumed to be linear with observation measurement noise vk added. In other words, our interested characteristics of the system are unobservable to us. In order to estimate the hidden system states, xk, we must use the observable system output, zk. The following Kalman filter equations can be applied recursively [35]:
A prior state prediction

		(16)
A priori error covariance matrix

		(17)
Observation residual

		(18)
Residual covariance matrix

		(19)
Optimal Kalman gain

		(20)
A posteriori state prediction

		(21)
A posteriori error covariance matrix

		(22)
The above Kalman filter estimation steps are processed in a recursive way which means that only the prediction from the previous time step and the current system output are required to estimate the current state. The first two equations are the state prediction phase which estimates the system state at current time step using the system state at the previous time stamp. Since the prediction phase doesn’t take advantage of the system observation at the current time stamp, it is regarded as an a priori state estimate. After that, in the state update phase, the measurement residual at the current time step is calculated as the difference between estimated system output and real system observation. The optimal Kalman gain will be attained through a residual covariance matrix and state prediction covariance matrix. With the measurement residual and optimal Kalman gain, the system state estimation is refined using a posteriori estimation. The Kalman filter estimation under the linear dynamic system framework can be illustrated in the following block diagram Figure 8.
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Figure 8. Block diagram of a discrete Kalman filter, adapted from [35].
1.8 Linear Dynamic Model
Motivated by the success of the Kalman filter, researchers began investigating the possibility of applying a Kalman filter in pattern recognition. In 1993, Digalakis and colleagues [4] first introduced a maximum likelihood (ML) estimation algorithm for a Kalman filter model which is an analog to the forward-backward algorithm of an HMM. The ML algorithm leads to an expectation-maximization training algorithm which can be incorporated into the equations used to do pattern classification with the Kalman filter model [5]. Without the controlled system input component and the restriction of zero-mean noise components, the Kalman filter model is also considered a linear dynamic model. 
From its inception, the linear dynamic model has generated lots of interest in speech recognition research for its inherent noise-robust potential as a trajectory filter and the ability to incorporate higher-order system dynamics as a segment level pattern classifier. Frankel and colleagues [5] summarized the linear dynamic model framework in great detail and showed the superiority of linear dynamic model to traditional hidden Markov model as a phoneme classifier using articulatory-based speech features. These are fully described in [5] [40].
The linear dynamic model is derived from the general state space model in which data is described as a realization of some unseen process. The following two equations describe a general state-space model:

		(23)
where a p-dimensional external observation vector, yt, is related to a q-dimensional internal state vector, xt, and the system state at the current time step is determined by all previous system states and a noise component  at the current time step. 
The state evolution process is governed by the function f(.) and mapping from the  state space to the observation space is controlled by a function h(.). For a speech phoneme /ae/, the mapping from an example state space to an observation space is illustrated in Figure 9.


Figure 9. Mapping from the state space to the observation space.
If we make a Markovian assumption for the state evolution and assume functions f(.) and h(.) in the state-space model are linear, the state space model will become a linear dynamic model with the architecture shown in Figure 10.


Figure 10. System architecture for a linear dynamic model.
Linear dynamic models (LDMs) are an example of a Markovian state-space model, and in some sense can be regarded as analogous to an HMM since LDMs do use hidden state modeling [4] [23]. With LDMs, systems are described as underlying states and observables combined together by a measurement equation. Every observable will have a corresponding hidden internal state. The general LDM process is defined by:

		(24)
where,
: -dimensional observation feature vectors
: -dimensional internal state vectors
: initial state with mean  and covariance matrices 
: state evolution matrix
: observation transformation matrix
: uncorrelated white Gaussian noise with mean  and covariance matrices 
: uncorrelated white Gaussian noise with mean  and covariance matrices 
In an LDM, we assume that the dynamics underlying the data can be accounted for by the autoregressive state process. This describes how the Gaussian-shaped cloud of probability density representing the state evolves from one time frame to the next. A linear transformation via the matrix F and the addition of some Gaussian noise ηt provide this, the dynamic portion of the model. The complexity of the motion that the second equation can model is determined by the dimensionality of the state variable, and will be considered below. The observation process shows how a linear transformation with the matrix H and the addition of measurement noise εt relate the state and output distributions.
1.8.1 State Inference
Before going into detail of how to estimate system internal states using output observations, we first define the following terminology:
· Prediction: uses system observations strictly prior to the time that the state of the linear dynamic model is to be estimated:

