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ABSTRACT 

 

Simultaneous recordings of single and multi-unit neural signals from multiple cortical 

areas in the brain are a vital tool for gaining more understanding of the operating mechanism 

of the brain as well as for developing Brain Machine Interfaces. Monitoring the activity 

levels of hundreds or even thousands of neurons can lead to reliable decoding of brain signals 

for controlling prosthesis of multiple degrees of freedom and different functionalities. With 

the advancement of high density microelectrode arrays, the craving of neuroscience research 

to record the activity of thousands of neurons is achievable. Recently CMOS-based Micro-

electrode Arrays MEAs featuring high spatial and temporal resolution have been reported.  

The augmentation in the number of recording sites carries different challenges to the neural 

signal processing system. The primary challenge is the massive increase in the incoming data 

that needs to be transmitted and processed in real time. Data reduction based on the sparse 

nature of the neural signals with respect to time becomes essential.  

The dissertation presents the design of a neural spike-based data reduction platform 

that can handle a few thousands of channels on Field Programmable Gate Arrays (FPGAs), 

making use of their massive parallel processing capabilities and reconfigurability. For 

Standalone implementation the spike detector core uses Finite State Machines (FSMs) to 

control the interface with the data acquisition as well as sending the spike waveforms to a 

common output FIFO. The designed neural signal processing platform integrates the 

application of high-speed serial Multi-Gigabit transceivers on FPGAs to allow massive data 

transmission in real time. It also provides a design for autonomous threshold setting for each 

channel.
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CHAPTER 1 

INTRODUCTION 

What beauty is shown in the preparations obtained by the precipitation of silver 

dichromate deposited exclusively onto the nervous elements! But, on the other hand, what 

dense forests are revealed, in which it is difficult to discover the terminal endings of its 

intricate branching… Given that the adult jungle is impenetrable and indefinable, why 

not study the young forest, as we would say in its nursery stage. 

                                                                       Santiago Ramón y Cajal (1852-1934) 

 

Information processing in the brain is carried out by large groups of 

interconnected neurons. Neurons are the cells responsible for encoding, transmitting, and 

integrating signals originating inside or outside the nervous system. The transmission of 

information within and between neurons involves changes in the resting membrane 

potential, when compared to the extracellular space. The inputs one neuron receives at 

the synapses from other neurons cause transient changes in its resting membrane 

potential, called postsynaptic potentials. These changes in potential are mediated by the 

flux of ions between the intracellular and extracellular space. The flux of ions is made 

possible through ion channels present in the membrane. The ion channels open or close 

depending on the membrane potential and on substances released by the neurons, namely 

neurotransmitters, which bind to receptors on the cell’s membrane and hyperpolarize or 

depolarize the cell. When the postsynaptic potential reaches a threshold, the neuron 

produces an impulse. The impulses or spikes, called action potentials, are characterized 

by a certain amplitude and duration and are the units of information transmission at the 
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interneuronal level [1]. The discovery of the neuron was a milestone in brain research and 

paved the way for modern neuroscience, but the brain is yet to yield the vast majority of 

its secrets.  

Current neuroscience research operates at two separate levels: The macro- and 

microscopic levels. The macroscopic level uses imaging techniques like functional 

Magnetic Resonance Imaging (fMRI) and Magnetoencephalography (MEG) to measure 

regional changes in metabolism and blood flow associated with changes in brain activity. 

It captures whole brain activity patterns that allow the mapping of brain regions 

associated with a particular behavior or task. These techniques lack single-cell details and 

the requisite temporal resolution to permit detection of neuronal firing patterns. The 

microscopic level is concerned with investigating how individual nerve cells work, 

studying their response to stimulation and monitoring the firing rates associated with a 

certain behavioral output, mental state or motor activity. This can be done using 

implanted electrodes to record the rates and timing of action potentials. The sparse 

sampling of neuronal activity monitoring tens to few hundreds of neurons does not give 

the global view of signaling  in neural circuits that can involve millions of neurons. 

There is a gap between the two levels, that is believed to entail an answer to the 

question of how neuron cells collaborate to process information. To fill in the gap, we 

need a static anatomical map of the brain circuitry describing the synaptic connections 

within any given brain area, as well as a dynamic map revealing the patterns and 

sequences of neuronal firing by all neurons over time scales on which behavioral outputs 

or mental states occur. Hence the aspiration is not only to map the "impenetrable jungle" 
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that Cajal referred to but also to map the dynamical traffic within the jungle and analyze 

it. Research efforts are conducted to approach that ultimate goal, and along the hard path 

to achieve it, technological breakthroughs evolved and more are bound to arise. New 

technologies may include new optical techniques to image in 3D, new capabilities for 

storage and manipulation of massive data sets, new clinically viable brain-machine 

interfaces to help paralyzed patients and development of biologically inspired 

computational devices [2]. 

Focusing on the microscopic level, two of the research fields concerned with 

recordings of the spiking activity of neurons using microelectrode arrays are:                

The Brain-Machine Interface (BMI) and brain in a dish research fields. 

Brain-Machine Interface:  

Extracting motor control signals from the firing patterns of populations of neurons and 

using these control signals to reproduce motor behaviors in artificial actuators are the key 

operations of a brain-machine interface [3,43]. The typical neural signal processing 

pathway as shown in Fig.1.1  is designed to measure the instantaneous frequency of 

neural action potentials, or spikes. Since any given electrode may sense spikes from 

multiple neurons, it is typically necessary to sort all detected spikes by wave shape (i.e. 

by neuron). Firing rates of sorted spikes are typically measured by moving average; these 

rates can then be used by “decoding” algorithms which use statistical models to correlate 

spiking activity with behavioral or motor activity in the subject.  
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Fig.1.1  Block diagram of the typical pathway of brain machine interface 

Hence invasive BMIs rely on the physiological property of individual cortical 

neurons to modulate their spiking activity in association with movements [3,53-56]. 

These modulations are found to be highly variable from neuron to neuron and from trial 

to trial. Yet averaging across many trials reveals fairly consistent firing patterns. Based 

on the hypothesis that the function of neural circuits is an emergent property that arises 

from the coordinated activity of large numbers of neurons, this phenomenon can be 

explained. Individual neurons generally form synaptic connections with thousands of 

other neurons. In distributed circuits, the larger the connectivity matrix the greater the 

redundancy within the network. Given their distributed connections and their plasticity, 

neurons are likely to be subject to continuous dynamic rearrangement, participating at 

different times in different active ensembles [2]. Accordingly both accuracy and 
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reliability of predictions of motor activity improve considerably with increasing the 

number of simultaneously recorded neurons and decreasing the errors due to individual 

neuron firing variability. Pursuing this motivation, the number of simultaneously 

recorded neurons has been approximately doubling every 7 years since 1950’s [4]. 

Standard recording techniques using 704 implantable micro wire arrays have been 

reported in literature [5]. Recently Nicolelis Lab at Duke University announced their 

achievement to simultaneously record the electrical activity produced by a population of 

1,874 interconnected single neurons at work in a primate.  

Brain in a Dish: 

At present, the prime methodology for studying neuronal extracellular activity under in 

vitro conditions is by using substrate-integrated microelectrode arrays (MEAs). This 

methodology permits simultaneous, long-term recordings (i.e. of up to several weeks) of 

extracellular field potentials. Correlating MEA recordings with microscopic imaging and 

stimulations is widely used to study the circuit-connectivity, dynamics and propagation 

effects in neuron assemblies.  It is also used to investigate population coding, activity 

patterns, plasticity and pharmacological testing on either dissociated neuronal cultures or 

brain slices of embryonic rats, i.e. the young forests as Cajal described them. 

Commercially available MEA systems integrate typically 60–120 microelectrodes of 10–

30 μm in diameter with pitches on the order of hundreds of micrometers.  Typical neuron 

soma dimension in vertebrates is few micrometers long and the typical neuronal networks 

have 10000–50000 neurons, the limited number of electrodes and their rather large pitch 
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results in a substantial spatial undersampling of the overall network activity [6] as shown 

in Fig2.2.  

 

 

 

 

 

 

 

Fig. 2.2: Substrate-integrated MEA dish. The microscopic image of the electrode 

(black) and neurons. Neural Instrumentation Lab, Temple University [57] 
 

 

The development of higher spatial and temporal resolution at low noise levels are 

prerequisites for opening the perspective to access the network electrical activity at the 

global and cell levels. Recently, CMOS-based high-density MEAs were developed 

featuring switching techniques to manage a large number of electrode channels 

interconnections, multiplexing, amplification, and filtering. Active Pixel Sensor based 

MEA platform providing 4096 microelectrodes at 21µm inter-electrode separation and 

7.7KHz sampling rate has been documented [6].  

Considering the ultimate goal of Brain Activity Map [2], the current neuroscience in 

vivo and in vitro research states and the advancement of high density microelectrode 

arrays, the migration to monitoring thousands of recording channels at high temporal 

resolution is achievable. 
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 1.1 Increasing the number of Recording Channels: 

More is Different - The behavior of large and complex aggregates of elementary 

particles, it turns out, is not to be understood in terms of a simple extrapolation of the 

properties of a few particles. Instead at each level of complexity entirely new properties 

appear. 

                                                                                            Philip Warren Anderson  

 

The augmentation of the number of recording channels carries different 

challenges to the neural signal processing system. The primary challenge is the massive 

increase in recorded data that needs proactive strategies for data transfer, reduction, 

management and analysis. The implementation of real-time signal processing becomes 

essential to alleviate huge data storage requirements. The access to a more detailed view 

of neuronal networks might reveal new properties and challenges pushing for the 

development of new analyzing tools. 

With the continuous advancement of data acquisition systems featuring high-

count recording channels, there exists a clear need for a test bed to develop and 

investigate a more suitable new generation of Neural Signal Processing (NSP) algorithms 

and computational tools. The platform has to offer programmable flexibility to allow the 

trial of different new strategies and novel computational techniques as well as rigorous 

testing for evaluation. 

 A plausible NSP platform that can handle thousands of recording channels has to 

provide means of high data transfer. As a numerical example, a NSP platform handling 

2560 channels sampled at 31.25 KH at a sample precision of 16-bits must be capable of 
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managing an input data stream of 1.28Gbps. The data transfer interface has to be 

compatible with high-density neural data acquisition systems [7]. 

Data reduction based on the sparse nature of the neural signal with respect to time 

and the redundancy perceived across multiple electrode recordings becomes essential. 

Spike detection is the essential first step building block that allows the system to deliver 

only the action potential waveforms, their respective occurrence times and channel ID 

instead of the entire raw signal. The AP waveforms are then used by an autonomous 

spike sorter to first distinguish true spikes from false detections, then, to associate each 

spike to its generating neuron in case of multi-unit recordings. Depending on the 

performance and inter-electrode spacing, the AP waveforms might be necessary to 

identify redundancy over multiple recording channels.  

The spike detection settings for each channel is independent from the settings of 

other channels, and hence spike detection over different sites can run in parallel. 

Applying parallel processing whenever possible limits the overall latency and assists in 

achieving real time implementation. 

The NSP platform has to be fully autonomous and functional under expected 

Signal-to-Noise Ratios delivered by the data acquisition system. The system must be 

adaptive to varying noise levels over different channels and over time.  

The main objective of the dissertation is to design an experimental test bed that 

can facilitate dealing with a large number of recorded neurons in real time. It also 

presents an architecture that performs spike-based data reduction. 
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 1.2. Why Consider FPGA? 

Ross Freeman (1944-1989) established  the leading FPGA developer Xilinx in 1984 and  

invented a year later the first Field Programmable Gate Array (FPGA). FPGAs are 

programmable semiconductor devices that are based around a matrix of Configurable 

Logic Blocks (CLBs) connected through programmable interconnects. FPGAs can be 

configured to implement custom hardware applications and functionalities. Since their 

invention, FPGAs have evolved far beyond the basic capabilities present in their 

predecessors, and incorporate hard Application Specific Integrated Blocks of commonly 

used functionality such as RAM, clock management, and DSP.  

FPGAs are parallel in nature, so different processing operations do not have to 

compete for the same resources. Each independent processing task is assigned to a 

dedicated section of the chip and can function autonomously without any influence from 

other logic blocks. 

As integrated circuits grew smaller and maximum toggle rates increased the need 

for input/output bandwidth exploded. With more hardware resources and faster clock 

speeds, conventional I/O resources became the bottleneck to FPGA performance [52]. In 

2002, Xilinx embedded high-speed serial Multi-gigabit transceivers (MGTs) on their 

FPGAs and introduced them commercially under the name Rocket I/O. MGTs are 

Serializers/Deserilizers (SERDES) that allow serial data transmission over differential 

pairs at speeds of up to 28.05Gbps per lane (see Fig. 1.3). Alternatively, multiple MGTs 

can be bonded together to form a higher bandwidth interface. Multiple MGTs are 

integrated above and below the Block RAM columns providing close availability for 
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ingress and egress FIFOs. Rocket IO serial transceivers are compliant with standard 

gigabit communication protocols. 

FPGAs offer massive parallel processing performance, reconfigurable flexibility 

and superior capabilty of streaming data, and therefore present an appealing hardware 

implementation solution for a NSP testbed that can handle a large number of similarly 

strutured parallel channels in real time.  

 

 

Fig. 1.3. Bar graph presenting the available serial Multi-Gigabit Transceiver line rates. 
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CHAPTER 2 

REVIEW OF LITERATURE 

 

Monitoring the interplay of neuronal ensembles in the brain is important for 

understanding mechanisms underlying memory, learning and behavior. Recently a group 

of neuroscientists have proposed launching a large-scale, international public effort called 

"Brain Activity Map" (BAM) Project, aimed at reconstructing the full record of neural 

activity across complete neural circuits [2]. They describe the neural circuit function as 

being emergent, meaning that it arises from complex interactions among millions of 

neurons and that the circuit state is not predictable from responses of individual sparsely 

sampled cells. They propose the dynamical mapping of the "functional connectome", the 

patterns and sequences of neuronal firing by all neurons. Correlating this firing activity 

with both the connectivity of the circuit and its functional or behavioral output could 

enable  the understanding of neuronal codes and the regulation of behavior and mental 

states. Some of the mental illnesses that could not be understood using single-level 

analysis, such as autism and schizophrenia, may be possible to explain on an emergent 

level analysis. Clearly, the benefits of getting the full dynamical picture of the brain will 

be invaluable to address many questions in neuroscience, but to achieve this vision there 

is a clear need to develop novel technologies and significant innovations in systems 

engineering. 