		
· Filtering: uses system observations up to and including the time that the state of the linear dynamic model is to be estimated:

		
· Smoothing: uses the system observations beyond the time that the state of the linear dynamic model is to be estimated:

		









An N-length observation sequence, , and a set of parameters of the linear dynamic model, θ, are required to estimate the system internal states. The filtering estimation and smoothing estimation of state x at time step t are represented by  and  respectively. Similarly, the filtering estimation and smoothing estimation of state covariance Σ at time step t are represented by  and . Starting from the initial system internal state x1 with the probability distribution, the prior prediction of state mean  and covariance matrix  at the next time step will be made. Thus, it is straightforward to get the prior prediction of system output observation  at the next time step. 






The true system output observation, , will be given and the difference between true observation, , and prior prediction of the observation, , will be calculated as the prediction error, et. The covariance matrix of the prediction error will be computed and Kalman gain, Kt, will be derived from it. The final filtering estimation of the state mean  and covariance matrix  at the next time step will be the summation of prior prediction and another component related to the Kalman gain Kt. The above estimation procedure works recursively to get the filtering state inference of. 
In summary, the forward filtering state inference is comprised of the following equations [35] [38]:
A prior state prediction

		(25)

		(26)
A prior observation prediction

		(27)
Observation residual

		(28)

		(29)
Optimal Kalman gain

		(30)
A posteriori state estimation

		(31)

		(32)
Cross-covariance matrix

		(33)
Corresponding to the backward algorithm of hidden Markov model, the linear dynamic model also needs to add another backward smoothing pass after all the data has been observed. An RTS smoother [41] provides such a smoothing estimation technique for a linear dynamic model. With an RTS smoother, the state inference procedure is processed with the linear combination of the forward filtering estimation starting at the beginning of the observation sequence and the backward smoothing estimation starting at the end of observation sequence [40]. A weight component, related to the state covariance matrix, is applied to do the estimation combination. The RTS backward smoothing algorithm consists of the following equations [41]:
Smoothing weight

		(34)
Smoothing estimation

		(35)

		(36)
Smoothing cross-covariance matrix

		(37)
1.8.2 Model Parameter Estimation
If both the system inputs and outputs are observable, the parameter learning procedure for a linear dynamic system is a supervised learning process of modeling the conditional density of the output given the system input. For a linear dynamic model, however, there is no system input which makes the estimation an unsupervised learning problem. Shumway and Stoffer [45] introduced the classical maximum likelihood estimation for observation transform matrix H. Digalakis, Rohicek and Ostendorf [4] presented the maximum likelihood estimation for all the parameters of a linear dynamic model, as well as giving a derivation of the EM algorithm. The derivation below follows [4] [44].
The key for the maximum likelihood parameter estimation is to obtain the joint likelihood probability distribution of system states and output observations. Instead of treating the state as a deterministic value corrupted by white noise, one can combine the state variable and the noise component into a single Gaussian random variable. From linear dynamic model equations we can write the conditional density functions for the system state and output observation.

		(38)

		(39)
According to the Markovian property of the linear dynamic model, the system state at the current time step is only determined by the system state at the previous step. Therefore, the joint probability distribution of system state and output observation will be:

		(40)
By definition, the initial system state is Gaussian with mean π and covariance Λ:

		(41)
The joint log probability of system state and output observation becomes a summation of quadratic components.

		(42)
In order to get the ML parameter estimate, a partial derivative of the joint log function is taken with respect to each model parameter. For example, the ML estimate for observation transform matrix H can be derived through the following equation:

		(43)
Similarly, ML estimate for the noise component, v, can be derived using:

		(44)
In summary, with the assumption of internal system states are observable, the ML estimation for linear dynamic model parameters is:

		(45)

		(46)

		(47)

		(48)

		(49)

		(50)
However, the internal system states are usually hidden for real world problems. In such a situation of missing or incomplete data, the expectation-maximization (EM) algorithm can to be applied to estimate the model parameters iteratively. The E-step algorithm consists of computing the conditional expectations of the complete-data sufficient statistics for standard ML parameter estimation. Therefore, the E-step involves computing the expectations conditioned on observations and model parameters. The RTS smoother described previously can be used to compute the complete-data estimates of the state statistics. EM for LDM then consists of evaluating the ML parameter estimates by replacing xt and xt xtT with their expectations:

		(51)

		(52)

		(53)
1.8.3 Likelihood Calculation
After a set of linear dynamic models are trained, one needs to know the probability that a given section of data was produced by a model. The straightforward way is to choose the model with highest likelihood value and report this value as the classification result. For LDM, the most popular method of likelihood calculation is to accumulate the prediction errors at each time step. Recall from the state inference equations, the prediction error at time step t is:

	.	(54)


We can replace  and  with their state variable forms:

	.	(55)
The prediction error covariance can be derived:

		(56)


Therefore, the log likelihood of the whole section of observation  with a given linear dynamic model  will be:

		(57)
It is worth noting that the last component of above equation remains constant for multiclass classification tasks. This component can be regarded as a normalization factor and doesn’t contribute in a multiclass classification. Some researchers suggest removing this constant factor for simplification [5] [40] which has been confirmed in our experiments. The actual log-likelihood function applied in our work is:

		(58)
1.9 Summary
In this chapter, we have developed the theoretical background for LDM. We have introduced the LDM as an extension of the Kalman filter. We discussed the definition of a linear dynamic model and associated assumptions of the model. Further, in this chapter we have covered techniques for state reference estimation and backward smoothing. The maximum likelihood approach for estimation of model parameters was also discussed. We concluded with a discussion of the use of LDM as a classifier for speech data.


LDM FOR SPEECH CLASSIFICATION


Before using linear dynamic model for large-scale, continuous speech recognition, a set of low-level phoneme classifications were processed to verify the effectiveness of LDM for modeling speech. The results of these initial experiments also provided some insight for the results of larger-scale continuous recognition experiments. At the beginning, the standard acoustic front-end for these experiments is discussed. Then we provide an overview of the TIDigits Corpus which was used for the classification experiments. The model training procedure and the investigation of parameters tuning is covered as well. Finally, the experimental setup and classification results are discussed.
1.10 Acoustic Front-end
Choosing discriminating and independent features is one of the most critical factors to any statistical pattern recognition system [8] [11]. Features are usually numeric, but structural features such as strings and graphs can be used in syntactic recognition as well. In Bayesian-related statistical models, the number of features in the classification system is usually large. For the statistical models we discussed in previous chapters, the model parameters can easily reach several hundred. One goal of feature extraction is to choose the minimum number of features which have sufficient discriminative information to avoid the “curse of dimensionality” problem [11] and to reduce the computational complexity.
For a speech recognition system, the acoustic front-end module is responsible for finding a suitable transformation of the sampled speech signal into a compact feature space. A good acoustic front-end module will generate a feature space with good class separability and compactness. To achieve high performance, it is necessary but not sufficient that the basic speech sound units need to be well separated in the feature space. 
Typically, we use features that capture both the temporal and spectral behavior of the signal. The frequency domain is typically the preferred space in which features are computed, since our acoustic theory of speech production predicts how phonemes can be disambiguated based on their spectral shapes [2]. We also account for properties of human hearing through transformations in the frequency domain [11]. Most popular speech recognition systems make use of 30-50 dimensional feature space with most of these features coming from the frequency domain.
Cepstral features [2] are by far the most common feature for statistical approaches to speech recognition. There are several advantages to extracting speech features in the cepstral domain. According to the source channel model of speech production, human speech sounds are composed of excitation information and vocal tract shape information [8]. Speaker identification system operates on the excitation information and speech recognition system operates on the vocal tract information. After a cepstral transformation, these two components of the speech signal are well separated. At the same time, using techniques such as cepstral mean normalization [11], a cepstral transformation can produce features that are robust to variations in the channel and speaker.
A Speech signal, s(t), can be modeled as the convolution of the excitation signal e(t) and its vocal tract impulse response v(t):

		(59)
In the frequency domain, the above convolution will become multiplication:

		(60)
After applying the logarithm function on both sides,

		(61)

The log spectrum can be calculated easily using the Fourier transform. Spectral subtraction [8] on the log spectrum, , will remove the contribution of the excitation signal. The cepstrum, a time-domain representation of the log spectrum, can be obtained using an inverse Fourier transform.
The generic frame-based cepstrum front-end is illustrated in Figure 11. While this front-end is not the only possibility, it has been used in most speech recognition systems, including the one described in this dissertation. Features are computed every 10 milliseconds using approximately 25 ms of data, with the assumption that sampled speech signal is stationary over such a short period. The short-term frequency content of the speech signal is the major focus for this frame-based signal processing approach. 