At present,  population coding is studied either by monitoring the spiking activity 

of a few hundreds of individual neurons working with intact, living animals or by 
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studying the basics of distributed information processing using cultured neuronal 

networks. Cultured neuronal networks lack many features of real brain, but they retain 

others such as developing synaptic connections and exhibiting different patterns of 

electrical activity [8].  The neural activity cannot be correlated to a behavioral or mental 

output as in vivo, but it can be correlated to a structural connectome and to stimulation 

patterns. Advancement in micro-electrode array technology and multi-photon 

microscopy, has made it possible that every cell in a cultured monolayer network of 

dissociated neurons can be observed, monitored, stimulated and manipulated with 

temporal resolution in the sub-millisecond range, and spatial resolution in the submicron 

range, in a non-destructive manner [8]. Currently, such detailed analysis is not feasible in 

living animals, or even brain slices, but it remains an open question however, whether 

any of the processing done by cultured neurons is relevant to that carried out by intact 

brain.  

This chapter serves to present efforts from a number of research groups to 

upgrade the recording capabilities of neuronal activity to higher spatial and temporal 

resolution across a large-scale neuronal ensemble to approach the model of in vivo brain.  

It will review some of these efforts reported on the data acquisition level. With the 

increasing number of recording sites, the chapter also discusses architecture design 

considerations at the spike detection  level. 
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2.1. Multi-electrode Arrays: 

Multielectrode arrays or microelectrode arrays are data acquisition devices that contain 

multiple plates or shanks through which neural signals are acquired, basically serving as 

neural interfaces that connect neurons to electronic circuitry. The signal then passes 

through amplification and filtering to remove some of the background noise. MEAs can 

be classified into two groups: implantable MEAs, used in vivo, and non-implantable 

MEAs, used in vitro.  Using advances in multisite microelectrode array fabrication 

techniques varying shape and recording capacity of the electrodes, it is possible to record 

the activity of tens to hundreds of neurons in parallel [9]. Integrated microelectronic 

circuits were applied to enable the transition to even higher recording capacities [10]. 

Development of  in vivo and in vitro multi-electrode probes share many of the same 

hardware and data analysis problems and mutually contribute to the advancement of the 

state of the art. 

2.1.1 In Vitro Micro-Electrode Arrays:  

Multi-electrode array culture dishes allow simultaneous recoding from and stimulation of 

neurons. These wired Petri dishes are also called planar electrode arrays [2]. Early 

microelectrode developments by Gross [11], Wise, Meister and others paved the way for 

enabling chronic multi-single-cell recording. They were able to record neural spike 

potentials with good fidelity from a few tens of neurons. 

 MEA's have become commercially available just within the last decade.  MEA 

systems capable of recording at least 60 electrodes are produced by MultiChannel 

Systems of Germany, and Panasonic of Japan. Guenter Gross supplies MEAs that can be 

http://en.wikipedia.org/wiki/Signal_(electronics)
http://en.wikipedia.org/wiki/Neuron
http://en.wikipedia.org/wiki/Electric_circuit
http://en.wikipedia.org/wiki/In_vivo
http://en.wikipedia.org/wiki/In_vitro
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used with multi-electrode processing hardware and software made by Plexon Inc [8].  

MEAs typically consist of less than 100 planar metal electrodes on an insulating glass 

substrate with a diameter > 30µm and a pitch >100µm. For commercially available 

MEAs, amplification and filtering are realized by discrete off-chip components [6].  

Considering the dimensions of neurons, which range from below 10µm for 

vertebrates up to 100µm for invertebrates, the development of high-density arrays was 

needed to acquire more details from cell-based biological experiments on brain slices and 

to elucidate the contribution of individual cells to collective network. An advanced multi-

electrode array system has been developed to study how the retina processes and encodes 

visual images. This system can simultaneously record the extracellular electrical activity 

from hundreds of retinal output neurons and consists of 512 planar microelectrodes with 

a sensitive area of 1.7 mm² and a noise level of a few µV [13].  However, some brain 

structures, such as hippocampus or cerebral cortex, extend over distances of many 

millimeters [14]. To record from these larger structures, an increased density of 

electrodes and a larger array would be required in order to fully analyze all the neurons of 

interest.  

 CMOS-based devices presents several advantages for managing a large number 

of electrode channels' interconnections, multiplexing, amplification and filtering. They 

have been initially implemented for in vivo neural probe recordings  [15]. Later they have 

been used for in vitro devices at a larger scale to overcome the connectivity limitation by 

making use of on-chip signal multiplexing [12]. A number of voltage recording 

microelectrode array devices have been developed with significantly higher electrode 
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densities and larger areas. Due to hardware bandwidth limitations, these devices all make 

some compromise between speed, electrode count, multiplexed sampling, and noise [14].  

A high-density 128x128  biosensor array CMOS chip was designed featuring a 

frame rate of 2K frames per second, and a pitch of 7.8µmx7.8µm over 1mm² extent [12]. 

The device has a very high spatial resolution recording of small areas of tissue, but was 

reported to have noise levels in the range of 250µVrms, which could make recording 

smaller extracellular spike signals (20-100µV) a challenge [14]. The simultaneous 

recording from all electrodes required the front-end amplifiers being placed in each 

recording site, which, due to area constraints, entailed the high noise levels.  

A switch-matrix-based high-density microelectrode array [16] was developed as a 

hybrid between low electrode count and high resolution arrays. The device has only 126 

output channels but these could be digitally selected from among 11,000 electrodes, 

separated by a pitch of 18µm,  using a reconfigurable electrode/readout-channel routing.  

The device has very low noise levels of 7-9µV, since the front-end circuitry were placed 

outside the array, where sufficient area for low-noise circuit implementation is available.  

 Imfeld and coworkers developed an electrode multiplexing , 4096 pixel recording 

array with a 42 µm pitch and a 2.7mmx2.7mm extent that can record the full frame at a 

rate of 8KHz. The device has high spatial resolution, a relatively good temporal 

resolution and a wide extent of ~7mm². The data recording  has a hardware 

implementation inspired by image/video processing concepts. It implements an Active 

Pixel Sensor (APS) concept CMOS design, acquiring the data as a time sequence of 

images [17]. Basic amplification was performed underneath each electrode, and a 
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tradeoff between spatial resolution and noise dictated the inter-electrode spacing. The 

noise level is in the range of ~26µV rms. The complete architecture of the acquisition 

system is shown in Fig. 2.1. Control and timing of the APS-MEA as well as the bank of 

the Analog to Digital Converters (ADC) is performed by an FPGA. Filtering the 4096 

channels in real time is also carried out on the same FPGA.  

 

 

 

Recently a high-electrode count Pico-current Imaging Array (PIA), based on an 

81,920 pixel readout integrated circuit camera chip was developed. While originally 

designed for interfacing to infrared photo-detector arrays, it was adapted for neuron 

recording by bonding it to microwire glass. The full frame of an area of 9.6mm by 7.7mm 

can be recorded at 100Hz. [14]    

 

 

Fig 2.1 Block diagram of the acquisition platform. [17] 
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2.1.2 In Vivo Micro-Electrode Arrays:  

Implantable MEA research considers more requirements and restrictions for acute and 

chronic implantation. Some research areas focus on the fabrication process, insertion 

techniques, chronic response of tissue on the implant, wireless implant design and power 

issues. In this section the main focus will be only on presenting a few of the  research 

efforts on increasing the number of recording sites of neural signals. Some Labs are 

mainly interested in monitoring more neurons in different cortical areas of the brain [18], 

while others are interested in changing the microstructure  of the neural probes to 

increase the spatial resolution [19-21].  

Researchers at the Duke University lab published a paradigm for recording the 

activity of single cortical neurons from awake, behaving monkeys [5]. They implanted 

high-density microwire arrays, developed at Duke University, totaling up to 704 

microwires per subject in five cortical areas. Early this year the lab announced that they 

were able to simultaneously record the firing patterns of close to 2000 neurons. Four 

multielectrode arrays with 448 electrodes were inserted in rhesus monkey motor and 

sensory cortices of both hemispheres. There are no publications yet explaining the 

detailed instrumentation used.  

The microwire and similarly structured silicon-based arrays feature one recording 

site per wire, which limits the capability of the array to capture dense neuronal activity in 

3-dimensional setting. Alternatively in 1985 the planar microelectrode array was 

introduced, using multiple electrodes arranged on implantable silicon shafts [20]. The 

planar microelectrodes increased the recording spatial precision. It was later modified by 
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proposing double-sided electrodes [22]. These devices contain electrodes on two parallel 

planes separated by the thickness of the implantable shaft, presenting a building block for 

a 3-dimensional recording geometry.  

Du and coworkers at the California Institute of Technology have fabricated   a 

dual-side electrode array by patterning recording sites at the front and back of an 

implantable microstructure. They  proposed stacking several two-dimensional multishank 

arrays into three dimensional  probe arrays, to access 3-D neuronal structures as shown in 

Fig. 2.2.  

The nano-probe design presents a potential for hundreds or thousands of 

recording sites, but it holds a high risk of brain tissue damage. To minimize the disruptive 

interface between the silicon electrodes and the brain, the nano-probes will pass through 

more testing and evaluation to determine the optimal shaft size and shaft spacing.                                                                                                      

It is evident that there are several efforts aiming to increase the number of 

recording channels in vivo as well as in vitro and in situ, which leads us to the next 

section of presenting the available signal processing tools and their capability of handling 

the resulting high  amount of recorded data. 
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Fig. 2.2. Dual-side and double-layer microelectrode arrays were built on thin 

silicon shafts. A: front view of the device. The shaft dimensions are 4 mm x70 µm x50 

µm (l x w x t). B: expanded view of the front and back sides of the dual-side array. The 

recording sites have a geometric area of 100µm². C: layers involved in connecting dual-

side arrays to flexible printed circuit boards (PCBs, green), one board for each side. 

Electrical connections were made via low-profile flip-chip bonds. D: view of the tip of a 

2 x 2 shaft, double-layer array. E: a modular assembly scheme used to make the 

multilayer structure. Note that the PCB contained conducting leads on both sides and thus 

the same board connected to the upper recording sites on the bottom layer and the lower 

sites on the top layer. [21] 
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2.2. Neural Signal Processing Systems: 

Recordings of extracellular neural activity are used in many research studies and clinical 

applications. Usually, these signals are analyzed as a point process, and  spike detection 

is used to estimate the times at which action potentials from one or more neurons 

occurred. Recordings from high-density MEAs and low-impedance microelectrodes often 

have a low signal-to-noise ratio (SNR < 10) and contain action potentials from more than 

one neuron. Hence, spike detection is often followed by spike sorting, that involves 

clustering, to assign each event to separate neurons based on AP waveforms. 

2.2.1 Spike Detection Algorithms: 

The main challenge in detecting spikes is the interference due to background noise. 

Various spike detection algorithms with different levels of complexity and performance 

have been presented [23,48]. The absolute threshold method is widely used as it requires 

the least computations, but it is highly sensitive to background noise. Various techniques 

have been proposed for autonomously selecting the threshold based on the statistical 

characteristics of the recorded signal, while others set the  threshold based on a visual 

inspection of the detected spikes. A different type of algorithms is based on template 

matching. These algorithms scan the recorded signal for instances, where segments of the 

signal are similar to templates of spike waveforms. In this case a priori knowledge of the 

spike waveforms is required and the user should supply a threshold for similarity 

measures. A different approach suggests using a preprocessors, such as the Nonlinear 

Energy Operator NEO to give emphasis to the spikes relative to the noise before applying 

the absolute threshold, consequently improving the spike detection performance.  



21 

 

2.2.2 Overview on Existing Neural Signal Processing Systems: 

Existing commercial recording systems are limited to a few hundred channels and rely on 

multiple sequential logic processors connected in parallel. While functional, such systems 

are difficult to manage, and do not scale well to larger channel counts. The paradigm 

described by researchers at Duke University [5] for acquiring neural signals from 

monkeys incorporated the multichannel acquisition processor MAP by Plexon. The MAP 

recorded all the events that crossed the voltage threshold, set by the user, for subsequent 

offline spike sorting analysis. Each MAP processor can handle up to 128 channels. For 

their experiments,  they used a custom made MAP cluster, formed by three 128-channel 

MAPs connected in parallel and synchronized by a common 2MHz clock signal.  The 

initial step in all recording sessions required the experimenter to manually set the voltage 

threshold for each of the MAP channels connected to an implanted microwire [5]. The 

threshold was set based on visual inspection of the original analog signals displayed in an 

oscilloscope as well as the digital signal displayed on the screen of the computer 

controlling the MAP. With the increasing number of recording channels, it becomes 

impractical to require the user to tune the spike detection algorithm to the signal 

properties visualized on each channel. Currently, Plexon is offering  an upgraded version 

of the MAP called OmniPlex
®

 D Neural Data Acquisition System. The system can handle 

up to 256 channels sampled at 40KHz with a sample precision of 16 bits. 

With the rising demand to process a large number of similarly structured parallel 

channels in real time, there has been an emerging interest in hardware implementation 

over sequential processors. FPGAs offer massive parallel processing performance and 



22 

 

reconfigurable flexibility, which makes them an attractive alternative for real-time signal 

processing. 

The data acquisition systems integrated with the  high-density MEAs presented in 

section 2.1. perform signal conditioning in terms of amplification and filtering, and then 

send the complete signal to a host PC for storage, off-line spike detection and  clustering. 

[17]. As high-density MEA platform produce data streams in the range of hundreds or 

thousands of Megabits, the amount of data storage required increases drastically with 

longer recording times. Real-time spike detection and data compression become vital to 

limit the amount of data storage. 

2.3. Spike-Based Data Reduction: 

The idea of data reduction has been addressed mainly in wireless implantable devices for 

Brain-Machine-Interfaces. Several efforts have been proposed to implement on-line 

hardware spike detection and send only the spike waveforms while disregarding the 

interspike samples. The spike waveforms are the only information needed for successive 

spike sorting. With a limited telemetry bandwidth, it was essential to consider spike-

based data compression algorithms to reduce the amount of sent data. With power 

restrictions of implantable devices, there was also a need to avoid high power 

consumption associated with the continuous transmission of raw data. The proposed 

schemes aimed at providing an efficient use of the available transmission bandwidth and 

an increase of  the device throughput. Based on the sparse nature of the neural signal with 

respect to time, and the average neuron firing rates, the amount of sent data can be 

reduced to approximately ~2.25% of the total amount of  raw data [24]. 
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With a focus on telemetry transmission, Bossetti et al [24] raised an important 

design consideration for spike-based data reduction in real-time.  They demonstrated that 

although the spike-based compression might be very appealing from the point of view of 

average bandwidth, it is subject to telemetry bottlenecks during periods of multichannel 

neuron bursting causing queuing-based transmission delays at the output buffer. They 

drew the attention to the relation between the ratio of the output to average input 

bandwidth and transmission latency, the number of samples per spike waveform, the 

mean firing rate MFR, and the needed queue depth of the output buffer memory. 

Bottlenecks and latencies are mainly a consequence of accumulating the input data 

samples over short periods of time before their transmission at the output, waiting for the 

AP waveform to complete at the output queue. The research paper has concentrated 

mainly on the transmission delay. The hardware implementation delay is the time 

between the arrival of the spike waveform at the input buffer and its appearance on the 

output buffer. The method of spike detection employed will dictate the size and temporal 

pattern of spike data arriving at the output buffer. These patterns could impact the timing 

significantly. Aside from the delay depending on the scheme control and data handling 

between the input and output buffers, there are other delays related to the computational 

overhead and  memory read/write times, that depend on the system clock. The 

performance of the spike detector will also affect the required output bandwidth. A high 

false detection rate will increase the overall MFR and change the system design. 
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2.4. Spike Detector Design Schemes: 

The design of the data flow in the spike detection hardware-implementation defines the 

system latency and memory requirements. With the increasing demand to monitor 

thousands of recording channels, the efficient use of hardware resources, especially 

memory blocks on the FPGA becomes vital. Only a few literature have presented detailed 

patterns and sequences of the data flow on their spike-based compression architectures. 

This section presents two examples of spike detection architectures  with different data 

flow sequences, and discusses their possible application on high channel-counts. The first 

example is a spike detection scheme designed for an implantable data acquisition system 

for BMI application [26]. The second example is an architecture of a Neural Spike 

Detection platform NSP [25]. 

2.4.1. Spike Detection Architecture for Implantable Application: [26]  

A spike-detection based data reduction scheme described in literature [26]  handles the 

time division multiplexed data recorded from 16 channels. In this design the 64 most 

recent samples from each channel are stored in the input data storage buffer memory. 

Once a spike has been detected on a channel, the hardware waits until an additional set of 

34 samples, representing the spike waveform refractory period, from the same channel 

has been acquired. After the 45 samples of the AP waveform are completed in the input 

buffer memory, the spike waveform waits for its turn in a queue for detected spikes to be 

written out to the FIFO buffer, where it is held until the embedded PC and wireless card 

transmit them to the host station.  
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The scheme worked fine with 16 channels, but if the design is used for higher 

channel counts then some modifications must be considered. For example, if the spike 

detection unit handles many channels in a time division multiplexed approach, then the 

system must extend the memory space assigned for each channel to ensure that the 

detected spike waveform samples are copied from the input buffer to  the output FIFO 

before they are overwritten by new samples. Another solution would be  increasing the 

clock ratio between the reading and writing clock rates of the input buffer. As the 

copying process from the input buffers is queuing based, the more channels sharing the 

same queue, the slower would be the route. To avoid high memory usage on the 

hardware, when increasing the number of recording channels handled, a different design 

sequence might be considered. For example, copying the AP waveform in single samples, 

as they arrive at the input buffer, or in small groups of samples to the output buffer, in 

order to decrease the memory space assigned for each channel in the input buffer.  

Another implementation approach might be to replicate the 16-channel spike 

detection unit and use an intermediate FIFO for each unit to store the spikes before 

sending them to the common output FIFO. This latter transmission may be controlled by 

a queuing-based scheme. In this case the queuing based delay must be monitored closely 

as the AP waveforms will passes through queuing-based transmission three times. Once 

to be copied from the input buffer to the intermediate unit FIFO, then from the 

intermediate FIFO to an output FIFO common to all spike detection units and finally 

queued in the output FIFO for transmission to the host. The delay is expected to increase 

in case of neuron bursting across the channels.
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2.4.2. Spike Detection Architecture on NSP platform:  

A Neural Signal Processing (NSP) platform was designed by [26]. The platform 

incorporates a spike detection and a spike sorting p-cores controlled by two Microblaze 

processors. The central processors were connected to the firmware layer via the LMBs. 

Communications between the processors and other subsequent layers were channelized 

through the PLBs, where the processors were connected as masters while all other 

peripherals and p-cores connected as slaves. 

Focusing on the scope of the dissertation research, only the spike detection p-core 

was investigated. The spike detection p-core handled the spike detection process while 

the central processor managed only the transfer of input data to the p-core as well as 

monitoring the spike detection process. 

 (a) MicroBlaze Interrrupt Latency: The interrupt latency occupies a significant 

share of the processor cycles limiting the maximum operational frequency of the p-core. 

That s why the p-core was set to work at 10MHz, a ten times lower speed than its 

maximum possible operating frequency defined by the routing critical path. Assuming 

that the neural signal data is pipelined through the spike detector, and that the sampling 

frequecy is 31.25 KHz, the maximum number of channels that can be handled by the 

platform is limited to ~300 channels [26]. 

The hardware implementation advantages were restrained by the dependency on the 

MicroBlaze processor to control the operation sequence. If the p-core was to be 

implemented as standalone module, it can operate at around its maximum operating 

frequency, defined by the critical routing path. The alternative design solution presented 
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in the dissertation features a standalone implementation of a spike detector using Finite 

State Machines (FSMs) to control the interface between the data acquisition and the spike 

detection core as well as the interface between the spike detector and the output. The use 

of a processor with a higher clock rate may be another alternative to reduce the interrupt 

latencies. 

 (b) Input Data format: The data processing architecture was based on receiving 

the neural data as a stream of frames of 32 successive samples recorded from one channel 

and preceded by their channel ID. Simultaneous MEA data acquisition systems 

incorporate a Time Division Multiplexer (TDM). The rearrangement of the data in the 

flow scheme required adds control and storage burdens as well as data skewing to the 

interface between the data acquisition and the platform. As the system is required to 

extract valid spike waveforms, the platform has to deal with action potentials split 

between two data frames. 

 (c) The Threshold Comparator and Threshold Selection: The threshold 

comparator compares the neural data from the preprocessor, based on the nonlinear 

energy operator, to a user-defined threshold to detect spikes. The threshold was a fixed 

value for all the channels. The signals recorded by different electrodes may vary 

markedly in their SNR, and on the same channel SNR may fluctuate over time. With 

different SNRs the threshold has to be set adequetly for each channel. Dealing with 

massive number of recording channels threshold selection has to run autonomously 

without user interference, as manual channel settings become impractical. 
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2.5. Data Acquisition High Speed Serial Interface: 

The typical neural signal processing pathway starts with a data acquisition system that 

records extracellular potentials from an MEA. The data acquisition provides 

amplification, filtering, time division multiplexing and A/D conversion of data read from 

the different electrodes. This thesis focuses on the spike-based data reduction module and 

is thus concerned with the interface between the ADC of the data acquisition system. 

As the spike-detection based data reduction systems was designed to handle 

thousands of recording channels, it has to offer enough bandwidth to receive the massive 

amount of neural data from the data acquisition system in real time. Multi-Gigabit 

transceivers integrated on the FPGA were the primary choice for providing the needed 

high transmission rates in the range of a few Gigabits per second. Satisfying this 

requirement on the FPGA side, it was important to investigate the interfacing options to 

real data acquisition systems, and whether the high data transmission rates can be 

achieved by A/D converters.  

Low voltage differential signaling (LVDS) is the traditional method of interfacing 

data converters with FPGAs. LVDS was introduced in 1994 with the objective of 

providing higher bandwidth and lower power dissipation than the existing differential 

transmission standards. The rapid increase in the resolution and speed of converters 

created several system design challenges related to connecting ADCs with conventional 

parallel CMOS/LVDS outputs to FPGAs or DSPs.  The need for an extensive number of 

high bandwidth PCB interconnects increased the PCB complexity. The large number of 

traces with the restriction of being of the same length raised the routing difficulty. In 
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some applications, the data converter interface was the limiting factor in achieving the 

desired system performance in bandwidth demanding applications. 

2.5.1 An Overview on JESD204 Data Converter Serial Interface Standard: 

The JESD204 data converter serial interface standard was introduced in 2006 by the 

JEDEC Solid State Technology Association with the aspiration to avoid the limitations of 

LVDS connectivity and to provide a higher speed serial interface for data converters. The 

standard aimed at increasing the bandwidth and reducing the number of digital inputs and 

outputs between high speed data converters and processing devices. It applies 8b/10b 

encoding that eliminates the need for a frame clock and a data clock, enabling single line 

pair communication at speeds up to 3.125 Gbps [29]. JESD204 allowed the connection of 

the converters to the SerDes ports offered by many FPGAs as shown in Fig 2.3 [29].  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.3  A block diagram of the serial data link between one converter or more and the 

FPGA receiver, as defined by the original JESD204. It consists of a single lane 

with a data rate defined between 312.5 Mbps and 3.125 Gbps. The lane is a 

physical differential pair of connectors. [29] 
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The reduced number of connecting traces reduced the routing complexity. It offered 

reconfigurable resolution without hardware modification. The JESD204 standard went 

through two revisions. JESD204A [30] was released in 2008 and added support for 

multiple time-aligned data lanes and lane synchronization. This modification provided 

synchronization support of multiple devices. JESD204B, published in 2011, increased the 

maximum lane rate to 12.5 Gbps. It also added deterministic latency, which is achieved 

by communicating synchronization status between the receiver and the transmitter using 

a ‘Sync’ signal. Harmonic clocking was also introduced by JESD204B, making it 

possible to obtain a high speed data converter clock from a lower speed input clock with 

defined phasing. [31] 

2.5.2 Implementation of JESD204B for high density MEA data acquisition: 

Increasing the number of recording sites of neuronal signals is expected to involve wide 

bandwidth multichannel converters that are sensitive to deterministic latency across all 

lanes and channels. Hence the JESD204B might be the protocol of choice for converters 

used in future neuronal data acquisition systems.  

Some of the recently developed ADCs have integrated SerDes and are compliant 

with the JESD204 standards. They can be connected to FPGAs using a high speed serial 

differential pair lane. As an example, AD9644 by Analog Devices® offers high sampling 

speeds of 80MSps or 155MSps which are in the same range as the operating frequency 

suggested in the dissertation presented designs.
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 2.6. Overview on Data Transmission from FPGA to a Host PC using PCIe: 

PCI Express® (Peripheral Component Interconnect Express), abbreviated as PCIe®, is a 

high-speed, general-purpose interconnect architecture, designed for a wide range of 

computing and communicating platforms. It is a packet-based, point-to-point serial 

interface. The PCIe® protocol is divided into three layers: the Transaction Layer, the 

Data Link Layer, and the Physical Layer. These layers interact with the Configuration 

Space. Xilinx® provides scalable integrated PCIe Endpoint blocks on their FPGAs. 

Connections and control of the physical interfaces of the integrated Endpoint block are 

contained within the Endpoint Block Plus wrapper for PCI Express, available from the 

Xilinx® CORE Generator GUI. For more information on the Xilinx Endpoint PCI 

express solutions and guidance on how to estimate the performance of PCI express 

systems, the reader is directed to references [32-34]  

Xilinx PCIe IP core was connected to the application design via a Xillybus IP core 

[35], and standard FIFOs. Xillybus provides end-to-end stream pipes solutions for 

application data transport. It conducts the data traffic between FPGA and host, by 

supplying a Direct Memory Access (DMA) hardware design along with a kernel mode 

driver for both Windows and Linux. The host driver generates device files which behave 

like named pipes. The application on the computer can read the data sent using file 

descriptors. A file descriptor is an index for an entry in a kernel-resident array data 

structure.  

At driver load, DMA buffers are allocated in the host’s memory space, and their 

addresses are saved on the FPGA. The number of DMA buffers and their size are 

http://en.wikipedia.org/wiki/Kernel_(computer_science)
http://en.wikipedia.org/wiki/Array_data_structure
http://en.wikipedia.org/wiki/Array_data_structure
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hardcoded parameters in the FPGA IP core for a given configuration. They are retrieved 

by the host during the detection process. A handshake protocol between the FPGA and 

the host ensures efficient utilization of the DMA buffers, while maintaining 

responsiveness for short segments of data. 

2.6.1  Xillybus IP core Connection Overview: 

A Xillybus stream can be configured to behave synchronously or asynchronously. An 

asynchronous stream fills the host’s DMA buffers whenever possible, i.e. when the file is 

open, data is available and there is free space in the DMA buffers. In a synchronous 

stream setting, the IP core logic will not fetch data from the user application logic on 

FPGA unless the application on the host issues a request to read the data from the file 

descriptor. Asynchronous streams are preferred for high-bandwidth applications, as they 

allow a “background” flow of data while the application on the host is preempted or busy 

with other tasks. Xillybus can conduct bidirectional data traffic between FPGA and host, 

but for integration with the spike-based data reduction platform, the focus is on the 

upstream direction. Fig. 2.4 shows a simplified diagram describing the data and control 

signals, which establish the link between the FPGA design and the host PC. 

The following is a description of the Xillybus IP core signals for FPGA-to-host 

transmission:  

(a) user_r_devicefile_data: The width of the data input signal can be set to be 8, 16 or 

32 bits during the device configuration.  

(b) user_r_devicefile_rden: This core output signal is a read enable signal to the FIFO. 
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(c) user_r_devicefile_empty: When this input signal is asserted, it temporarily assures 

that no read cycles occur as long as the FIFO has no data. 

(d) user_r_devicefile_eof: The end-of-file (eof) input signal triggers the core to generate 

an eof event, indicating that all data has been transmitted. Once asserted, the core will not 

issue any more read cycles. The application reading from the file descriptor on the host 

receives a notification that ‘the file has reached eof’.  

(e) user_r_devicefile_open: This core output signal is asserted high, when the respective 

device file in the host is open for read. This signal was used to reset the FIFO. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.4 Simplified block diagram describing a data stream flow from FPGA to host. [35] 
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CHAPTER 3 

PLATFORM DESIGN  

 

3.1 System Overview:  

The Neural Spike Detection platform receives time division multiplexed serial samples 

from a high number of neural recording channels at the multi gigabit receiver port of the 

FPGA. The receiver performs deserialization of the data and ensures correct sample-word 

alignment. The system affiliates each sample to its source channel and performs spike 

detection. If a spike is detected the spike waveform along with its time stamp and channel 

ID are passed to an output buffer for further spike sorting or data analysis. Fig. 3.1 

presents the integration of the spike detection platform in a typical neural signal 

processing system.  