The vocal tract frequency response, , is represented by Mel-frequency cepstral coefficients (MFCCs) [2]. A 13-dimensional MFCC speech feature vector (with energy as one dimension of the feature vector) are correlated with the shape of the speaker’s vocal tract and the position of the articulators at the time this speech frame was articulated. However, the frame-based stationary assumption of spoken speech is a false assumption, because the articulators actually have smooth trajectories instead of instantaneously switching positions between contiguous speech frames. In order to eliminate the effect of this false stationary assumption, first and second derivative features are typically appended to the MFCC feature vector, which expands the dimensionality from 13 to 39.
[image: ]
Figure 11. Typical Mel-Cepstral Acoustic Front-end.
1.11 TIDigits Corpus
The TIDigits Corpus [46] consists of more than 25 thousand digit (“zero” through “nine” and “oh”) utterances spoken by over 326 men, women, and children. This dialect balanced database was collected in an acoustically treated sound environment and digitized at 20 kHz and a 10 kHz anti-aliasing filter was used. Electro-Voice RE-16 Dynamic Cardioid microphone was used to record the spoken speech and it was placed 2-4 inches in front of the speaker's mouth. For the TIDigits speech corpus, the continental U.S. was divided into 21 dialectical regions and speakers were selected so that there were at least 5 adult male and 5 adult female speakers from each region which represents a dialect balanced database. 943 speech utterances were chosen randomly as a TIDigits corpus subset to work as the speech dataset for our experiments. In all experiments, this dataset is split into training dataset (for model training) and evaluation dataset (for classification performance test). The training dataset is composed of 6689 phone examples and the evaluation dataset is composed of 2865 phone examples. The pronunciation lexicon contains eleven pronunciations which are shown in Table 1. There are total 18 phonemes which can be grouped as five classes. The phonemes and related class is illustrated in Table 2.
Table 1. Pronunciation Lexicon for TIDigits Dataset
	Word
	Pronunciation

	ZERO
	z iy r ow

	OH
	ow

	ONE
	w ah n

	TWO
	t uw

	THREE
	th r iy

	FOUR
	f ow r

	FIVE
	f ay v

	SIX
	s ih k s

	SEVEN
	s eh v ih n

	EIGHT
	ey t

	NINE
	n ay n



Table 2. Broad phonetic classes used in our experiments.
	Phoneme
	Class
	Phoneme
	Class

	ah
	Vowels
	s
	Fricatives

	ay
	Vowels
	f
	Fricatives

	eh
	Vowels
	th
	Fricatives

	ey
	Vowels
	v
	Fricatives

	ih
	Vowels
	z
	Fricatives

	iy
	Vowels
	w
	Glides

	uw
	Vowels
	r
	Glides

	ow
	Vowels
	k
	Stops

	n
	Nasals
	t
	Stops



For continuous speech recognition, the typical word error rates on TIDigits are very small so this corpus is not useful to validate the superiority of a new method. Instead, it is used to debug and optimize algorithm parameters. The goal of our LDM classification experiments on TIDigits was to refine the process of parameter initialization, training and testing. These experiments provide a sanity check that no errors are introduced from such sources as decoding or duration modeling.
1.12 Training from Multiple Observation Sequences
The time-aligned labels provided with the TIDigits corpus were achieved using ISIP’s Prototype System, a public domain speech recognition system [47]. Traditional 13-dimensional MFCC acoustic features, consisting of 12 cepstral coefficients and absolute energy, were computed from each of the signal frames within the phoneme segments. To apply LDM for speech classification, however, we need to develop a solution for how to train an LDM model (i.e., for estimation of model parameters) using many training observation sequences. This is referred to as multiple runs model training. Because different speakers have different vocal characteristics, the model estimation procedure will need a large amount of training data to normalize for different speakers and recording conditions. For the TIDigits classification experiment, there are 18 phonemes in the pronunciation lexicon and we need to train 18 LDM models accordingly. Each LDM phone model has hundreds of training examples with variable segment lengths.
It is straightforward to modify the model parameter estimation procedure from a single run to multiple runs. The set of K observation sequences are defined as:

		(62)


where  is the kth observation sequence. It is assumed that each observation sequence is independent of every other observation sequence. Multiple run parameter estimation attempts to adjust the model parameters  to maximize