The typical neural signal processing pathway starts with a data acquisition system 

that records extracellular potentials from an MEA. The data acquisition provides 

amplification, filtering, time division multiplexing and A/D conversion of data read from 

the different electrodes. Then the signal passes through spike detection followed by spike 

sorting, spike binning and analysis. The dissertation work focuses on the spike-based data 

reduction module and is thus concerned with the interface between the ADC of the data 

acquisition system and the interface with the spike sorting on FPGA or sending the data 

to a host PC for further analysis. 
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Fig 3.1: A block diagram of the Neural Spike Detection platform and its integration in a Neural Signal Processing system. The center 

block (dark blue) presents the Neural Spike Detection  (NSD) platform performing spike-based data reduction. The blocks 

(light blue) connected to the NSD platform on the left and right sides present the interface required  to embed the platform 

into a NSP system. The upper left and bottom right (green) building blocks present typical neural data acquisition and spiking 

analysis on a host PC, respectively. These are not part of the dissertation work. 
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The detection platform performs spike-based data reduction where: 

frequency Sampling Signal Neural

 waveformAPper  samples ofNumber   odeMFR/electr 
  RatioReduction  Average


    (3.1) 

where MFR = Mean Firing Rate. For example, for a MFR of 18 spikes/s/electrode, 50 

samples per AP waveform, and a sampling frequency of 40 KHz the reduction ratio = 

0.025.  

As the system is designed to handle thousands of recording channels, it has to 

offer enough bandwidth to receive the massive amount of neural data from the data 

acquisition system in real time. For example for a 2560 channels sampled at 31.25 KSps, 

and a precision of 16-bits per sample, the data rate has to be 1.28 Gbps. Consequently, 

the platform architecture integrates the application of high-speed serial transceivers to 

allow for the required input data transmissions.   

Although, the amount of data is significantly reduced, the system needs to 

integrate a high-speed communication link to transfer the AP waveforms to the host PC, 

accounting for transmission bottlenecks during periods of multi-channel neuron bursting 

[24]. A PCI express link is integrated to minimize queuing-based transmission latencies 

and performance degradation when the output data overwhelms the transmission 

bandwidth of the device.  
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3.2 Spike-based Data Reduction Unit:  

The main building block of the design architecture is a spike-based data reduction unit that 

handles 128 channels. This unit can be replicated to process a higher number of recording 

sites. A block diagram of the spike detection module is shown in Fig.3.2. The spike 

detection unit receives time division multiplexed 16-bit sample data from 128 channels; it 

tests the samples for possible spikes, and then sends the complete Action Potential (AP) 

waveform of a detected spike preceded by the time stamp and the channel ID to the output 

buffer memory. This section presents the main building blocks of the unit and indicates 

how the design parameters were selected based on the spike detection algorithm applied 

on the platform. The main building blocks of the spike detection units are: 

3.2.1 The Spike Detector 

3.2.2 The output Buffer 

3.2.3 The Input BRAM 

3.2.4 The Channel Status Module 

3.2.5 The BRAM Read Control 

3.2.6 The Operation Management FSM 

3.2.7 The Autonomous Threshold Selection



38 

 

 

 

 

 

 

 

 

 

 

Fig 3.2: A block diagram describing the spike detection process. The spike detection unit is designed to detect neural spikes over 128 

neural signal recording channels.

BRAM 

address 

generator 

  

                                    

ROM_addr

ess 

generator 

Channel_status_out 

Multi-Gigabit 

Receiver 

Sample Alignment Control 

 

Input                  

BRAM 

 

128 

channels      

x16 

samples 

 

16 

BRAM_data_in 

11 BRAM_WR_address 

BRAM_we 

BRAM 

Read       

Control 

BRAM_RD_address 

Channel      

Status            

128x15 
15 

  7 15 C
h

an
n

el
_

st
at

u
s_

w
e 

C
h

an
n

el
_

st
at

u
s_

ad
d

re
ss

 

C
h

an
n

el
_

st
at

u
s_

in
 

Spike 

Detector 

NEO              

preprocessor, 

Threshold      

selection &                                              

Threshold 

comparator 

  3 
NEO_read 

NEO_en 

Spike_detected 

11 

 

Buffer 

MUX 

2 

Buffer_MUX_sel 

16 BRAM_data_out 

12 Channel_ID 

16   Time_stamp 

Buffer  

RD_address 

generator 

9 Buffer_RD_upper_limit 
13 Buffer_RD_address 

13 Buffer_WR_address 

Buffer_we 

Buffer_data_in 

18 

 

 

 

 

 

Output     

Buffer 

 

3x36K 

BRAM 

 

 

 

 

128 x 48 

words 

 

48 words =              

2 header +            

46 sample 

AP 

waveform 

 

 

 



39 

 

3.2.1 The Spike Detector: 

The Spike detector block holds the hardware implementation of the spike detection 

algorithm. Various spike detection algorithms with different levels of complexity and 

performance have been presented in literature [2, 3] and can be applied on the designed 

platform with proper modifications of the system design parameters. As an example, the 

design model applies spike detection based on the absolute threshold after passing the 

signal through a Nonlinear Energy Operator (NEO) preprocessor eq.3.2 in order to give 

emphasis to the spikes relative to the noise and consequently, improve the spike detection 

performance.  

 2.3                            41where]n[ x  ]n[ x]n[x]n[  NEO 2   

where x[n] is the neural data sample at any instance n . 

The threshold for a given channel is set to a multiple of an estimate of the noise level on 

that channel. The detailed Threshold selection method and block diagram is presented in 

section 3.2.7. 

3.2.2 The Output Buffer 

A neural AP has duration of ~ 1.5ms on average. Considering sampling rates in the range 

of 30 KHz and based on the wave-shape, a full AP waveform was assumed to have 10 pre-

spike samples, 1 spike sample and 35 samples representing the spike refractory period. 

This assumption was optimum for organizing the FIFO memory and address assignment. 

The output FIFO memory 3x36K can hold up to 128 spike waveforms at a time, counting 
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for the worst case scenario if firing neurons are detected on all channels at the same time.  

When the unit receives a sample from one of the channels it is written in the input 

memory. 
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Fig. 3.3    (a) Spike counter and Base address look-up ROM used to determine the first 

available memory space in the output buffer to store a detected spike AP. 

(b) Organization of the output buffer.
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3.2.3 The Input BRAM: 

For spike detection consecutive samples are needed to identify a spike. Each channel is 

assigned a memory space on the input BRAM to hold the most recent 16 samples.  The 

depth of the memory space assigned to each channel was chosen to hold enough sample 

history to acquire the ten pre-spike samples, the spike sample x[n] and five post-spike 

samples. Four of the post-spike samples are the "future" samples held to reach x[n+4] 

needed for the NEO computation, and x[n+5] is added for timing control, as would be 

explained in the operation management section. The design does not copy the AP 

waveform as a bulk to the output buffer, instead it copies the first 16 samples, and then 

sends the refractory period sample by sample as they arrive at the input BRAM. This 

scheme has minimized the memory space depth needed for each channel, saving on total 

memory usage.  An example of the arrangement of samples in the input BRAM space assigned 

to one channel is shown in Fig. 3.4. 

3.2.4 Channel Status: 

Switching between multiple time multiplexed channels with different statuses requires 

holding the status of each channel to determine the operation to be applied on the 

respective incoming input sample. The channel_status memory holds 128 words 

describing the status of each channel handled by the spike detection unit. Each word has 

fifteen bits. Two bits describe the state of the channel, and 13 bits hold the FIFO address 

needed to copy the AP samples at the right location and space assigned for it on the output 

buffer in case a spike was detected. The channel status bits and the cases they represent 

are shown in Table 3.1.
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Fig 3.4  An example of the arrangement of samples in the input BRAM space assigned to 

a channel k, when a spike is detected and when the initial part of corresponding 

AP waveform is copied to the output buffer. 

 

 
 

 

Channel-status bits 

 

Channel-status description 

00 The channel has no detected spikes 

01 

The channel has a detected spike, time-stamp and channel ID 

were saved on output buffer. The first 16 samples need to be 

copied as a complete portion to the output buffer 

10 
AP samples 17 to 30 are being read sample by sample upon 

their arrival at the input BRAM 

11 
AP samples 31 to 46 are being read sample by sample upon 

their arrival at the input BRAM 
 

 

Table 3.1: Channel-status-bits and the corresponding status description

(a) BRAM memory space 

assigned to a channel k at 

instance (n+4), at which the spike 

is detected. 

(b) BRAM memory space 

assigned to a channel k at 

instance (n+5), at which the first 

16-channels of AP are copied to 

output buffer  

x[n]             

spike 

sample 

x[n+4] 

needed 

for NEO 

10 pre-spike 

samples 
x[n]             

spike sample 

x[n+5] 

10 pre-spike 

samples x[n-11]  

First 16 samples in the AP 

waveform of the detected spike. 

They are copied in bulk to the 

output buffer 
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3.2.5. The BRAM Read Control: 

When the unit receives a sample from one of the channels it is written in the input 

memory. The BRAM read control checks the status of the channel being updated and 

plans the reading procedure accordingly. The channel_status word can indicate 3 possible 

cases:   

(1) The channel has currently no detected spikes:  

 In this case the incoming sample is sent to the NEO module and threshold comparator for 

testing. If a spike is detected, a memory block space of 48 words is saved in the buffer to 

hold the corresponding AP waveform. The spike detector unit has a spike counter that is 

used along with a look up ROM to determine the first output buffer memory space 

available for AP waveform storage as shown in Fig. 3.3. If a spike is detected, the counter 

is incremented, and the time stamp and channel ID of the detected spike are copied into 

the lower first available buffer address indicated by the look up ROM. The channel_status 

word is updated to save the block base address that saves a space on the output buffer to 

hold the AP waveform. This case is represented by a channel-status = 00. 

(2) The channel has a detected spike and a saved memory space in the buffer: 

In this case the reading control copies the first 16 samples of the AP waveform available 

in the input BRAM to the output buffer memory. (10 pre-spike samples, 1 spike sample, 4 

post-spike samples required for the NEO and the incoming sample) This is the longest 

cycle of the copying process. It takes a total of 19 clock cycles to complete. The unit has 

to complete it before reading a new sample. This case is described by a channel-status = 

01.
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(3) The refractory period of the AP waveform is being completed:  

The incoming sample is copied directly to the output buffer. The 35 samples of the 

refractory period are each copied upon arrival at the input BRAM to the output buffer.  

This step is repeated 35 times to complete the refractory period.   At each cycle the 

channel_status is updated with the buffer address that will hold the next incoming sample 

in the refractory period. Once a spike waveform is completely copied to the output buffer, 

the BRAM reading control updates the upper-limit for the buffer emptying process. The 

two states (10 and 11) were split into two states to apply an address counter for the lower 

4 bits of the buffer address only, instead of applying an address counter for the whole 13 

address bits. The 9 most significant address bits are updated the when the channel moves 

from state 10 to state 11. 

The AP refractory period arrives in single samples at the output buffer. Once the 

last sample arrives at the input BRAM, it is directly transmitted to the output buffer and 

the complete waveform becomes available for further processing or transmission to a host 

PC. The design avoids queuing-based transmission, that arise from copying the AP 

waveforms as a whole to the output buffer. The memory space assigned for each channel 

on the input buffer memory is also reduced. The spike detection module and output buffer 

have access to read data samples from input BRAM. 
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3.2.6 Operation Management:  

To control the sequence and timing of operations, a controller employing a finite state 

machine is used. Figure 5.4 presents an overview of the BRAM read control state diagram. 

The channel status word has two bits describing the spike copying stage. They are used to 

decide whether input stream should be passed through the NEO detection module or 

copied directly to the output FIFO. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Overview of the state diagram describing the controller operation  
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3.2.7 Autonomous Threshold selection: 

With the high channel count automatic threshold selection for each channel is vital. After 

reset, the system starts computing the threshold for each channel as a multiple of the 

Mean Deviation MD of a window of its incoming data. The channels are disabled until 

their thresholds are calculated, and saved on a threshold RAM. Fig.3.6 describes the 

details of the NEO preprocessing, threshold comparator operation and threshold 

computation. 

In the normal operation, the samples are passed through the NEO module, the 

computed output is compared to the threshold of the corresponding channel.  In the case 

of threshold computation, the output of the NEO is passed to a MD computation (eq.3.2), 

3.2)(                                               ][
1


N

nNEO
N

MD  

where N is the window size of the data being used to measure the background noise.  

N is chosen to be a power of 2, so that the division by N can be performed by right 

shifting of the dividend. Based on the threshold selection guidance provided in literature 

[4]the multiplier is chosen to be 16.  

Each channel is affiliated with two bits in the enable-disable queue register that 

determine the state of the threshold computation. The enable-disable queue is used to 

determine whether the channel is disabled (11) as it still does not have a computed 

threshold yet, or whether the channel is undergoing a threshold computation (10), or if 

the channel has a valid threshold and is enabled for spike detection (00). The register is 

shifted 2 bits to the left whenever one channel has finished the threshold selection.  



47 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NEO  

NEO_RD_sel 

NEO_we 

2 

Sample_in 

16 

Absolute 

value 
Accumulator 

& window-size 

counter 

32 

Accumulator_enable 

Accumulator_clear 

Divide by 

window     

size N 

Multiplier 

4

2 

Comparator 
32 

Threshold RAM        128x32 

Spike_detected 

Threshold_out 

Channel_order 7 

32 

Accumulator_done 

Threshold_we 

Threshold_in 

Fig.3.6: Block diagram describing the NEO preprocessing, threshold comparator and threshold computation  

Input 

BRAM 

 

 

 

 

BRAM 

Read 

control 

BRAM 

Address 

Generator 

Enable_Disable Queue  256x1 

enable_disable_status 2 

Reset 



48 

 

3.3. Integration of Several Spike Detection Units: 

The total number of channels to be processed is reconfigurable. According to the neural 

signal processing algorithm used, the longest process applied after sample reading was to 

copy the first 16 samples of an AP. This procedure required nineteen clock cycles. To 

have an optimum hardware usage, twenty spike-based reduction units were integrated, so 

that channels on other units can be updated with their respective sample inputs while this 

longest procedure is being completed, and before that same unit receives a new incoming 

sample. Fig.3.7 presents the initial integration of twenty spike detection units to handle a 

total of 2560 channels. The detailed implementation of the integraton of twenty spike 

detection units on FPGA and the copying of the AP waveforms to a common output FIFO 

is explained in Chapter 4.  
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3.4. Addressing and Timing: 

The BRAM assignment has been chosen so that the BRAM_address  can  provide direct 

information  on  the channel order on the input BRAM and the sample number as shown 

in Fig.3.8.  The write address generator constructs the BRAM write address to rearrange 

the sample data in preparation for a structured processing. It concatenates the output of 

three counters to write each sample data in the corresponding channel location.  

The BRAM address generator operates at a frequency f, where: 

f = sampling frequency per channel x number of channels 

For the example of integrating twenty SD units, the BRAM address concatenates the 

output of three counters:  

(a) a 5-bit counter presenting the Input BRAM ID  (20 input BRAMs) 

(b) a 7-bit counter presenting the channel order on the BRAM (128 channels per BRAM) 

(c) a 4-bit counter presenting the sample number. (16-sample space per channel)  

Counter (a) is the fastest changing at every clock cycle. Counter (b) is incremented after 

(a) reaches a full count cycle of 20 and then is reset. Counter (c) is the slowest counter, 

that only increments at the full count of counter (b). 
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Fig.3.8     BRAM write address structure generated by the write-address-generator 

block. 
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3.5.  Transmitting the APs from the Output Buffers to a Host PC: 

The design structure can be extended to integrate spike sorting blocks. In this case the 

spike sorter will be reading the AP waveforms from the output buffers in their complete 

format. The dissertation work does not include a spike sorter, and the AP waveforms 

were sent to a host PC for system evaluation. The data were transmitted using PCI 

express (Peripheral Component Interconnect express) to a host PC. The data transmission 

performance was closely examined to make sure that the transmission latencies meet the 

system requirements and that there is enough hardware resources to cover the expected 

transmission queue depths. The system was tested for performance integrity assuring that 

no data was dropped. 

Real-time hardware-implemented neuronal spike-based data reduction schemes 

are an attractive method to alleviate the bandwidth requirements for raw data 

transmission, and to increase the data acquisition throughput. The idea of data reduction 

was to send only the spike waveforms while disregarding the inter-spike samples. The 

spike waveforms are the only information needed for successive spike sorting. Based on 

the sparse nature of the neural signal with respect to time, and the average neuron firing 

rates, the amount of sent data can be reduced to approximately ~2.25% of the total 

amount of  raw data [24].  

The transmission from several output buffers corresponding to multiple Spike 

Detection units required the use of an intermediate FIFO to copy the AP waveforms to 

before transmission to the host PC. The copying process from multiple buffers was 

scheduled using queuing based control as explained later in Chapter 4.   
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3.5.1 Transmission Latencies: 

With a focus on telemetry transmission, Bossetti et al [24] raised an important design 

consideration for spike-based data reduction in real-time.  It was demonstrated that 

although the spike-based compression might be very appealing from the point of view of 

average bandwidth, it is subject to transmission bottlenecks during periods of 

multichannel neuron bursting causing queuing-based delays at the output buffer. They 

drew the attention to the relation between the ratio of the output to average input 

bandwidth and transmission latency, the number of samples per spike waveform, the 

mean firing rate MFR, and the needed queue depth of the output buffer memory. 

Bottlenecks and latencies are mainly a consequence of accumulating the input data 

samples over short periods of time before their transmission at the output. Based on 

statistical data performed on a 32-neuron system with an average neuron firing rate of 

8.93 spikes/s, it was concluded that the output bandwidth had to be 3-5 times the overall 

average input firing rate to reduce the average maximum delays to less than the 

recommended limits of 10ms [24].  

The model that they used relied on finding the average Firing Rates FR over 1ms 

time intervals and calculating the corresponding accumulation of AP waveforms in the 

output queue at different transmission rates. Their model neglected the reading and 

writing delays and assumed that the spikes were sent in bulk to the output FIFO. It was 

worth investigating if their model based on 32-neurons can be applied with the same 

binning parameters can be applied on a high-channel count system, and if the same 

transmission to FR ratio requirements would still apply to limit transmission latencies. 
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Fig. 3.9  Typical spiking patterns of cortical excitatory RS, IB, and CH neurons. This figure 

is reproduced with permission from www.izhikevich.com. (Electronic version of the 

figure and reproduction permissions are freely available at www.izhikevich.com.) 

3.5.2 Overview on Bursting: 

Burst is a term used in literature to describe a neuron’s firing in a clustered pattern. Each 

such burst is followed by a period of quiescence. Burst synchronization refers to the 

alignment of bursting and quiescent periods in interconnected neurons. Burst 

synchronization is the phenomenon that causes the longest queuing based transmission 

delays. Neocortical neurons can be classified into different types according to their 

pattern of spiking and bursting. All excitatory cortical cells are divided into three main 

classes as shown in Fig 3.9. and they are: Regular Spiking (RS) neurons,  intrinsically 

bursting (IB) neurons and chattering (CH) neurons. [42,44] 
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 Regular Spiking (RS) neurons:  RS neurons are the most commonly 

encountered neurons in the cortex. When stimulated at threshold, an RS neuron generates 

only one spike. As the stimulus amplitude increases, the neurons respond with an initial 

high-frequency spike output, then they exhibit obvious frequency adaptation. A neuron 

might produce clusters of spikes in response to synaptic input. Some literature have 

reported a starting frequency spike output response of  320Hz, which declined to a much 

lower sustained frequency (< 100 Hz) within less than 50msec. [36] 

 Intrinsically Bursting (IB) neurons:  IB neurons fire a stereotypical 

burst followed by repetitive spikes. Bursts are often the minimal response to a threshold 

stimulus. A burst can consist of few spikes firing at high frequencies in the range of 300 

Hz and then followed by individual spikes firing at 15-20 Hz.  

 Chattering (CH) neurons: CH neurons can generate rhythmic 

stereotypical bursts of closely spaced spikes. The typical inter-burst frequency is in the 

range of 5-15 Hz [5]but can also be as high as 40 Hz. 

In general, if a network of bursting neurons is linked, it will eventually 

synchronize for most types of bursting. Synchronization can also appear in circuits 

containing no intrinsically bursting neurons; however its appearance and stability 

improves if the network includes intrinsically bursting cells. Some literature described 

multichannel bursting as Neuronal Avalanches. Spiking activity propagates as individual 

neurons trigger action potential firing in subsequent neurons. They initiate a cascade that 

spreads through the neuronal network [37].
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3.5.3. Super-Bursting: 

High frequency network-wide bursting has been reported in research monitoring neural 

activity using MEA. This “super-bursting” was documented as a phenomenon of early 

plasticity that is ultimately refined into mature stable neural network behavior. 

Developmental super-bursting is thought to accompany transient states of heightened 

plasticity both in culture preparations as well as across brain regions.[38]. 

3.5.4. A Model to estimate the required Transmission Rate: 

Designing a platform that should handle hundreds to a few thousands of recording 

channels, it was essential to test if the output/input bandwidth ratio values recommended 

by previous literature, based on a limited number of monitored neurons, holds for a larger 

number of neurons. A transmission model was created in MATLAB to carry out 

simulations on the neuronal activity recordings of 2550 channels over 2.5 seconds. The 

model was constructed to detect spikes using the NEO operator. The threshold was set at 

10 times the mean deviation over the complete 2.5 seconds of recording time. Each 

channel was handled separately and the spike times were saved. 

Then simulations were  carried out using a windowing format [24]. In this case, 

spikes across the 2550 channels were collected over a 1 milliseconds period, rounding the 

recorded spike times to the nearest 1 millisecond. The queue depth based on the 

estimated transmission rate was found along the recording time. The spike times and 

transmission rate were used to calculate maximum latencies and queue depths. 

 At each rounded spike time, the corresponding detected spikes were added to the 

queue. The transmission rate determined how much of that data could be transmitted 
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before the next load of binned spikes arrived, as well as the time required to remove the 

data from the queue. If spikes arrived before the queue was empty, the new data was 

added to the queue, increasing its depth. Latency was calculated from the queue size and 

represented the total amount of time required to remove all of the data from the queue at 

the estimated transmission rate. Following the recommended ranges of bandwidth 

ratios,[8] the average firing rate was measured for the recorded data set used for testing 

and the transmission rate was set to be 5 times the MFR. 

3.5.5. Data sets used for testing: 

To test the model four in vitro data sets were used. The neural signals recorded using 

high-density MEA from 3Brain (www.3Brain.com) have been supplied by the NetS3 Lab 

in the Neuroscience Department of the Instituto Italiano di Tecnologia (IIT), Italy. Two 

sets were recorded using dissociated rat hippocampal cells (22 days in vitro) and two sets 

were taken from rat cortical cultures (21 days in vitro).  The hippocampal and cortical 

neurons have a different dynamic firing pattern that was interesting to observe and 

analyze using this model (Fig 3.10-13). The hippocampal neurons tend to have a more 

synchronized firing behavior showing clear bursting events followed by relatively silent 

intervals. It was expected that they may represent a more critical case for the designed 

model in terms of the queue depths. The cortical neurons tend to be less synchronous and 

more spread from a spatial point of view. The validation of the model on cortical neurons 

was important since they are the mostly recorded type of neurons especially in vivo.

http://www.3brain.com/
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Fig. 3.10 Simulation results based on data recorded from dissociated rat hippocampus cell in vitro. In the upper figure, the average of 

the instantaneous firing rate based on 1ms bins was ~35Kspikes/sec. The lower graph shows the queue depth and 

corresponding latency in sec when the transmission rate is set to 5 times the average firing rate ~ 175Kspikes/sec.     
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Fig. 3.11 Simulation results based on data recorded from dissociated rat hippocampus cell in vitro. In the upper figure, the average of 

the instantaneous firing rate based on 1ms bins was ~36 K spikes/sec. The lower graph shows the queue depth and corresponding 

latency in sec when the transmission rate is set to 5 times the average firing rate ~ 183Kspikes/sec. 
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Fig. 3.12 Simulation results based on data recorded from dissociated rat cortex neurons in vitro. In the upper figure, the average of the 

instantaneous firing rate based on 1ms bins was ~12Kspikes/sec. The lower graph shows the queue depth and corresponding 

latency in sec when the transmission rate is set to 5 times the average firing rate ~ 64Kspikes/sec.

Transmission Rate 



59 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.13 Simulation results based on data recorded from dissociated rat cortex neurons in vitro. In the upper figure, the average 

instantaneous firing rate based on 1ms bins was ~12Kspikes/sec. The lower graph shows the queue depth and corresponding 

latency in sec, when the transmission rate is set to 5 times the average firing rate ~63Kspikes /sec.
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3.5.6 Approximation approach for computing the transmission rate: 

The instantaneous Firing Rate is the neuronal firing averaged over temporal bins. The 

accumulation of spikes in the queue occurs when the instantaneous FR is greater than the 

transmission rate. This can result from spike synchronization over multiple channels or 

multichannel neuron bursting. To set an approximation model, the recording time was 

divided into intervals where either the TR was higher or lower than the instantaneous FR. 

The average FR over each interval was calculated as shown in Fig. 3.14. During the 

bursting intervals, spikes accumulate in the queue and the queue reaches its maximum at 

the end of the bursting time. After the bursting event, during the following quiescent time 

or reduced neuronal activity, the queue is gradually emptied.  

The maximum queue depth can be obtained by integrating the accumulated spikes 

in the queue over the bursting time as given in eq. 3.1. The accumulated spikes result 

from the difference between the average FR during the bursting activity and the TR. 

               burstTR - BurstFR epth Max_QueueD                                               (3.1) 

Where Max_QueueDepth is the maximum queue depth, BurstFR is the average firing rate 

over the bursting interval; TR is the transmission rate and busrt is the bursting time.  

The corresponding latency would be: 

               
TR

QueueDepthMax 
 Latency Max                                                           (3.2) 

The queue depth calculated using the approximation model and the exact queue depth are 

compared in Fig. 3.14. 
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Fig.3.14 Approximation of the instantaneous firing rates of the hippocampus neuronal data recordings to obtain a closed formula for 

estimating a transmission rate for sending the spike waveforms to a host PC. The dotted line presents the approximate queue 

depth and the straight line is the exact queue depth obtained from the MATLAB model.
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3.5.7 Simulation Results: 

The simulation results of the neuronal firing data transmission model show that the 

bursting and super-bursting times present the most critical intervals for the system. In 

BMI applications, for example the queuing-based transmission delay must fall below 10 

milliseconds. Setting a value for the transmission rate will not only depend on the limits 

for queuing-based transmission latency, but also on the memory resources available to 

save the queue on the hardware used. 

The data sets recorded from the hippocampus neurons showed a synchronous 

multichannel bursting, and had the maximum queue depth requirements based on the 

simulations in MATLAB.    If the maximum queue depth is 15,000 spikes and a spike 

waveform holds 50 samples with each sample being 2 bytes long, then the design 

requires a memory of approximately 1500 Kbytes just to save the queue. A memory 

space of 1500 Kbytes would translate to approximately 370 BRAMs (36Kbits each) on 

the FPGA. Following the literature recommendation [24], the transmission rate was set at 

five times the MFR. Increasing the data transmission rate would ease the memory burden 

on the FPGA resources, as some FPGA models do not have this amount of BRAMs. For 

example in the hippocampal recordings the TR was about 176Kspikes/sec. Considering 

50 samples per spike and 2 bytes per sample we the TR was modeled at 17.6 Mbytes/s. 

Considering the data transmission options from an FPGA to a host, such as Ethernet and 

PCIe, there is some room for transmission rate increase. With the Ethernet and PCIe 

offering transmission rates in the range of at least few hundreds of Megabytes per second. 
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The recordings acquired from the cortical neurons demonstrated a more uniform 

firing rate, and a much lower average value. This fact was reflected on the results 

obtained for the queue depths and associated latencies as shown in Fig. 3.12 and 3.13.  

 The hippocampus is a main component of the brains of vertebrates. It is located 

under the cerebral cortex and belongs to the limbic system. It plays a major role in fusing 

the information from short-term memory to long-term memory and in spatial navigation. 

The subiculum, a component of the hippocampal formation, is thought to perform 

relaying of signals originating in the hippocampus to many other parts of the brain . In 

order to perform this function, it uses intrinsically bursting neurons to convert promising 

single stimuli into longer lasting burst patterns as a way to better focus attention on new 

stimuli and activate important processing circuits [39]. The detailed explanation of the 

firing dynamics of neurons from different parts of the brain is beyond the scope of the 

dissertation, but it was appealing to search for an explanation for the reason behind the 

similarity between the results obtained from the hippocampal data set used in testing and 

the firing patterns of Intrinsically Bursting IB neurons. 

3.5.8 Limitations of the model: 

(1)  The model, designed in MATLAB, assumed that the spikes within a 1msec bin are 

sent to the output FIFO as a block at the same instant. The data used was recorded at a 

sampling rate of 7.022 KHz, meaning that the bin collected the spikes occurring across a 

time approximately equivalent to seven sampling periods. With a high count of channels 

and high transmission rates the binning size of 1msec may be relatively large.  

http://en.wikipedia.org/wiki/Cerebral_cortex
http://en.wikipedia.org/wiki/Short-term_memory
http://en.wikipedia.org/wiki/Long-term_memory
http://en.wikipedia.org/wiki/Navigation
http://en.wikipedia.org/wiki/Subiculum
http://en.wikipedia.org/wiki/Hippocampal_formation
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For a TR of 50 Msamples/sec, and 48 samples per spike, the queue can empty 148 spikes 

within a sampling period, i.e. before any new samples arrive. 

(2)   In real implementation, the channels are recorded using TDM, so exact synchrony 

will not be faced.  