		(63)
Since the parameter estimation formulas are based on adding together the statistics of system internal states and output observations, the parameter estimation for multiple observation sequences can be derived by adding together the individual statistics of system internal states and output observations for each training sequence. Therefore, the modified maximum likelihood estimation for multiple run is:

		(64)

		(65)

		(66)

	 .	(67)
1.13 Classification Results
The detailed classification results using this approach are shown in Figure 12 through Figure 15. These graphs show the classification accuracy of linear dynamic model for TIDigits corpus. Two sets of experiments were processed for LDMs with both full and diagonal covariance matrices. The experiment results show that diagonal LDMs can perform as good as full LDMs when we increase the state dimension to 13~15. For LDMs with a full covariance matrices configuration, the best performance is 91.69% classification accuracy. For LDMs with a diagonal covariance matrices configuration, we get obtain a classification accuracy of 91.66%, which is sufficiently close to that for full LDMs. In fact, the small difference between these two results consists of X utterances out of XX total utterances used in the evaluation.
[image: ]
Figure 12. Classification accuracies are shown for TIDigits dataset with LDMs as the acoustic model. The solid blue line shows classification accuracies for full covariance LDMs with state dimensions from 1 to 25, and the dashed red line shows classification accuracies for diagonal covariance LDMs with state dimensions from 1 to 25.

[image: ]
Figure 13. Confusion phoneme pairs for the classification results using full LDMs.
[image: ]
Figure 14. Confusion phoneme pairs for the classification results of using diagonal LDMs.
The phoneme confusion tables are illustrated in Figure 13 for full LDMs and Figure 14 for diagonal LDMs. The misclassification trends for full LDMs and diagonal LDMs are similar. For example, a small portion of phoneme /uw/ were misclassified as phoneme/iy/. There are also small portions of misclassifications for phonemes /iy/, /w/, and /z/.

Figure 15. Classification accuracies grouped by broad phonetic classes
Results for each phonetic class are presented individually in Figure 15. The relative differences in classification accuracy are not consistent among the phonemes. It can be seen that the classification results for fricatives and stops are high, while classification results for glides are lower (~85%). Vowels and nasals result in mediocre accuracy (89% and 93% respectively). Overall, LDMs provide a reasonably good classification performance for TIDigits.
1.14 Summary
In this chapter, the LDM is applied to a speech classification task. A traditional acoustic front-end was used to extract MFCC feature vectors from speech data. The TIDigits Corpus was chosen as the speech dataset for the classification experiment. Also, in this chapter we described the implementation details of model training. The difference in performance between full and diagonal covariance approaches was shown to be small. The experimental results validate our hypothesis that LDM is a good speech classifier and provides the necessary motivation to extend this set of experiments to a large vocabulary, continuous speech recognition (LVCSR) corpus.


PROPOSED WORK AND EXPERIMENTS


Recent theoretical and experimental studies [4] [5] [42] suggest that exploiting frame-to-frame correlations in a speech signal further improves the performance of ASR systems. This is typically accomplished by developing an acoustic model which includes higher order statistics or trajectories. Linear Dynamic Models (LDMs) have generated significant interest in recent years [4] [5] [21] [23] [43] due to their ability to model higher order statistics. LDMs use a state space-like formulation that explicitly models the evolution of hidden states using an autoregressive process. We are expecting this smoothed trajectory model will allow the system to better track the speech dynamics in noisy environments. 
The results of the initial evaluation for linear dynamic model and the phoneme classification experiments in the previous chapter provide the necessary motivation to investigate applying LDMs to a large vocabulary, continuous speech recognition (LVCSR) system. However, developing a LDM-based LVCSR system from scratch has been proved to be extremely difficult because of LDM is inherently a static classifier which is not designed to find the optimal phonetic boundaries for a phonetic or word units in a speech utterance. Hence, the linear dynamic model is still restricted to limited recognition tasks with relatively small vocabularies such as the TIMIT Corpus [48].
In this work, we seek to develop a hybrid HMM/LDM speech recognizer that effectively integrates these two powerful technologies in one framework which is capable of handling large recognition tasks with noise-corrupted speech data and mismatched training conditions. This two-pass hybrid speech recognizer takes advantage of a traditional HMM architecture to model the temporal evolution of speech and generate multiple recognition hypotheses (e.g., an N-best list) with frame-to-phoneme alignments. The second recognition pass was processed using LDM to re-rank the N-best sentence hypotheses and output the most possible hypothesis as the recognition result. We have chosen the Wall Street Journal (WSJ0) [53] derived Aurora-4 large vocabulary corpus [49] as the training and evaluation dataset. This corpus is a well-established LVCSR benchmark with six different noisy conditions. The implementation and evaluation of the proposed hybrid HMM/LDM speech recognizer will be the major contribution of this dissertation.
1.15 Aurora-4 Corpus
The Aurora-4 Corpus is derived directly from WSJ0 and consists of the original WSJ0 data with digitally-added noise [51]. Aurora4 is divided into two training sets and 14 evaluation sets [52]. Training Set 1 and Training Set 2 include the complete WSJ0 training set known as SI-84 [53]. In Training Set 2, a subset of the training utterances contains various digitally-added noise conditions including six common ambient noise conditions. The 14 evaluation sets are derived from data defined by the November 1992 NIST evaluation set [54]. Each evaluation set consists of a different microphone or noise combination.  In this dissertation, we plan to use only TS1 dataset for training the acoustic models. This set consists of 7,138 training utterances spoken by 83 speakers. All utterances were recorded with a Sennheiser HMD-414 close-talking microphone. The data comes from WSJ0, but has a P.341 filter applied to simulate the frequency characteristics of a 16 kHz sample rate. The set totals approximately 14 hours of speech data with an average utterance length of 7.6 seconds and an average of 18 words per utterance. There are a total of 128,294 words spoken with 8,914 of these being unique words.
Only seven of the 14 evaluation sets will be used in this work due to the limited computational facilities available for these experiments. These sets include the original  noise-free data recorded with the Sennheiser microphone and six versions with different types of digitally-added environmental noise at random levels between 5 and 15 dB. The environments include an airport, random babble, a car, restaurant, street, and a train. Each of the seven evaluation sets consist of 330 utterances spoken by a total of eight speakers, and each utterance was filtered with the P.341 filter mentioned previously. The data for each test set totals around 40 minutes with an average of 16.2 words per utterance. For a more complete description of the entire Aurora-4 corpus, readers can refer to [49].
1.16 Hybrid Recognizer Architecture
The public-domain ISIP Prototype Decoder (developed at Mississippi State University) [47] will be the benchmark system. The HMM/LDM hybrid decoder will be based on this decoder. The ISIP Prototype Decoder has achieved state-of-the-art performance on many speech recognition tasks [55] [56] [57] and its modular architecture and intuitive interface make it ideal for researching new technology. The HMM/LDM hybrid decoding process includes two phases: a first-pass decoding to generate N-best lists with model-level alignment and a second rescoring pass to incorporate the LDM segmentation score for finding the most possible sentence hypothesis in the N-best list. Figure 16 shows the high-level architecture of the hybrid recognizer.
[image: ]
Figure 16. The N-best list rescoring architecture of the hybrid recognizer.
N-best list generation is critical for the performance of the hybrid architecture investigated in this dissertation. Since the paradigm involves generating N-best lists using the HMM system and then post-processing these lists using the LDM classifiers, we assume that the N-best lists are rich enough to allow for the potential improvements over the baseline system. There are several ways in which N-best lists can be generated [58] [59]. A* search [11] is by far the most commonly used technique. In the hybrid recognizer architecture, ISIP Prototype Decoder is used to generate word graphs first, and then these word graphs will be converted into N-best lists using a stack-based paradigm. The following Figure 17 shows the flow graph for the word graph to N-best list conversion process.
[image: ]
Figure 17. Flow graph for converting a word graph to the N-best list.
Other implementation issues will arise from using LDM-derived likelihoods in the N-best rescoring process. For a segment of an N-dimension speech feature vector, evaluating the GMM likelihood score with a diagonal covariance matrix is equivalent to multiplying N Gaussian scores. This calculation has the tendency to result in a very small likelihood value. However with the LDM-derived likelihood values, the range of the likelihood scores is typically a couple of orders of magnitude larger than those derived using HMMs. This requires a change to the user-defined parameters such as the language model scaling factor and the word insertion penalty in the hybrid system. Additional parameter tuning experiments are also required to combine the two likelihood scores in an optimal manner to achieve potential increase in accuracy.
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