(3) At high channel counts, the transmission rate values increase to limit hardware 

memory. With the TR values approaching the range of the clock frequency on the FPGA, 

the bulk transmission assumption will not be accurate, and the read and write times as 

well as the sample by sample transmission to the FIFO have to be considered.
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CHAPTER 4 

HARDWARE IMPLEMENTATION AND SYSTEM 

EVALUATION 

 

This chapter details the hardware implementation of the platform design, and how the 

testing of each building block was performed. The spike detection processing modules 

were designed using Verilog HDL code. They were simulated using Xilinx® ISim for 

functional verification. The Xilinx® Core generator was used to configure the integrated 

blocks on the FPGA such as BRAMs, FIFOs and the Multi-gigabit transceivers. The 

modules were synthesized and implemented using ISE Design Suite 13.1. For design 

verification in hardware and as a proof of concept, the design architecture was 

implemented on a Xilinx® Virtex-5 XUPV5-LX110T FPGA evaluation board. Internal 

signals were monitored using Xilinx ChipScope.  

This chapter covers: 

  Data Acquisition High Speed Serial Interface  

 Testing the Spike-Based Data Reduction Unit 

 Implementation of Xillybus IPcore 

 Testing Data Transmission using Real Data Recordings 

  Integration of Multiple Spike-Detection units 
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4.1. Testing Data Transmission Using MGT Transceivers: 

In lieu of interfacing the FPGA to a high speed multichannel analog to digital acquisition 

system, test vectors have been stored on BRAMs on the FPGA. To model the data 

acquisition process, the test data went through serial transmission using MGT 

transceivers before reaching the spike detection units. 

The Xilinx board, used for hardware implementation provides access to a GTP 

transceiver through four SMA connectors. The transmitter pair was connected to the 

receiver pair using two differential copper cables to form an external serial link, as shown 

in Fig. 4.1. 

 

 

Fig. 4.1  Differential copper cables ASP1-024-ASP1-S402 form an external serial link, 

connecting transmitter and receiver pairs of GTP1 on dual tile GTP_X0Y5 

integrated on the Virtex 5 FPGA on Xilinx XUPV5-LX110t board.   
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The RocketIO wrapper was created using the Xilinx ISE design tool CORE 

Generator®. The RocketIO offers useful features to support a wide variety of interface 

applications and transmission protocols. RocketIO has built in Physical Code Sub-layer 

features such as 8B/10B encoding, comma alignment and clock correction.  

The comma detection and alignment circuit was activated to properly align 16-bit 

input data during the initialization of the data transmission process. Serial data must be 

aligned to symbol boundaries before it can be used as parallel data. To make alignment 

achievable, transmitters send a recognizable sequence, defined as a comma during device 

configuration. The receiver looks for that predefined comma in the incoming serial data. 

When it detects it, it shifts the comma to a byte boundary, so that the received parallel 

words match the transmitted ones. The GTP transceiver includes an alignment block that 

can be set to align specific commas, or to manually align data using bit-by-bit sliding. 

The 8B/10B encoding includes special characters (K characters) that are often 

used for control functions. To transmit TXDATA as a K character instead of regular data, 

the TXCHARISK port must be driven high. If TXDATA is not a valid K character, the 

encoder activates an error signal. At the receiver end, RXCHARISK is asserted when 

RXDATA is an 8B/10B K character. This feature is not defined for bytes that bypass 

8B/10B encoding. To mark the beginning of the valid data stream in the testing process, a 

K28.5 (10111100 = BC) character was sent. The K character was recognized by the 

receiver, and the RXCHARISK signal was set high. This control signal was used to 

trigger an address generator of the spike detection block, in order to assure correct 

address-data alignment. For transmission testing, the signals were monitored using 

ChipScope as shown in Fig.4.2.
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Fig.4.2. A screenshot of the ChipScope waveform window, showing transmitter and receiver 16-bit data split into lower and higher 

bytes (upper red signals). No data is available on the receiver end before it completes the reset operation and pulls ‘reset 

done’ high. TXCHARISK is a 2-bit input control signal at the transmitter end. TXCHARISK [1] corresponds to TXDATA 

[15:8] and TXCHARISK [2] corresponds to TXDATA [7:0]. TXCHARISK should only be asserted for TXDATA values 

defined by 8B/10B encoding as K-characters. At the receiver end, RXCHARISK is a 2-bit output signal that is asserted 

when RXDATA is an 8B/10B K character. Bit 0 corresponds to the lower byte of RXDATA, and bit 1 corresponds to the 

upper byte. The latency between sending the data at the transmitter data port, and receiving it as a parallel word was 18 

clock cycles at a 125 MHz clock, and the target line rate was 2 Gbps.

18 clock cycles of  transmission latency between 

the transmitter and the receiver 

A K.28.5 (BC) character was sent to mark the 

beginning of a valid data stream. TXCHARISK 

recognized K and went high. 
The K character was recognized by the receiver, 

and hence the RXCHARISK and                    

RXCHARIS COMMA signals were set high. 

The input 

BRAM_wren and BRAM 

address generator are initiated 

when the receiver detects the 

K character, i.e. the beginning 

of valid data. 
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4.2. Design Verification of the Spike-Based Data Reduction Unit: 

The Spike-Based Data Reduction unit, handling 128 channels, was first simulated using 

Xilinx® ISim. After design simulation, it was implemented in hardware, and tested using 

ChipScope®. Modeling the data acquisition process, test neuronal data were saved on a 

BRAM, and then transmitted serially using MGT transceivers to the spike detection units. 

The design verification objective was to make sure that the spikes have been detected 

and that their AP waveforms are copied to the output FIFO with the correct alignment 

required, correct time-stamp and channel ID.  

For this test a window of 256 samples of neural signals recorded at 31.25KHz from, 

containing only one spike were stored on distributed ROMs and read in a cyclic mode. 

Using a multiplexer data was sent to selected channels in order to be able to perceive the 

correct channel IDs at the output buffers as shown in Fig. 4.3. 

The design of the spike-detection unit is detailed in Fig 3.2. To save the spike 

waveforms on the ChipScope memory, a ‘READ’ signal was generated by the 

FIFO_RD_address_generator module, to indicate when spike waveforms were available 

for reading in the spike detection buffer. When complete spike waveforms were copied 

onto the output buffer of a spike detection unit, the upper-limit of the reading address of 

the buffer was updated. If the reading pointer was below the upper limit of the buffer, the 

"READ" signal was set high and the FIFO_RD_Address_generator incremented the 

reading address pointer. The ChipScope read the FIFO_data_out only when the ‘READ” 

signal was set high. At quiescent intervals, when the "READ" signal was low, the output 

data of the FIFO was not sampled for efficient use of the ChipScope memory.
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Fig. 4.3.   A screenshot from ChipScope® monitoring the data sent to the output buffer of the spike-detection based data reduction 

unit. The data width is 18bits. The two higher bits are prefix data, indicating whether the lower 16 bits represent: ‘00’ a 

spike waveform sample, ‘10’ a time stamp or ‘11’ a channel ID. The figure shows two spikes detected on channel 2048 and 

channel 2056. A spike was detected at time stamp 15. The inset shows the .coe file used to initialize the ROM on the FPGA 

that stored the neuronal data for this test. The spike waveform carries 46 samples: 10 pre-spike, 1 spike and 35 post-spike 

samples. The data was sent to ChipScope® BRAM when ‘READ’ signal was high.  
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4.3 Xillybus IP Core Implementation: 

The Xillybus IP core was implemented on a Virtex-5 FPGA on a Xilinx xupv5lx110t 

board. The core ports were connected to ChipScope integrated logic analyzer for on-chip 

testing. Before integrating the Xillybus IP core into the spike-based data reduction 

platform, its performance was first tested by transmitting predefined data read from a 

ROM on the FPGA to the host PC. This test was set up to mimic the Xillybus operation in 

the spike-based data reduction platform. The spike waveform data, to be transmitted to the 

PC was saved on intermediate buffers then read by the FIFO before transmission using the 

Xillybus core. The testing data was created using MATLAB® and stored in a .coe file to 

initialize the ROM having the same size as the spike detection buffer 18x6144. The 

implementation setting is illustrated in Fig. 4.4. 

4.3.1 On the FPGA side: 

The design was implemented on a Xilinx xupv5-lx110t board. The implementation user 

constraint file was modified accordingly. The transceiver block GTP0 was used on the 

GTP tile assigned for PCIe transmission GTP_DUAL_X0Y2. The integrated endpoint 

block differential clock pair PCIE_REFCLK_P and PCIE_REFCLK_N is locked to AF4 

and AF3 respectively. The pair is driven by an external PCIe source through the PCIe 

edge connector, and not driven internally. The clock frequency is 100MHz. The integrated 

endpoint block reset signal PCIE_PERST_B_LS is available on a CPLD and was locked 

to W10. The 100 MHz clock provided by the PCI Express connector is connected directly 

to the Virtex-5 FPGA to clock the PCI Express Endpoint Block Plus LogiCORE. It can be 

used to clock the internal logic on the FPGA or scaled to match the timing restrictions and 

latency requirements of the design used. 
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Fig. 4.4      Xillybus implementation and evaluation setting. The lower box includes the modules on 

the FPGA end. The upper block includes the software used on the PC host end to retrieve 

the transmitted data and measure the transmission rate. 
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4.3.2 On the host side: 

For any Xillybus IP core configuration, the streams and their attributes are detected by the 

Xillybus as it is loaded into the host’s operating system, and device files are created 

accordingly. In the testing setting designed for transmitting 18-bit words from FPGA to 

host, the data width option on the Xillybus IP core was 32 bits, and the corresponding port 

assignments and attributes were used, and the 14 most significant bits were set to 0. 

Correspondingly the driver creates the device file \\.\xillybus_read_32.  

As sample host applications, Xillybus supplies C command line programs that 

were used in the evaluation setting. The application ‘winstreamread.c’ reads the streaming 

data from the device file and sends it to standard output. For proper operation, the 

translation mode was modified to binary mode, to suppress the LF (line feed 0A) character 

translation to CR-LF (carriage return-line feed combinations 0D 0A), that was observed in 

the data file.  

Unfortunately the Xillybus driver does not offer any time stamping options to be 

able to track the exact transmission rate. It supplies a ‘dd.exe’ application file which 

copies data blocks from the device file and then indicates the corresponding transmission 

rate.  For identifying the transmission overhead, sequential data was continuously read 

from the ROM at the same clock rate (bus_clk), used by the Xillybus IPcore and supplied 

by the PCIe Endpoint Plus Wrapper LogiCore of 100MHz. The internal  signals were 

monitored using ChipScope and screenshots are shown in Fig 4.5a and Fig 4.5b to 

describe the transmission flow of data. The user_r_read_32_rden signal is set low when 

the PCIe is sending the overhead of the transmission layer packet (TLP), and during this 

internal, data is accumulated in the queue. 
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Fig. 4.5a   The Transaction Layer packet (TLP) includes 32 double words of data, and an overhead of seven double words. During the 

transmission of the overhead, the Xillybus sets the read enable signal of the FIFO to ‘0’, which caused the accumulation in 

the FIFO queue as shown in figure. Hence, the actual reading rate of data words is (32/(32+7))·100MHz = 82MHz. In case 

of a continuous data writing to the FIFO, accumulation can be prevented if the writing data rate is set to be equal to or less 

than the reading data rate. 

The transmission layer 

packet has 32 actual data 

double words 
The Xillybus IPcore lowers the 

user_r_read_32_rden signal for 

seven clock cycles to send the 

overhead of the transmission 

layer packet. 

When the user_r_read_32_rden signal is low for 

seven clock cycles, seven data words are  

accumulated in the FIFO queue, as the data is 

being read from the ROM at the same operating 

frequency of the Xillybus IPcore (100MHz). 
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Fig. 4.5b  When the application data source stops sending new data and sets the end-of-data signal high, the FIFO queue decreases 

gradually. When it is totally cleared and the FIFO empty signal is set high, the eof condition is met, as described in fig. 4.3, 

marking the end of the descriptor file sent to the PC. After reading the stream of data from the file descriptor, it was saved 

on a data file. The file was opened in MATLAB to check the transmission of the complete data set and the signal integrity.  

 

 

 

FIFO is cleared. fifo_queue_depth 

decreased to zero, and the 

fifo_empty signal was set high. 

End-of-file (eof) condition is met.  

No more data is being sent to the 

FIFO, setting the fifo_wr_en low 

and activating the end_of_data 

signal. 
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4.4. Testing Data Transmission using Real Data Recordings: 

A modeling of the data transmission process using real data recordings from 2550 

channels at an approximate PCIe transmission rate was presented in Chapter 3. After 

testing the data transmission from FPGA to the host, using continuous incrementing 

counter data, it was desirable to evaluate the data transmission and queue depths needed 

when the system is handling real neuronal firing rates on hardware.  

As the spike detection platform is not connected to real data acquisition system, 

the data was saved on the FPGA block memories.  With a limit of 148 BRAMs of 

36Kbits capacity each on the Virtex 5 FPGA XUPV5lx110t, a reduced version of the 

main design has been tested. The test focused on the transmission key players, which 

involve the queuing-based transfer of 48 samples for each detected spike to an output 

FIFO connected to Xillybus IPcore. It also examined the queue depths needed to prevent 

any spike dropping before transmission, while considering the reading cycles on 

hardware. The block diagram of the test setting is shown in Fig. 4.6. 

Simulations were run on neuronal data recordings using MATLAB, as described 

in Chapter 3. The spike detection results were reduced to the spike times and the 

corresponding channel ID. The data was presorted based on the spike times first then the 

channel order based on the Time Division Multiplexing. The created data file was used to 

initialize a ROM on the FPGA, which served as the source of spike timing in the 

transmission test. As a numerical figure, for 88928 spikes detected in a 2.5 sec recording 

time, there was a need for 73 BRAMs to save the results on FPGA. A Time Frame 

Generator was used to determine when the spikes are sent to the transmission queue.  
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Fig. 4.6     A hardware design to test the data transmission of the detected spike wave shapes from the FPGA to the host PC based on 

spike timings obtained from real neuronal recordings.

 

ROM                         

holding 

spike 

times   

and             

channel 

ID 

 

88928 

x              

32 

TIME FRAME 

GENERATOR 

COMPARATOR 

 

Timer data = Spike data 

or 

Spike time < Timer time 

 

CONTROL 

32 

32 

   Timer data 

Spike data 

match 

17 
ROM_address 

  

QUEUE 

FIFO 

 

16K x12 

Queue_wren 

Queue_full 

 

 

 

Xillybus 

FIFO 

1Kx18 

 

 

 

Clock 

Domain 

Crossing 

 

 

rd_clk 

 = 

 bus_clk 

 

wr_clk  

= 

internal_clk 

Channel_ID   

Sample 

Counter 

                      

Spike 

waveform 

sample read 

control 

Sample_count 

 6 

12 

FIFO_full 

FIFO_wren Queue_rden 

Queue_empty 

Enable 
Busy 

 

Xillybus            

IP core 

32 FIFO_data _out 

   FIFO_rden 

 FIFO_empty 

End_of_data 

PCIe Bus 

 

ROM 

address 

generator 

enable 

delayed 

Channel_ID  12 

FIFO_data_in 

18 

 

PCIe 

Endpoint 

plus wrapper 

Clock 

divider 
bus_clk 

internal_clk 

Queue_depth 

14 

18 

& 

eof 



78 

 

When the time frame matches the saved spike timestamp and channel ID, the spike 

information is sent to the queue, and the ROM_address is incremented to read the next 

spike time. In case of synchronous firing, the timer may pass the next spike timestamp 

during the comparison and ROM reading cycles. If the time of the timer generator is 

greater than the spike time read on the ROM, the comparator activates a ‘delayed’ signal, 

and the controller sends the spike to the queue. The queue follows the temporal sequence 

of the detected spikes, and in the actual design, it holds the location of their waveforms in 

the output buffers of the spike detection units. In the reduced design used for testing, the 

48 samples were generated using a sample counter, and they were concatenated with the 

channel_ID, and then sent to the output Xillybus FIFO. The FIFO input data is 18 bits 

long (12 bits for channel ID and 6 bits for sample order). The Xillybus IP core is designed 

to handle 32-bit words, so the 14 extra bits were used to send the queue-depth. The signals 

were monitored using ChipScope, and the data sent was evaluated using MATLAB.  

The testing design incorporates two controllers: One manages the timely flow of 

spike data from the ROM to the queue, as explained above, and the second controller 

manages sending the spikes read from the queue to the Xillybus FIFO after attaching 48 

samples to each spike. The spike waveform sample read controller was designed using a 

FSM as shown in Fig 4.7. The sequence of sending the spike samples to the output FIFO 

starts by enabling the sample counter. The counter increments gradually, to represent the 

48 spike wave-shape samples. When started it activates a busy signal that is set back to 

low after completing the count. The controller sets the counter to a pause mode if the 

FIFO is full. When the busy signal is deactivated, the controller generates a queue read 

enable signal if the queue is not empty. The Xillybus IP core handles the reading control. 
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Fig. 4.7   A description of the read sample controller FSM in the reduced design testing 

the transmission rate of spike waveforms via PCIe from the FPGA to a host PC.   
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Fig. 4.8      Design verification was tested using signal monitoring in ChipScope®. ChipScope was used to examine correct sample 

alignments, and validate read and write cycles. The integrated logic analyzer was clocked by the bus-clk running at 

100MHz. Internal clock was 50MHz. The time between reading the spike from the queue to sending the waveform outside 

the Xillybus FIFO is 54 internal clock cycles = 1.08sec. No accumulation on the Xillybus FIFO.

The time between reading the spike Channel-ID from the queue and  sending the spike 

waveform outside the Xillybus FIFO is 54 internal clock cycles = 1.08sec 

There is no accumulation  

in the Xillybus-FIFO 

during bursting as the  

reading clk > writing clk    

Queuing of the synchronous 

spikes during bursting. 

The queue gradually decreases 

during quiescent times. 

Each spike presented using 

48 words: 1 for Channel-ID, 

1 for Time-Stamp and 46 

spike waveform. 
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4.4.1 Timing and Clocking:  

Based on the timing summary generated by Xilinx® ISE Project Navigator, the 

maximum frequency, according to the critical path, is 65.811MHz. The 100 MHz clock 

provided by the PCI Express connector was connected directly to the Virtex-5 FPGA to 

clock the PCI Express Endpoint Block and PCI Express Endpoint Block Plus LogiCORE. 

The Xillybus IPcore and the reading clock of the Xillybus FIFO were supplied by the 

100MHz clock denoted by bus_clk. Using a counter, an internal clock was generated, 

operating at 50MHz to regulate the rest of the design modules on the FPGA. The clock 

domain crossing was at the Xillybus FIFO, with the writing clock equal to 50MHz and 

the reading clock equal to 100MHz. In the complete design, if the TDM of for example 

2500 channels, would be connected to the same internal clock of 50 MHz the design 

would allow a sampling frequency of 20 KHz per channel. 

4.4.2 Device Utilization Summary: 

The following is a table detailing the hardware usage to implement the transmission rate 

testing design. Table 4.1 utilization is based on the xupv5lx110t FPGA. 

 

Slice Logic Utilization 

 

 

Used 

 

Available 

 

Utilization 

Number of slice registers 6,380 69,120 9% 

Number of slice LUTs 5,708 69,120 8% 

Number of occupied slices 2,896 17,280 16% 

Number of Block-RAMs 144 148 97% 

Number of bonded IOBs 9 640 1% 

Number of BUFGs 6 32 18% 

Number of GTP Duals 1 8 12% 

 

Table 4.1   Device utilization summary to implement the transmission rate testing design 

for real neuronal data firing rates. 
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4.4.3 Data Used in the Test: 

The data used in the test were recorded from dissociated rat hippocampal cells (2 days in 

vitro) using high-density MEA from 3Brain (www.3Brain.com). They have been 

supplied by the NetS3 Lab in the Neuroscience department of the Instituto Italiano di 

Tecnologia (IIT). The sampling frequency was 7.022 samples per second. The recording 

duration was 2.5 seconds. Total number of spikes detected across 2550 channels during 

the 2.5 sec recording time was 88928 spikes. Hence the Mean Firing Rate (MFR) was: 

sec/spikes 2.571,35
5.2

88928

Time Recording

Spikes of # Total
MFR   

 

4.4.4 Queue Depth Implementation Results: 

 The queue depth signal was sent along with the spike data for testing purposes as shown 

in Fig. 4.6. The instantaneous queue-depths were extracted from the data words received 

at the host and are presented in Fig. 4.9. The maximum TR of the spike samples to the 

output FIFO is determined by the reading clock of the Xillybus-FIFO. As the internal 

frequency was set at 50MHz, the Xillybus FIFO can read 50 MSamples/sec. With 48 data 

words per spike, the internal queue can be cleared at a rate of 1042,667 spikes per sec. 

spikes/s 667,1042
spike/Samples 48

MSamples/s 50
 rate reading ueueQ   

Applying the queue reading rate to the test data MFR and sampling frequency, the 

following can be concluded: 

(1) The internal queue is read at a rate equal to 29.3 times the MFR.  

(2) The time-stamp is based on the sampling frequency of the neural recording channels.  

According to the testing design, no spikes can be detected between successive time 



83 

 

stamps. With a sampling frequency of 7.022 KHz and a queue reading rate equal to  

1042,667 spikes/sec, 148 spikes can be removed from the queue before any new spikes 

are added to it as shown in the inset in Fig.4.9. The maximum queue depth due to 

synchronized spikes was 184 spikes. Hence, the accumulation of spikes in the queue from 

one time-stamp to the next was limited to a few tens of spikes, if more than 148 spikes 

were detected at the same time-stamp. Removing 148 spikes from the queue means that 

7104 words (148 spikes x 48 data-words/ spike ) were read by the output FIFO. The 

difference between the two instances marked by the data-tips in the inset of Fig. 4.9 

validates this statement. 

The maximum queue depth in hardware implementation was 184 spikes as shown 

in Fig 4.9, while the maximum queue depth in the MATLAB model was 780 spikes. This 

difference was caused by the binning of spikes into 1msec intervals in the MATLAB 

model. The binning accumulated the spikes read across seven sampling periods (1msec 

bin/sampling period). The bin size choice of 1msec was relatively large with respect to 

the MFR of a few thousands of bursting neurons. A bin size equal to the sampling period 

(conforming to the time-stamp rate) is expected to match the hardware implementation 

results. Fig.9 is more dense than Fig.10 because of the fact that the quiescent intervals 

with clear empty queue were not monitored by the host as the PCIe transmission was idle 

during these times.  

The MATLAB model, with a 1ms bin size, was run on a PC featuring an AMD 

Phenom™ II X6 1090T Processor 3.20GHz and a 64-bit operating system. The 

calculations of the queue-depth took approximately 12 hours to complete. The hardware 

implementation was much faster, taking less than a second.  
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Fig. 4.9 The figure displays the queue depths after being extracted from the data sent via PCIe. For a total of 88,928 spikes, 4,268,544 

(88,928 x 48) data words have been received. The inset shows how the design module clears 148 spikes from the queue 

between successive synchronized firing time-stamps. The recording sampling frequency was 7.022KHz.   
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Fig. 4.10    The simulation results run in MATLAB on the same data recordings obtained from rat hippocampus dissociated neurons 

in vitro.  The instantaneous queue depth was based on a bin size of 1msec, collecting spikes read across seven sampling 

periods of 0.1424 ms, in other words (1msec / 0.1424 ms) = 7 successive time-stamps.
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4.5. Testing The Integration of Twenty Spike-Detection Units with PCIe 

Transmission:  

In section 4.4 the PCIe data transmission was tested using real neuronal recordings from 

2550 channels. The spike times were stored on BRAMs and a model was designed to 

mimic the Spike Detection Unit function. The design affiliated 48 words to every spike 

detected, and sent it via PCIe to the host PC. Testing the signal integrity and transmission 

operation on real neuronal data with typical bursting rates were the main objectives of the 

test. In this test, the main goal is to validate the design of integrating 20 spike-detection 

units and sending the spike detection waveforms using PCIe. The scheduling of data 

transmission between spikes detected across the 2560 channels, and the queue depths are 

monitored in this test.  

The worst case scenario is having all channels recording synchronized spikes 

exactly at the same time stamp. Although this case was not witnessed in the real data 

recordings that were examined, this test serves to determine the capabilities of the 

system.  The goal of the test was to test the functionality of the design as well as 

determine the maximum synchronous bursting rate that the system can handle before 

starting to skip spikes. The performance of the system is governed by the memory 

capacity and clock rates. It was also important to determine the queuing based delay in 

the described worst case scenario.  

A block diagram of the complete test setting is shown in Fig. 4.11. The following 

sections present a description of each block.
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Fig. 4.11  Testing the integration of 20 Spike Detection Units (SDUs) on FPGA and using PCIe transmission to transfer detected 

spike waveforms to the host PC. The dotted arrows indicate that there are 20 replicates of similar internal signals each 

connected to one SDU. The solid arrows represent common or control signals.
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4.5.1  Neural Data Time Division Demultiplexer: 

The neural data TDD block has a ROM with stored neural data used for testing. It also 

has  an address generator module that generates the time-stamp, the neural data ROM 

address, the channel ID, input BRAM_WR_address and BRAM_we. The virtual 

sampling rate Fs, at which the channels are updated with neural data is equal to the 

address generator clock FTDD divided by the total number of channels Nch.   

The ROM has a short window of neural data containing only one spike that is being read 

in a cyclic mode. Controlling the width of the data window determines the firing rate of 

the signal. A window of Nwindow samples having one spike and being read at cyclic mode 

at a rate FTDD has a firing rate FR of:  

windowch

T DD

window

s

NN

F

N

F
FR


                                                                               (4.1) 

 For example if: 

 

sec/spikes 3.76
2562560

000,000,50

NN

F
  FRchannelVirtual

256  mode cyclicin  read samples data ofNumber  N

2550 channels ofnumber  Total N

MHz50clock  TDD F

windowch

T DD

window

ch

T DD















 

The block has a data multiplexer to control the input data to each SDU. In this 

test, the multiplexer supplies the SDUs by either the data stored on the ROM or a zero 

signal. The total synchronous bursting rate was controlled by the number of channels 

supplied by the ROM data. The worst case scenario is modeled by supplying the same 

neural data to all channels handled in the system.
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4.5.2 Queue Write Control: 

The system has a queue FIFO that saves the temporal sequence of the detected spikes to 

schedule reading the spike waveforms from the output buffer bank accordingly. When a 

SDU completes saving a spike waveform on the buffer, it set a "spike_ready" signal high. 

The queue write control block uses a FSM to scan the SDUs for any completed spike 

signals. If a "spike_ready" signal is set high, it writes the corresponding Unit_ID in the 

queue to schedule a timeslot for copying the completed spike waveform from the buffer 

affiliated with that SDU. The "spike_ready" signal was added to the SDU design 

described in Chapter 3 to serve the integration with multiple SDU and the data 

transmission to the host PC. 

4.5.3 Spike Detection Unit: 

The spike detection has three main operations in this test, namely: 

(1)  The spike detection using NEO operator  

(2) Saving the spike waveform in the affiliated buffer 

(3) Generating the Buffer_RD_address to send the data to the output Xillybus FIFO, 

when it is time to read from the SDU, following the queue schedule.  

The first and second operation have been explained in Chapter 3. They are 

managed by a SDU_FSM. In this design a "spike_ready" signal was added to mark the 

completion of copying a spike waveform onto the buffer. As this test involves a cyclic 

repetition of one spike, the autonomous threshold selection was not implemented and 

instead a fixed threshold was predetermined and used in the design. 

The Buffer_RD_address generator features a pointer that saves the address of the 

last word read from its buffer. The SDU is selected to send a spike waveform to the 
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output FIFO when its Unit_ID appears on the queue data output. When it is selected and 

the Output FIFO WR control activates the buffer_rd_en signal, the buffer_RD_address is 

gradually incremented until the 48 words of the spike waveform are copied to the FIFO. 

While reading the spike waveform, the Buffer_RD_address generator sets a 

RD_busy signal high. This signal is connected to the Output FIFO WR Control module 

that manages the process of reading the spike locations from the queue. When the busy 

signal is activated by any of the SDUs, the queue_rden signal is set low.  

4.5.4 The Queue: 

The queue FIFO stores the ID of the SDU when it activates its "spike_ready" signal. The 

writing operation is managed by the "Queue Write Control" control module. The reading 

process is  handled by the "Output FIFO WR control" block. The data output of the queue 

determines, which SDU is selected to transfer a spike waveform from its buffer to the 

output FIFO. The SDU keeps track of the last transmitted spike location on the buffer and 

hence this information does not need to be saved in the queue. The "Select Detector Unit" 

block activates the "sel_SDU" signal of the corresponding SDU defined by the queue 

data output. 

The maximum queue depth was used to calculate the maximum transmission 

delay of the spikes to the Xillybus IPcore. The number of clock cycles that the system 

takes to copy a complete spike waveform to the Xillybus IPcore were determined using 

the ChipScope results. To monitor the queue depth, the data count on the FIFO was sent 

along with the spike waveform data via PCIe to the host.  

The queue FIFO was created using Xilinx ISE core generator. The size of the 

queue was 16Kx5bits. 
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4.5.5 The Output FIFO WR Controller: 

The output-FIFO-WR-controller manages copying the spike waveforms from the output 

buffer bank to the common output FIFO. It controls the reading process from the queue to 

decide which SDU should be enabled for a reading. If the queue is empty, or the system 

is busy reading a spike waveform from the buffer bank, or if the output FIFO is full, then 

the "queue_rden" signal is stays low. When the system is ready to read the next spike 

waveform, the "queue_rden" is activated for one clock cycle. Once the corresponding 

SDU is selected, the output-FIFO_WR-controller sets "buffer_rd_en" signal high to start 

the reading cycle of 48 spike waveform words. The output-FIFO-WR-controller manages 

the "output_FIFO_we" taking into account the reading and multiplexer delays between 

activating the buffer_rd_en signal and the data availability on the Buffer bank output. 

 4.5.6 The Buffer Bank: 

The buffer bank has twenty 36K BRAM buffers, each assigned to one Spike Detection 

Unit. The outputs of the twenty buffers are connected via multiplexers to the buffer 

output. The "Buffer_MUX_data_out" is connected to the data input of the output buffer. 

The selection route of the multiplexers is determined by the Unit-ID that the queue 

outputs.  

4.5.7 The Output FIFO: 

The output FIFO has different reading and writing clocks. The writing clock is 100MHz 

supplied by the PCIe, and the writing clock is 50MHz. The slower clock was obtained by 

applying a counter supplied by the external 100MHz clock. The reading process from the 

output FIFO is controlled by the Xillybus IPcore as shown in Fig. 4.12.
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Fig 4.12. A screen shot from ChipScope, describing the copying process of spike waveforms from the buffer bank of SDU_00 onto the 

output Xillybus FIFO, to the Xillybus IPcore and then to the PCIe link. 

58 clock cycles to copy the spike 

waveform from the buffer to the output 

FIFO and get ready to read the next spike 

The queue depth 

increments at every 

clock cycle during the 

synchronous firing. It 

stays the same only 

during the reading 

enable clock cycle. 

The Output FIFO is being read at 100MHz. The rd_en signal controlled by the Xillybus IPcore determines 

the extra time the spike waveform needs to reach the PCIe link. 

First Queue Depth value (17) read at the Xillybus IPcore 
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4.5.8 Test Results: 

Monitoring the signals using ChipScope, it was observed that 58 internal clock cycles are 

needed to copy a complete spike waveform from the buffer bank into the output FIFO 

and get ready to read the next AP waveform. In other words the time between two 

successive queue read enable signals is equal to 58 clock cycles.  

Each buffer associated with a spike detection unit can hold up to 128 spike 

waveforms at a time, counting for the case when all channel s have detected spikes at 

the same time stamp. When a spike is detected a 48-word block of memory is reserved in 

the buffer, and the samples of the refractory period are copied to the buffer as they arrive 

to the input BRAM one by one. Hence in case of the perfect synchronous firing over all 

the channels, all the spikes need to be transmitted to the output FIFO before the next 

synchronized event occurs to prevent the dropping of any data. Assuming that the output 

FIFO will not be full at any of the transmission intervals, the maximum theoretical FR 

per channel that the system design can handle is: 

channelpersec/spikes336
channels2560cyclesclock58

clockMHz50
FRssynchronouMaximum 


  

The testing spike had 256 samples that were read in a cyclic mode, simulating a 

synchronous firing rate of  ~76 spikes/sec per channel. The ChipScope screen shot in 

Fig.4.13 graphs the queue depth sent along with the spike data to the host. The figure 

shows that the queue is completely emptied before new spikes are detected on the Spike 

detection unit. The maximum delay, as shown in Fig.4.13 and Fig. 4.14, would be: 

ms3
MHz50

1
582515latency_Max      
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Fig. 4.13  In this test synchronous spike detection over all the channels was modeled, hence the queue depth is incrementing at every 

internal clock cycle during the spike time stamp. The design module can read a new spike waveform every 58 clock cycles. 

While a total number of 2560 channels are "reserving a turn" in the queue, the first 45 ( ~ 2560/58 + 1) spike waveforms are 

copied to the output buffer. That is why the maximum queue depth is 2515 (2560-45).
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Fig. 4.14  ChipScope bus plot of the 32-bit data words transmitted to the Xillybus IPcore. The higher 14 bits represent the queue depth 

while the lower 18 bits have a two bit header and 16 bits of either AP waveform data, a time stamp or channel ID.  
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Table 4.1 and table 4.2 present the device utilization and timing summary respectively: 

 

 

 

 

Table 4.1 Device utilization summary for the hardware implementation of twenty spike 

detection units integrated with PCIe transmission. 

 

 

 

 

 
Minimum period 13.332 ns 

Maximum frequency 75.007 MHz 

Maximum path delay from/to any node 3.315 ns 

 

 

Table 4.2 Timing summary of the same design setting. 

 

  

 

 

 

 

 

 

Slice Logic Utilization 

 

Used Available Utilization 

Number of slice registers 13,076 69,120 18% 

Number of BRAM/FIFO 136 148 91% 

 Total memory used in KB 4,878 5,328 91% 

Number of DSP48Es 20 64 31% 

Number of GTP_Duals 1 8 12% 

Number of PCIEs 1 1 100% 

Number of PLL_ADVs 1 6 16% 

Number of BFUGs 13 32 40% 



97 

 

CHAPTER 5 

DISCUSSION 

 

The research presented in this dissertation was motivated by a long term goal of 

monitoring the electrical activity of thousands of neurons, in an effort to decipher the 

brain activity. Recording thousands of neural signals may provide some insight in what 

Santiago Ramón y Cajal, the father of modern neuroscience, called "the impenetrable 

jungle where many investigators have lost themselves."  Monitoring the dynamic signals 

of an enormous number of neurons is a breakthrough that might bridge the gap between 

the firing of neurons and motion, perception or even decision making.  Increasing the 

number of recording channels is a common demand among different research areas. The 

development of reliable BMI with multiple degrees of freedom, to help paralyzed patients 

and amputees restore their independent mobility, requires monitoring the firing patterns 

of hundreds or even thousands of neurons. Decoding the exact patterns of brain dynamics 

that underlie thinking and behavior will provide essential insight into what happens when 

neural circuitry malfunctions in neural and psychiatric disorders. In vitro neuronal 

network research also requires a high density MEA data acquisition to enable studying 

the correlation between the static and dynamic maps of the neurons.  

The real-time neural signal processing will be an essential requirement for any 

system dealing with a massive number of recording channels, even if it is not a closed 

loop system. Even systems with offline data analysis will require at least real-time data 

reduction  to limit the data storage needs. 
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Increasing the number of recording channels carries many challenges at every 

step of  the neural processing pathway from data acquisition to data analysis. The work 

presented in this dissertation has attempted to find solutions to some of the problems 

related to designing a real-time neuronal data reduction platform that can handle a few 

thousands of recording channels. Along the research work, more questions were raised 

uncovering areas of further future work potentials. The hardware architecture designs 

developed can serve as a testing platform for new approaches to process neuronal signals. 

  

5.1. Integration of the Platform with a Data Acquisition System: 

One of the major questions that were investigated in the dissertation work was how to 

handle the massive input data that is expected to result from an augmentation in the 

number of recording channels. The application of the Multi-Gigabit transceivers (MGTs) 

was suggested to get the neural data into and out of the FPGA as fast as the device can 

process it. Simple solutions were suggested for the alignment of data words as well as the 

reassignment of input data to their respective channel IDs. The comma detection and 

comma alignment circuits of the MGT were applied. The next research step would be 

examining the system interface to Analog to Digital Converters that present the final 

stage of a neural signal acquisition system. Starting in 2006, JEDEC introduced a series 

of standards allowing ADCs to connect to SerDes interfaces on FPGAs. The latest 

version JESD204B released in 2012 features a high maximum lane rate (up to 12.5 Gbps 

per channel), support for deterministic latency, and support for harmonic frame clocking. 

The series of standards have set a common language between fast high performance ADC 
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and FPGAs making use of the high bandwidths SerDes can provide. Analog Devices has 

lately released an ADC with high-speed serial interfaces, the AD9250 dual, 14-bit, 

250MSPS ADC supporting the JESD204B standard.  

Theoretically speaking, this ADC can handle 10,000 recording channels sampled 

at 25 KSPS. Examining the practical implementation of this ADC to a neural data 

acquisition system and possible switching circuits that can multiplex different channels to 

the same ADC at this rate is a potential future research point. 

5.2 The Autonomous Design Architecture: 

One of the motivations of the dissertation work was to design an autonomous spike-based 

data reduction system, that is fully controlled by FSMs. No processors were used in the 

system control in order to avoid interrupt latencies that may degrade the performance of 

the overall design. FSM controllers were designed to handle different parts of the design, 

namely:  

(a) The input data allocation between multiple spike detection units, 

(b) The spike detection unit control and the copying process of the spike waveforms from 

the input BRAM into the output buffers. 

(c) Autonomous threshold selection for the spike detection unit. 

(d) Managing the transmission of the AP waveforms  from the unit buffers to the output 

FIFO shared by all the units. 

(e) A test-bed for the transmission of real neuronal data. 

The design architecture and FSM designs can be implemented to test new neural 

signal processing approaches. As a proof of concept, the spike detector used threshold 
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comparison using the NEO operator. This is a classical approach that has been used for a 

long time in neuronal spike detection. The architecture design can implement other spike 

detection techniques such as the discrete wavelet transform. [40,41,46] 

5.3 The hardware implementation:  

The hardware designs presented in the dissertation work were implemented for 

evaluation and proof of concept on a Xilinx XUPV5-LX110t board. Virtex-7 FPGAs are 

expected to have lower utilization percentages, and faster speed. This will allow giving 

more room for design expansion to handle more channels. The design BRAM utilization 

showed the highest percentage of 91%. The complete design used a total of 136 x 36K 

BRAMs ~ 5Mb. The Virtex 7 FPGA families integrate on average 68Mb BRAMs. A 

rough estimate can conclude that the hardware design described in the dissertation can be 

replicated ~ 13 times to handle a total of more than 33 thousand channels. A definite 

channel count value cannot be given before synthesizing the design and running the 

placement and routing to ensure that the timing constraints will be met. The Virtex7 

FPGA integrates 96 MGTs, each working at 28.05 Gbps. Considering the integration of 

33 thousand channels and each channel recording neural signals at 30 KHz, then a total 

bandwidth of 990 MSPS and at a sample precision of 16 bits/Sample, the input 

bandwidth requirement is 15.84 Gbps. Hence it is not expected that the input data 

transmission would be a factor of design limitation. The design bottleneck will be the 

transmission through PCIe to a host PC. Further reduction will be needed to decrease the 

output data for example by implementing spike sorting in hardware as well [47].  With 

more DSP slices integrated, the implementation of more complex spike detection and 



101 

 

spike sorting algorithms will be feasible. Concrete values can only be determined when 

the design is implemented on hardware. This is another implementation project to be 

considered in future work.  

Recently, Xilinx has released the Zynq®-7000 family. A series of products based 

on the Xilinx All Programmable System-on-Chip architecture, that integrates a dual-core 

ARM® Cortex™-A9 based processing system and 28 nm Xilinx programmable logic in a 

single device. Implementing the spike-based data reduction platform on the Zync FPGA 

may allow adding more features to the design capabilities. 

5.4 PCI Express Transmission: 

The PCIe transmission using Xillybus IPcore was relatively a straightforward solution for 

the transmission from the FPGA to the host PC. The Xillybus IPcore provides the 

necessary DMA-based design and the software driver to handle the data reception at the 

host. It was convenient for observing the data processed by the hardware design and 

evaluating it. On the other hand,  the p-core is available as a bit-file with little insight into 

the internal design and limited flexibility for custom modifications.   

One of the main drawbacks of using the Xillybus IPcore  was the fact that it is 

hard to predict the behavior of the read-enable signal. It is controlled by many factors that 

are opaque to the user. Some of the factors may be: The operation of the PCIe core on 

FPGA, the response of the host to interrupts and the motherboard's packet switching. At 

some points of the transmission process it was observed that the read enable signal of the 

Xillybus IPcore was idle for longer intervals of time (across a ChipScope window of 



102 

 

8192 clock cycles at 100MHz) causing accumulation of the data in the output buffer and 

consequently in the queue. 

5.5 Design Parameters: 

The number of channels that can be handled by the spike-based data reduction platform 

depends on several parameters related to the hardware resources, the processing clock on 

the FPGA, the type of neurons, and the transmission link bandwidth to the host PC. 

Based on the design simulations and hardware implementation, the following formula 

summarizes the design parameters to define the scaling boundaries of the system. 

5.5.1 Memory Usage: 

 There are three buffering stations in the design, namely the input buffer, the spike 

detection unit intermediate output buffer, and the common output FIFO where the spike 

waveforms from all the spike detection units are queued to be transmitted to the host PC. 

The input buffer has 16 sample words of 16 bits each assigned for each channel. The 

intermediate output buffer has 48 word block of 18 bits per word for each spike detected 

waveform. The number of 48 word blocks is equal to the number of channels to account 

for the worst case scenario of full bursting synchronization across all channels. The queue 

depth of the output FIFO depends on the transmission rate to the host PC. 

Memory usage per channel for the first two buffering stations is: 

Input buffer = 16x16 = 256 bits 

Intermediate buffer = 48x18 = 864 bits 

The total memory required for buffering one channel at the first two stages is 1120 bits. 
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To assure that no spike waveforms will be dropped, the system must be able to copy the 

spike waveforms to the common output FIFO before the intermediate buffers are filled up 

again with new spike waveforms. In other words, the maximum bursting rate may not be 

greater than the rate at which the spike waveforms are copied to the output FIFO. 

buffer teintermedia in the blocks  waveformspike#cyclesclock58

clockInternal
Rate burstingMaximum


  

In order to keep the memory usage per channel as described above, the internal clock 

must be adjusted adequately to complement the maximum bursting rate of the neuronal 

culture recorded. 

5.5.2. Transmission Rate and Queue Depth: 

An approximation formula was derived in section 3.5.6 to relate the transmission rate to 

the queue depth, bursting rate and number of samples per spike. 

 

channels of#     channel per Rate bursting AverageAverageBFR

spike/samplesSpkAccDepth Queue

TR - BFR AverageSpkAcc
burst







 

where SpkAcc = spike accumulation in the queue, Average BFR is the Firing rate during 

bursting activities, TR is the transmission rate to the host PC and τ-burst is the bursting 

time. Knowing the type of neurons that will be monitored, the average bursting firing rate 

can be estimated. Based on the transmission rate and the hardware memory resources, the 

number of channels can be determined. Or knowing the number of channels, the 

transmission rate and the queue depth can be designed. There is a number of algorithms 
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that have been developed to accurately detect burst occurrences and durations both in 

vivo and in vitro [48-50]. 
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